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Abstract. — We study a configuration model on bipartite planar maps in which, given
n even integers, one samples a planar map with n faces uniformly at random with these face
degrees. We prove that when suitably rescaled, such maps always admit nontrivial subsequen-
tial limits as n → ∞ in the Gromov–Hausdorff–Prokhorov topology. Further, we show that
they converge in distribution towards the celebrated Brownian sphere, and more generally a
Brownian disk for maps with a boundary, if and only if there is no inner face with a macroscopic
degree, or, if the perimeter is too big, the maps degenerate and converge to the Brownian tree.
By first sampling the degrees at random with an appropriate distribution, this model recovers
that of size-conditioned Boltzmann maps associated with critical weights in the domain of
attraction of a stable law with index α ∈ [1, 2]. The Brownian tree and disks then appear
respectively in the case α = 1 and α = 2, whereas in the case α ∈ (1, 2) our results partially

Keywords: Random maps, random trees, scaling limits.
2020 Mathematics Subject Classification: 05C80, 60B05, 60D05, 60F17.
DOI: https://doi.org/10.5802/ahl.125
(*) This project has received funding from the Fondation Mathématique Jacques Hadamard as
well as, thanks to Guillaume Chapuy, the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme, grant agreement No. ERC-2016-STG
716083 “CombiTop”.

https://annales.lebesgue.fr/
https://doi.org/10.5802/ahl.125


318 C. MARZOUK

recover previous known ones. Our proofs rely on known bijections with labelled plane trees,
which are similarly sampled uniformly at random given n outdegrees. Along the way, we obtain
some results on the geometry of such trees, such as a convergence to the Brownian tree but
only in the weaker sense of subtrees spanned by random vertices, which are of independent
interest.

Résumé. — Nous étudions un modèle de configuration sur les cartes planaires biparties dans
lequel on se donne n entiers pairs et l’on tire une carte planaire avec n faces uniformément
au hasard parmi celles avec ces degrés. Nous démontrons que ces cartes, convenablement
remises à l’échelle, admettent toujours des limites non triviales le long de sous-suites pour
la topologie de Gromov–Hausdorff–Prokhorov. De plus nous montrons qu’elles convergent
vers la célèbre sphère brownienne, et plus généralement un disque brownien pour des cartes
à bord, si et seulement si elles ne contiennent pas de face de degré macroscopique, ou bien,
si le périmètre est trop grand, les cartes dégénèrent et convergent vers l’arbre brownien. En
choisissant les degrés eux-mêmes de façon aléatoire, ce modèle recouvre celui déjà étudié des
cartes de Boltzmann conditionnées par la taille associées à une suite de poids critique et dans
le bassin d’attraction d’une loi stable d’indice α ∈ [1, 2]. L’arbre et les disques browniens
apparaissent alors respectivement dans les cas α = 1 et α = 2, tandis que dans le cas α ∈]1, 2[
nous retrouvons partiellement des résultats connus. Les preuves reposent sur des bijections
connues avec des arbres plans étiquetés qui sont de la même manière tirés uniformément au
hasard avec n degrés donnés. Nous obtenons ainsi plusieurs résultats sur la géométrie de ces
arbres intéressants par ailleurs, notamment leur convergence en loi vers l’arbre brownien, mais
uniquement dans un sens faible de sous-arbres engendrés par un nombre fini de sommets.

1. Introduction

This paper deals with continuum limits of random planar maps as their size tends
to infinity and their edge-length tends to zero appropriately. The most notable result
in this theory has been obtained by Le Gall [LG13] and Miermont [Mie13] who
proved the convergence of large random quadrangulations towards a limit called
the Brownian map or the Brownian sphere. Building on these works, the Brownian
sphere has then been shown to be a universal limit of many models of discrete maps
and this paper continues with a large class of distributions introduced and studied
previously in [Mar18b] in a restricted case.

1.1. Model and main results

A rooted planar map is a finite connected multigraph embedded in the two-
dimensional sphere, in which one oriented root edge is distinguished, and viewed
up to orientation-preserving homeomorphisms. The embedding allows to define the
faces of the map, which are the connected components of the complement of the
graph in the sphere; the degree of a face is then the number of edges incident to
it, counted with multiplicity. We shall consider maps with a, non-necessarily simple,
boundary, given by the face incident to the right of the root edge; the degree of this
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Scaling limits of planar maps with a prescribed degree sequence 319

Figure 0.1. A Brownian CRT with Brownian labels encoding the Brownian
sphere: labels are indicated by colours (red for the highest values and blue for
the lowest).

face is called the perimeter of the map. As usual in this field, for technical reasons
briefly discussed later in this section, we restrict ourselves to bipartite maps, in which
all faces have even degree.
Random maps provide discrete models of random geometry on the sphere and an

important question is their convergence towards continuum random geometries when
their size tends to infinity and one rescales the edge-lengths properly. In this respect,
in the case of uniformly random quadrangulations with n faces, i.e. n faces each
with degree 4, Le Gall [LG07] proved that such graphs admit subsequential limits at
the scaling n1/4, and that these limits all have the same topology (later identified as
the sphere [LGP08, Mie08]) and the same Hausdorff dimension 4. The problem of
uniqueness of the subsequential limits was solved simultaneously by Le Gall [LG13]
and Miermont [Mie13] who proved that rescaled random quadrangulations converge
in distribution towards a limit called the Brownian map, or sphere, which is a compact
metric measured space M0 = (M0, D0, p0) thus almost surely homeomorphic to the
sphere and with Hausdorff dimension 4. In the case of quadrangulations with a
boundary, Bettinelli & Miermont [BM17] proved that when the perimeter behaves
like %n1/2 with % ∈ (0,∞) fixed, they converge to the Brownian disk with perimeter %,
denoted byM% = (M%, D%, p%), which now has the topology of a disk, with Hausdorff
dimension 4, and its boundary has Hausdorff dimension 2 [Bet15].
These works raise then the question of the universality of the limits which should

not depend too much on the details of the discrete models. The present work proposes
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320 C. MARZOUK

an answer by considering a more general model that we now introduce. For every
integer n > 1, let us give ourselves an integer %n > 1 and a sequence (dn(k))k> 1 of
nonnegative integers such that ∑k> 1 dn(k) = n and dn(1) < n to avoid trivialities;
then let M%n

dn
denote the set of all (rooted planar bipartite) maps with perimeter 2%n

and n inner faces, amongst which exactly dn(k) have degree 2k for every k > 1. A
key quantity in this work is

σ2
n :=

∑
k> 1

k(k − 1)dn(k).

We stress that σ2
n really depends on the sequence dn, not only on n, but we chose

this lighter notation. We sample M%n
dn

uniformly at random in M%n
dn

and consider the
asymptotic behaviour as n→∞ of its vertex set V (M%n

dn
) endowed with the graph

distance dgr and the uniform probability measure punif .

Theorem 1.1. — Fix any sequence of perimeters (%n)n> 1 and any degree
sequence (dn)n> 1. From every increasing sequence of integers, one can extract a
subsequence along which the sequence of metric measured spaces(

V (M%n
dn

), (σn + %n)−1/2 dgr, punif
)
n> 1

converges in distribution in the Gromov–Hausdorff–Prokhorov topology to a limit
with a nonzero diameter.

Our first main theorem thus identifies the correct scale of the random maps and
provides a general tightness result; on the other hand, without any assumptions,
it cannot give any further information on the subsequential limits. In our second
main theorem, we prove that the Brownian sphere and disks appear when there is
no macroscopic (face-)degree, in the sense that none of them dominates the others.
We let

∆n = max {k > 1 : dn(k) 6= 0}
be the largest half-degree of an inner face in M%n

dn
, which we assume is always larger

than or equal to 2 in order to avoid trivialities.

Theorem 1.2. — Assume that limn→∞ σ
−1
n %n = % for some % ∈ [0,∞). Then we

have the convergence in distribution in the Gromov–Hausdorff–Prokhorov topology(
V
(
M%n

dn

)
,
( 3

2σn

)1/2
dgr, punif

)
(d)−→

n→∞
(M%, D%, p%)

if and only if
lim
n→∞

σ−1
n ∆n = 0.

Theorem 1.2 fully recovers [Mar18b, Theorem 1] obtained under additional tech-
nical assumptions and in a restricted “finite variance” regime when n−1σ2

n converges
to a positive and finite limit. An important point is that, since the characterisation
of the limit spaces M%, showing convergence of discrete models to these objects
has become much easier and we stress that, although the statement extends the
results of [BM17, LG13, Mie13], we rely on these works and we do not claim any
independent proof of the convergence of quadrangulations.
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The “only if” part of the statement is simple to prove: we shall see that an inner
face with degree of order σn has a diameter, in the whole map, of order σ1/2

n , which
either creates a pinch-point or a hole, so the space cannot converge in distribution
towards a limit which has the topology of the sphere or the disk. This argument
also shows that in the presence of such a macroscopic face, the diameter of the
rescaled map is bounded away from zero, which proves that the subsequential limits
in Theorem 1.1 are indeed not reduced to a single point (and without such a large
face the maps converge to the Brownian sphere, which is nontrivial as well).
The behaviour drastically changes if %n is much larger than σn; indeed as shown

by Bettinelli [Bet15, Theorem 5] for quadrangulations, in this case, the boundary
takes over the rest of the map and we obtain in the limit TX0 = (TX0 , dX0 , pX0)
the Brownian Continuum Random Tree of Aldous [Ald93] encoded by the standard
Brownian excursion X0.

Theorem 1.3. — Suppose that limn→∞ σ
−1
n %n = ∞. Then the convergence in

distribution (
V (M%n

dn
), (2%n)−1/2 dgr, punif

) (d)−→
n→∞

(TX0 , dX0 , pX0)

holds in the Gromov–Hausdorff–Prokhorov topology, where X0 is the standard Brow-
nian excursion.

Theorems 1.2 and 1.3 apply directly to models of random maps when all faces
have the same degree. For an integer p > 2, a 2p-angulation denotes a map in
which all faces have degree 2p. In this case ∆n = p and σ2

n = p(p − 1)n. Then
Le Gall [LG13, Theorem 1] actually proved that for any p fixed, such a 2p-angulation
with n faces sampled uniformly at random converges in distribution towards the
Brownian sphere; this was extended to 2p-angulations with a boundary by Bettinelli
& Miermont [BM17, Corollary 6]. Our results allow to let p vary with n.

Corollary 1.4. — Let % ∈ [0,∞] and let (pn)n> 1 ∈ {2, 3, . . .}N and (%n)n> 1 ∈
NN be any sequences such that limn→∞(pn(pn − 1)n)−1/2%n = %. For every n > 1,
let M%n

n, pn be a uniformly chosen random 2pn-angulation with n inner faces and with
perimeter 2%n.

(1) Suppose that % <∞, then the convergence in distributionV (M%n
n, pn

)
,

(
9

4pn(pn − 1)n

)1/4

dgr, punif

 (d)−→
n→∞

(M%, D%, p%)

holds in the Gromov–Hausdorff–Prokhorov topology.
(2) Suppose that % =∞, then the convergence in distribution(

V
(
M%n

n, pn

)
, (2%n)−1/2 dgr, punif

) (d)−→
n→∞

(TX0 , dX0 , pX0)

holds in the Gromov–Hausdorff–Prokhorov topology.

An important point about our main theorems is that the assumptions are very sim-
ple to check. We shall illustrate this with so-called size-conditioned critical α-stable
Boltzmann maps in Section 6. This model can be seen as a mixture of our present
one, where (n itself and) the sequence dn is first sampled at random, informally as
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a conditioned version of some i.i.d. random variables, and then one samples a map
uniformly at random given these degrees. The size of a random Boltzmann map is
not fixed but one can sample such a map conditioned to have either n faces, or n
edges, or n vertices and let n→∞.
When the index α lies in (1, 2), we shall prove that for some deterministic se-

quence an of order n1/α (up to a slowly varying function), the ratio a−1
n σn converges

in distribution as n→∞, so we deduce from Theorem 1.1 tightness of these maps
once rescaled by a−1/2

n ≈ n−1/(2α). This model was first studied by Le Gall & Mier-
mont [LGM11] who obtained more information in addition to tightness, although
proving the uniqueness of the subsequential limit is still open.
When α = 2, we shall see that a−1

n ∆n → 0 in probability and a−1
n σn converges in

probability to an explicit constant which depends on the law of the degrees and the
notion of size (faces, edges, or vertices) where an is of order n1/2 (again up to a slowly
varying function). Then Theorem 1.2 implies the convergence of these maps, once
rescaled by the factor a−1/2

n ≈ n−1/4, to a Brownian disk. In the case of maps without
boundary, this recovers [Mar18a, Theorem 1], whereas for maps with a boundary,
this extends [BM17, Theorem 5] which assumes small exponential moments.
Finally, in the other extreme case α = 1, relying on the recent work by Kortchemski

& Richier [KR19], we prove that there is a unique giant face, of order some other
deterministic sequence |bn| ≈ n (still up to a slowly varying function), and this falls
into the framework of Theorem 1.3 so the maps converge, once rescaled by a factor
|bn|−1/2 ≈ n−1/2 to the Brownian CRT. A similar result holds for subcritical maps,
at the scaling exactly n−1/2, as first shown by Janson & Stefánsson [JS15]. We refer
to Section 6 for precise statements.

1.2. Random trees with a prescribed degree sequence

This model of random maps was inspired by a similar model of random trees,
whose scaling limits were first studied by Broutin & Marckert [BM14] and extended
to forests recently by Lei [Lei19]. Let (%n)n> 1 and (dn)n> 1 be as above, then for each
n > 1 we let T%n

dn
be the set of ordered plane forests with %n trees and n internal

vertices, amongst which dn(k) have k offspring for every k > 1. Such a forest always
has

En :=
∑
k> 1

kdn(k), dn(0) := %n +
∑
k> 1

(k − 1)dn(k), Vn :=
∑
k> 0

dn(k),

edges, leaves, and vertices respectively.
Under technical assumptions on the degree sequences (dn)n> 1, in particular that

σ2
n ∼ σ2En for some σ ∈ (0,∞) and limn→∞ σ

−1
n ∆n = 0, Broutin & Marckert [BM14]

showed that if Tdn is a tree sampled uniformly at random in T1
dn , then the convergence

in distribution
(1.1)

(
V (Tdn) , σn2En

dgr, punif

)
(d)−→

n→∞
(TX0 , dX0 , pX0)

holds in the Gromov–Hausdorff–Prokhorov topology, where X0 is the standard
Brownian excursion. More precisely, the contour or height process of the rescaled
tree converges in distribution towards X0.
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Under the assumption of no macroscopic degree only, we prove a weaker conver-
gence, in the sense of subtrees spanned by finitely many random vertices, as depicted
on Figure 1.1. Fix q > 1 and let u1, . . . , uq be q i.i.d. uniform random vertices of
Tdn and keep only these vertices and their ancestors and remove all the other ones;
further merge each chain of vertices with only one child in this new tree into a single
edge with a length given by the number of edges of the former chain. The resulting
tree Rdn(q) is called a discrete tree with edge-lengths; its combinatorial structure is
that of a plane tree with at most q leaves and no vertex with outdegree 1, so there are
only finitely many possibilities, and thus there are a bounded number of edge-lengths
to record. We equip the space of trees with edge-lengths with the natural product
topology. For x1, . . . , xq i.i.d. random points of TX0 sampled from the mass measure
pX0 , one can construct similarly a discrete tree with edge-lengths RX0(q); its law is
described by Aldous [Ald93, Section 4.3].

u1 u2

u3

u4

4 2
4

1 3

Figure 1.1. Left: a plane tree and four distinguished vertices in red. Right: the
associated reduced tree with edge-lengths.

Theorem 1.5. — If limn→∞ σ
−1
n ∆n = 0, then for every q > 1 we have the

convergence in distribution
σn

2En
Rdn(q) (d)−→

n→∞
RX0(q).

where X0 is the standard Brownian excursion.
This result holds more generally when %n ∼ %σn for some % ∈ [0,∞), for the forest

T %ndn , viewed as a single tree by attaching all the roots to an extra root vertex. The
limit is a different continuum tree which involves a Brownian first-passage bridge
from 0 to −%; we refer to Theorem 2.4 for a statement involving the height process
of the forest.
Theorem 1.5 characterises the possible scaling limits of the trees Tdn in this regime

with no macroscopic degrees; in order to extend the convergence from (1.1) and thus
obtain an analogue of Theorem 1.2 for trees and forests, it remains to prove tightness
of this sequence (see precisely [Ald93, Equation 25]). Here no general tightness result
as in Theorem 1.1 holds and the maximal height of the tree can be much larger than
En/σn. Indeed, similarly to Boltzmann maps, size-conditioned Bienaymé–Galton–
Watson trees can be thought of as mixtures of this model where dn is itself random;
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then when the offspring distribution is subcritical, Kortchemski [Kor15] proved that
the height of the tree grows logarithmically, whereas En/σn is of constant order, and
the rescaled trees are not tight. Still, this regime, where the trees exhibit a so-called
condensation phenomenon, with a unique huge degree, is extreme and we wonder
wether beside such a case tightness holds; in particular, does (1.1) hold as soon as
limn→∞ σ

−1
n ∆n = 0?

There is a particular case that our method allows to treat, and which seems already
new, which is that of regular trees: for n, k > 1, a (strict) k-ary tree with size n is a
tree made of n vertices with k offspring each, and n(k − 1) + 1 leaves, and no other
vertex. With the preceding notation, a k-ary tree Tn,k with size n sampled uniformly
at random has the law of Tdn where dn(k) = n and dn(i) = 0 for all i ∈ N \ {k},
so En = kn and σ2

n = k(k − 1)n. For such trees, one can adapt our results to prove
the analogue of Corollary 1.4, that is: for any sequence (kn)n> 1 ∈ {2, 3, . . .}N, the
convergence in distribution

(1.2)
V (Tn, kn) ,

√
kn − 1
4knn

dgr, punif

 (d)−→
n→∞

(TX0 , dX0 , pX0)

holds in the Gromov–Hausdorff–Prokhorov topology. Actually, the contour or height
process of the rescaled tree converges in distribution towards the standard Brownian
excursion X0. See Remark 4.7 for a further discussion.

1.3. Strategy of the proof and further discussion

The study of the random forests T %ndn is also an important part of the proof of our
main results on maps. Indeed, the combination of the bijections from [BDFG04, JS15]
relates maps in M%n

dn
with forests in T%n

dn
where each vertex carries an integer label.

Thanks to the work of Le Gall [LG13] and Miermont [Mie13] our main theorems shall
easily follow from the study of such random labelled forests and most of this paper is
devoted to this. Let us mention at this point that the bijection from [BDFG04] holds
also for maps which are not bipartite and it was used by Le Gall [LG13] to prove that
random triangulations converge to the Brownian sphere. Recently, Addario-Berry
& Albenque [ABA21] used it to prove that random p-angulations converge to the
Brownian sphere for every p > 5 odd. However the labelled trees from [BDFG04] are
more complicated to control and extending our present results to the non-bipartite
case does not seem technically easy.
The graph distance on the map can be partially encoded by the label process

which reads the labels of the forest in depth-first search order, and we prove that
this process is always tight when suitably rescaled, see Theorem 2.5. This tightness
relies only on the so-called Łukasiewicz path of the forest, which is a very simple
process: up to a discrete Vervaat transform (also known as cyclic shift), the latter
is a uniformly random path which makes dn(k) jumps of size k − 1 for each k > 0.
This is the simplest example of a random path with exchangeable increments and its
asymptotic behaviour is well understood. From a technical point of view, tightness
of the label process requires a precise control of the Łukasiewicz path obtained in

ANNALES HENRI LEBESGUE
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particular via Chernoff bounds for martingales. Going from tightness of the label
process to tightness of the map as in Theorem 1.1 is then very standard in the theory.
Similarly, Theorems 1.2 and 1.3 follow easily from the convergence of the la-

bel process stated in Theorem 2.6. After tightness is proved, it only remains to
consider its finite-dimensional marginals. A first step is to prove Theorem 2.4 on
the convergence of the forest without the labels, in the weak sense of the sub-
forests spanned by finitely many random vertices; for this we introduce a new spinal
decomposition which describes the genealogy of such random vertices. This shall
allow us to compare the so-called height process and Łukasiewicz path of the forest.
We want to stress that only this weak convergence of the forest is needed, and not a
strong convergence, such as the functional convergence of the contour process used
in the previous works on random maps. Once we control the length of the branches
of the subforests, the joint convergence of the label of these random vertices follows
by a Central Limit Theorem for independent but not identically distributed random
variables; here again we strongly rely on the spinal decomposition.
Finally the last section is devoted to stable Boltzmann maps; in this case the

Łukasiewicz path of the associated forest is a conditioned first-passage bridge of a
left-continuous random walk. We rely on previous works and familiar techniques in
the study of stable Bienaymé–Galton–Watson trees to prove that the random degree
distribution fits in our general framework.
This work leaves open several questions on maps (in addition to those on trees and

on the non-bipartite case discussed above). Let us only briefly mention that of the
asymptotic behaviour of (planar bipartite) maps in the case of large degrees, of order
σn, that we are currently investigating. Under suitable assumptions, the Łukasiewicz
path converges towards the excursion of a process with exchangeable increments
which makes no negative jump. Aldous, Miermont, & Pitman [AMP04] constructed
the analogue of the height process of the associated “Inhomogeneous Continuum
Random Tree” which is a family of random excursions with continuous-path which
extends the Brownian excursion. One can then try to define “Inhomogeneous Con-
tinuum Random Maps” by adding random labels on such trees in a similar way
as in [LGM11] and to prove convergence of the discrete maps towards these ob-
jects (after extraction of a subsequence). In this regard our tightness results from
Theorems 1.1 and 2.5 represent a first step towards such a convergence.

1.4. Organisation of the paper

In Section 2, we first recall the definition of labelled plane forests and their encoding
by paths and we briefly discuss the bijection with planar maps; then we state the
three results whose proof will occupy most of this paper: first Theorem 1.5 on the
convergence of reduced forest in Section 2.3, and then Theorems 2.5 and 2.6 on
the label process in Section 2.4. In Section 3 we prove the main theorems from the
introduction by relying on the aforementioned results. Section 4 is devoted to the
study of the random forests, we prove in particular Theorem 1.5 there. We study the
label process in Section 5 where we prove Theorems 2.5 and 2.6. Finally in Section 6
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we describe the model of stable Boltzmann planar maps, we state and prove our
results on these models by relating them to our general setup.

Acknowledgement
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2. Planar maps as labelled trees

As alluded in the introduction, we study planar maps via a bijection with labelled
forests. Let us first recall formally the definition of the latter and set the notation
we shall need. Then we state the main contributions of this paper on scaling limits
of the paths which code these forests; the proofs are differed to Sections 4 and 5.

2.1. The key bijection

A (rooted plane) tree is a planar map with a unique face. We shall interpret it as
the genealogical tree of a population. First, the origin of the root edge is the ancestor
of the family, denoted by ∅, then for any given vertex x, its neighbour pr(x) closer to
the ancestor is its parent, and all the other neighbours are its offspring; the distance
of x to the root is its generation and is denoted by |x|. A vertex with no offspring
is called a leaf, and the other ones are called internal vertices. Note that due to the
embedding on the sphere, the offspring of a given internal vertex are ordered from
left to right and we denote them by x1, . . . , xkx where kx is the offspring number
of x; finally the root edge points to the left-most offspring of the ancestor. For any
vertex x 6= ∅, we let χx ∈ {1, . . . , kpr(x)} be the only index such that x = pr(x)χx,
which is the relative position of x amongst its siblings. We shall denote by [[x, y]]
the unique geodesic path between x and y. Finally, we shall always list the vertices
of a tree as ∅ = x0 < x1 < . . . in the so-called depth-first search order, which is
constructed recursively as follows: suppose that x0 < x1 < · · · < xi are constructed
for some i > 0, then let j 6 i denote the largest index such that xj has an offspring
which does not belong to the list (x0, . . . , xi) and let xi+1 denote the left-most of
these missing offspring.
A (plane) forest is a finite ordered list of plane trees; we shall alternatively view

a forest as a single tree by attaching all the roots to an extra root vertex (when
focusing on its geometry), or as another connected graph by linking two consecutive
roots in a chain (when focusing on labels as defined below).
For every k > 1, let us consider the following set of discrete bridges:

(2.1) B>−1
k =

{
(b1, . . . , bk) : b1, b2 − b1, . . . , bk − bk−1 ∈ Z>−1, bk = 0

}
.

Then a labelling of a plane forest, with say, % > 1 trees rooted at the vertices
r1 < · · · < r% respectively, is a function ` from its vertices to Z such that:
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(1) the sequence (`(r1), `(r2), . . . , S`(r%)) belongs to B>−1
% ,

(2) for every vertex x with kx > 1 offspring, the sequence of increments (`(x1)−
`(x), . . . , `(xkx)− `(x)) belongs to B>−1

kx
.

We emphasise the asymmetry of the model: we have `(x1) > `(x)− 1 in general, but
`(xkx) = `(x). Also, in the case of a single tree, the first condition reduces to the
fact that its root has label 0.
Recall from the introduction that for every integer n, we consider an integer %n ∈ N

and a sequence dn = (dn(k))k> 1 ∈ ZN
+ which sums up to n, and we denote by T%n

dn
the set of all plane forests with %n trees and n internal vertices, amongst which dn(k)
have k offspring for every k > 1. Such a forest always has

En :=
∑
k> 1

kdn(k), dn(0) := %n +
∑
k> 1

(k − 1)dn(k), Vn :=
∑
k> 0

dn(k),

edges, leaves, and vertices respectively. We let LT%n
dn

denote the set of forests in T%n
dn

equipped with a labelling as above. For a single tree, we shall drop the exponent 1.
Let PM%n

dn
be the set of pointed maps (Mn, x?) where Mn is a map in M%n

dn
and

x? is a distinguished vertex of Mn. If (Mn, x?) is a pointed map, then the tip of the
root edge is either farther (by one) to x? than its origin, in which case the map is
said to be positive by Marckert & Miermont [MM07], or it is closer (again by one),
in which case the map is said to be negative. Let us immediately note that every
map in M%n

dn
has %n +∑

k> 1 kdn(k) = Vn edges in total and so Vn−n+ 1 = dn(0) + 1
vertices by Euler’s formula. In particular a uniformly random map in M%n

dn
in which

we further distinguish a vertex x? independently and uniformly at random has the
uniform distribution in PM%n

dn
. Moreover, half of the 2%n edges on the boundary are

“positively oriented” and half of them are “negatively oriented”, so if M%n
dn

is positive,
we may re-root it to get a negative map. Therefore it is equivalent to work with
random negative maps in PM%n

dn
instead of maps in M%n

dn
.

Combining the bijections due to Bouttier, Di Francesco, & Guitter [BDFG04]
and to Janson & Stefánsson [JS15], we obtain that the set LT%n

dn
is in one-to-one

correspondence with the set of negative maps in PM%n
dn
. Let us refer to these papers

as well as to [Mar18a] for a direct construction of the bijection. In a few words the
map is constructed from the forest in two steps: first as in the standard Schaeffer
bijection and more generally as in [BDFG04] we link every vertex of the forest with
the next one in depth-first search order (as opposed to the contour order on corners
for the other bijections) with a smaller label, or to an extra vertex for those whose
label is minimal; then we merge every internal vertex of the forest with its last
offspring (recall that `(xkx) = `(x)); see Figure 2.1 for an illustration. The bijection
enjoys the following properties:

(1) The leaves of the forest are in one-to-one correspondence with the vertices
different from the distinguished one in the map, and the label of a leaf minus
the infimum over all labels, plus one, equals the graph distance between the
corresponding vertex of the map and the distinguished vertex.

(2) The internal vertices of the forest are in one-to-one correspondence with the
inner faces of the map, and the outdegree of the vertex is half the degree of
the face.
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(3) The root face of the map corresponds to the collection of roots of the forest,
and the number of trees is half the perimeter of the map.

The third property only holds for negative maps, which is the reason why we restricted
ourselves to this case.

−3

−1 −2 1 0

0−1

−2 0 −1

10

0

0−1−2−1

−3

−1 −2

0

−2 0 −1

1

0−1−2−1

Figure 2.1. Left: a labelled forest in solid lines with an extra vertex labelled
−3 and in dashed the links between each vertex and the next one with smaller
label (in cyclic order). Right: the negative pointed map obtained by removing
the edges of the forest and merging each internal vertex (in gray) with its last
offspring.

2.2. Labelled forests and discrete paths

Fix a forest F with % > 1 trees and V > 1 vertices in total, listed x0 < x1 < · · · <
xV−1 in lexicographical order. It is well known that F is described by each of the
following two discrete paths. First, its Łukasiewicz path W = (W (j); 0 6 j 6 V ) is
defined by W (0) = 0 and

W (j + 1) = W (j) + kxj − 1 (0 6 j 6 V − 1) .
One easily checks that W (V ) = −% and W (j) > −% for every 0 6 j 6 V − 1.
Next the height process H = (H(j); 0 6 j 6 V ) is defined by setting H(V ) = 0 for
convenience and

H(j) = |xj| (0 6 j 6 V − 1) ;
see Figure 2.2 for an illustration. Clearly the maps F 7→ W and F 7→ H are injective,
and in order to recover the forest from one of those paths, one may first observe
that the infimum of W up to time j, or the number of passages of H by 0 up to
time j tells to which tree of the forest the vertex xj belongs, and then the parent
of this vertex is xk, where k = sup{i < j : H(i) < H(j)} for the height process,
and k = sup{i < j : W (i) 6 W (j)} for the Łukasiewicz path. Let us refer to e.g.
Le Gall [LG05] for a thorough discussion of such encodings.
In the case of a labelled forest, we encode the labels into the label process given

by L(V ) = 0 for convenience and
L(j) = `(xj) (0 6 j 6 V − 1) ;
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see Figure 2.2. The labelled forest is encoded both by the pair (H,L) and by the
pair (W,L).
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Figure 2.2. Left: A labelled forest on the left, with labels indicated on the nodes
and next to them in red their lexicographical order. Right, from top to bottom:
its Łukasiewicz path, its height process, and its label process.

Without further notice, throughout this work, every Łukasiewicz path shall be
viewed as a step function, jumping at integer times, whereas the height and label
processes shall be viewed as continuous functions after interpolating linearly between
integer times.
Let us end with another useful construction of the Łukasiewicz path. The next

lemma, whose proof is left as an exercise, gathers some deterministic results that we
shall need. In order to simplify the notation, we shall often identify the vertices of a
tree with their index in the lexicographic order: here if x is the i′th vertex of a tree
whose Łukasiewicz path is W , then we write W (x) for W (i).

Lemma 2.1. — Let T be a plane tree and W be its Łukasiewicz path. Fix a
vertex x ∈ T , then

W (xkx) = W (x), W (xj′) = inf
[xj, xj′]

W, and j′ − j = W (xj)−W (xj′)

for every 1 6 j 6 j′ 6 kx.

For a vertex x of a tree T , let us denote by L(x) and R(x) respectively the number
of vertices y whose parent is a strict ancestor of x and which lie strictly to the left,
respectively to the right, of the ancestral line [[∅, x[[; then we put LR(x) = L(x)+R(x).
Then a consequence of the preceding lemma is that, in a tree, we have R(x) = W (x).
In the case of a forest, we define L(x) and R(x) (and so LR(x)) as the same quantities
in the tree containing x, and then we have more generally
(2.2) R(x) = W (x)− min

06 y6x
W (y).
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For example, if x is the vertex number 7 in Figure 2.2, then R(x) = W (7) −
min06 i6 7W (i) = 2, which corresponds to the vertices 8 and 9.

2.3. Geometry of random forests

The first key step to understand the asymptotic behaviour of a random map in
PM%n

dn
is to study the associated random labelled forest (T %ndn , `) in LT%n

dn
. Let us first

discuss the behaviour of the forest, and more precisely of its Łukasiewicz path and
height process, before stating our main results on the labels. For every integer n,
we are thus given a degree sequence dn = (dn(k))k> 0 ∈ ZZ+

+ and T %ndn is sampled
uniformly at random in the set T%n

dn
of forests which possess %n = ∑

k> 0(1− k)dn(k)
trees and Vn = ∑

k> 0 dn(k) vertices, amongst which dn(k) have k children for every
k > 0. Recall also the notation En := ∑

k> 1 kdn(k) = Vn − %n for the number
of edges, ∆n := max{k > 0 : dn(k) > 0} the largest offspring, and finally σ2

n :=∑
k> s0 k(k − 1)dn(k), so σ2

n/Vn is the second factorial moment of a vertex chosen
uniformly at random.
It is well known that the Łukasiewicz path W %n

dn
of our random forest T %ndn can be

constructed as a cyclic shift of a bridge, also called the discrete Vervaat transform, see
e.g. Pitman [Pit06, Chapter 6]. More precisely, let B%n

dn
= (B%n

dn
(i))06 i6Vn be a discrete

path sampled uniformly at random amongst all those started from B%n
dn

(0) = 0 and
which make exactly dn(k) jumps with value k− 1 for every k > 0, so B%n

dn
is a bridge

from 0 to B%n
dn

(Vn) = ∑
k> 0(k − 1)dn(k) = −%n. Independently, sample pn uniformly

at random in {0, . . . , %n − 1} and set

in = inf
{
i ∈ {1, . . . , Vn} : B%n

dn
(i) = pn + inf

16 j 6Vn
B%n
dn

(j)
}
.

Then W %n
dn

has the law of the concatenation((
B%n
dn

(in + k)−B%n
dn

(in)
)

06 k6Vn−in
,
(
B%n
dn

(k) +B%n
dn

(Vn)−B%n
dn

(in)
)

16 k6 in

)
.

Moreover, the time in has the uniform distribution on {1, . . . , Vn} and is independent
of the cyclically shifted path W %n

dn
. Given the excursion W %n

dn
and in, one recovers the

bridge B%n
dn

by the same cyclic shift.
The next result states that vertices with a given outdegree are homogeneously

spread in the forest in the sense that, asymptotically, the number of vertices with
degree in a given set of integers, when read in depth-first search order, grows linearly.
We shall apply it with A = {−1} in order to deal with maps. For a subset A ⊂
Z>−1 = {−1, 0, 1, 2, . . .} and a real number r ∈ [0, Vn], let ΛA(r;W %n

dn
) denote the

number of jumps with value in A amongst the first brc jumps of W %n
dn
, and consider

its inverse ζA(t;W %n
dn

) = inf{r : ΛA(r;W %n
dn

) = btc} for all t ∈ [0,∞) the time needed
to see at least btc jumps with value in A. Let us set dn(A+ 1) = ∑

k∈A dn(k + 1).
Lemma 2.2. — Fix any subset A ⊂ Z>−1, if dn(A + 1)→∞, then we have the

convergence in probabilityΛA

(
Vnt;W %n

dn

)
dn(A+ 1) ,

ζA
(
dn(A+ 1)t;W %n

dn

)
Vn


t∈ [0, 1]

P−→
n→∞

(t, t)t∈ [0, 1].
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Proof. — Note first that since the two functions are inverse of one another and
non-decreasing, the two convergences are equivalent. Second, by constructing the
bridge B%n

dn
by cyclically shifting W %n

dn
at an independent uniformly random time, it

is sufficient to prove the claim when the Łukasiewicz path W %n
dn

is replaced by the
bridge B%n

dn
.

For an integer j 6 Vn, the quantity ΛA(j;B%n
dn

) is the sum of dependent Bernoulli
random variables: we start with an urn containing Vn balls in total, amongst which
dn(A + 1) are labelled A, we sample j balls without replacement and count the
number of balls labelled A picked. If those picks were with replacement, then the
first convergence would simply follow from the law of large numbers; actually when
sampling without replacement, ΛA(j;B%n

dn
) is even more concentrated around its

mean jdn(A + 1)/Vn and e.g. the Chernoff bound applies in the same way it does
with i.i.d. Bernoulli random variables (this is already shown in Hoeffding’s seminal
paper [Hoe63]); we deduce the convergence of t 7→ ΛA(Vnt;B%n

dn
)/dn(A + 1) to the

identity and thus also that of t 7→ ζA(dn(A+ 1)t;B%n
dn

)/Vn. �

Let us next focus on the convergence of W %n
dn
. For % ∈ [0,∞), let us denote by

B% = (B%
t )t∈ [0, 1] the standard Brownian bridge from 0 to −% with duration 1.

Analogously one can construct X% the first-passage Brownian bridge from 0 to −%
(which reduces to the standard Brownian excursion when % = 0) by cyclically shifting
B%, see [BCP03, Theorem 7]. The starting point of this work is the following result,
which extends [BM14, Lemma 7] and [Lei19, Theorem 1.6].

Proposition 2.3. — Assume that limn→∞ σn =∞ and limn→∞ σ
−1
n %n = % for

some % ∈ [0,∞].
(1) Suppose that % <∞. Then from every sequence of integers, one can extract a

subsequence along which the sequence σ−1
n B%n

dn
(bVn·c) converges in distribution

in the Skorokhod’s J1 topology.
(2) Furthermore this sequence converges in distribution towards B% if and only

if limn→∞ σ
−1
n ∆n = 0. In this case, the sequence of processes σ−1

n W %n
dn

(bVn·c)
converges in distribution towards X%.

(3) Suppose that % =∞, then both processes %−1
n B%n

dn
(bVn·c) and %−1

n W %n
dn

(bVn·c)
converge in probability towards t 7→ −t.

From (2.2), by continuity, when limn→∞ σ
−1
n ∆n = 0 and % <∞, the process(

σ−1
n R (bVntc)

)
t∈ [0, 1]

converges in distribution towards

X̃% =
(
X%
t − inf

s∈ [0, t]
X%
s

)
t∈ [0, 1]

.

Proof. — Let us first start with the case % < ∞. For every 1 6 i 6 Vn, let
bi = B%n

dn
(i)−B%n

dn
(i− 1). Then ∑Vn

i=1 bi = ∑
k> 0(k − 1)dn(k) = −%n and

Vn∑
i=1

b2
i =

∑
k> 0

(k − 1)2dn(k) =
∑
k> 0

k(k − 1)dn(k)−
∑
k> 0

(k − 1)dn(k) = σ2
n + %n.
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Therefore ∑Vn
i=1(bi + V −1

n %n) = 0 and ∑Vn
i=1(bi + V −1

n %n)2 = σ2
n + %n − V −1

n %2
n =

σ2
n(1 + o(1)). Then the sequence given by

xi = bi + V −1
n %n(

σ2
n + %n − V −1

n %2
n

)1/2 , 1 6 i 6 Vn,

is called a “normalised urn” by Aldous [Ald85, Chapter 20]. For every t ∈ [0, 1], let
us define

Sn(t) =
∑

i6 bVntc
xi =

B%n
dn

(bVntc)
σn(1 + o(1)) + %nbVntc

Vnσn(1 + o(1)) .

Then by [Ald85, Proposition 20.3], the sequence (Sn)n> 1 is always tight in the
Skorokhod’s J1 topology, this implies the first claim. Furthermore, by [Ald85, Theo-
rem 20.7], this sequence converges in distribution towards a Brownian bridge B0 as
soon as there is no macroscopic jump, i.e. limn→∞ σ

−1
n ∆n = 0. Of course if there is

such a large jump, a limit cannot have continuous paths. In the absence of jumps,
we deduce that σ−1

n B%n
dn

(bVn·c) converges in distribution towards (−%t + B0
t )t∈ [0, 1]

which has the same law as B%. Since W %n
dn

and X% are obtained by cyclically shift-
ing B%n

dn
and B% respectively, this implies further the convergence in distribution

of (σ−1
n W %n

dn
(bVntc))t∈ [0, 1] towards X% from the continuity of this operation, see

Lei [Lei19, Section 4].
Let us finally suppose that %n � σn. Then similarly, for every t ∈ [0, 1], let us set

S ′n(t) = σn
%n
Sn(t) =

B%n
dn

(bVntc)
%n(1 + o(1)) + %nbVntc

Vn%n(1 + o(1)) .

Since the sequence (Sn)n> 1 is tight, then S ′n converges in probability to the null
process and therefore %−1

n B%n
dn

(bVn·c) converges in probability towards t 7→ −t. The
convergence of %−1

n W %n
dn

(bVn·c) follows again by cyclic shift. �

Let us next turn to the height process H%n
dn

associated with the random forest T %ndn .
Let us fix a continuous function g : [0, 1]→ R, then for every 0 6 s 6 t 6 1, set

dg(s, t) = dg(t, s) = g(s) + g(t)− 2 min
r∈ [s, t]

g(r).

One easily checks that dg is a continuous pseudo-metric on [0, 1]. Consider the
quotient space Tg = [0, 1]/{dg = 0}; we let πg be the canonical projection [0, 1]→ Tg,
then dg induces a metric on Tg that we still denote by dg, and the Lebesgue measure
on [0, 1] induces a measure pg on Tg. The space Tg = (Tg, dg, pg) is a so-called compact
measured real-tree, naturally rooted at πg(0). When g = X0, the space TX0 is the
celebrated Brownian Continuum Random Tree of Aldous [Ald93]. More generally, for
% ∈ (0,∞), the space TX% describes a forest of Brownian trees, attached by their root
along an interval of length % as in [BM17]. For every t ∈ [0, 1], set X%

t = min06 s6 tX
%
s

and then X̃%
t = X%

t −X%
t ; then the continuum tree T

X̃% describes the same forest of
Brownian trees, but now after all the roots have been merged together.
Similarly, in the discrete setting, let us view a plane forest as a single tree by

attaching all the roots to an extra root vertex. The next proposition shows that,
under the assumption of no macroscopic degree, the forest T %ndn spanned by i.i.d.
uniform random vertices, i.e. the smallest connected subset of T %ndn viewed as a
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tree containing these vertices, converges towards the analogue for T
X̃% and i.d.d.

points sampled from its mass measure p
X̃% . This result implies Theorem 1.5 from

the introduction.
Theorem 2.4. — Assume that limn→∞ σ

−1
n %n = % for some % ∈ [0,∞) and that

limn→∞ σ
−1
n ∆n = 0. Fix q > 1 and let U1, . . . , Uq be i.i.d. uniform random variables

in [0, 1] independent of the rest and denote by 0 = U(0) < U(1) < · · · < U(q) their
ordered statistics. Then the convergence in distribution

σn
2En

(
H%n
dn

(
VnU(i)

)
, inf
U(i−1)6t6U(i)

H%n
dn

(Vnt)
)

16 i6 q

(d)−→
n→∞

(
X̃%
U(i)
, inf
U(i−1) 6 t6U(i)

X̃%
t

)
16 i6 q

holds jointly with that of σ−1
n W %n

dn
(Vn·) towards X% in Proposition 2.3.

The proof is more involved and is differed to Section 4.4. We already mentioned
that the question of tightness of the process H%n

dn
(or even its maximum, as discussed

in the introduction), once suitably rescaled, was not easy; at least we can say that
it is simply not true in general, but we wonder wether it is the case under the
assumptions of Theorem 2.4.

2.4. Random labelled forests

Let us next consider random labelled forests (T %ndn , `) in LT%n
dn
. The law of the latter

can be constructed in the following way: first T %ndn is sampled uniformly at random
in T%n

dn
as previously, and then given this forest, we sample the label of the roots

uniformly at random in B>−1
%n and, independently for every branchpoint with, say,

k > 1 offspring, the label increments between these offspring and the branchpoint
are sampled uniformly at random in B>−1

k . Let L%ndn be the associated label process.
Theorem 2.5. — Fix any sequence (%n)n> 1 and any sequence of degree sequence

(dn)n> 1. Then from every increasing sequence of integers, one can extract a subse-
quence along which the label processes(

(σn + %n)−1/2 L%ndn(Vnt)
)
t∈ [0, 1]

converge for the uniform topology.
In order to deduce Theorems 1.2 and 1.3 we need to identify these subsequential

limits. We shall need to deal with the root vertices of T %ndn separately; let us therefore
denote by (b%ndn(k))16 k6 %n the labels of the roots of T %ndn , and set b%ndn(0) = b%ndn(%n) = 0.
Recall that W %n

dn
is the Łukasiewicz path of T %ndn , for every 0 6 k 6 Vn, let us set

W %n
dn

(k) = min06 i6 kW
%n
dn

(i) and write

(2.3) L%ndn(k) = L̃%ndn(k) + b%ndn

(
1−W %n

dn
(k)
)
.

Then b%ndn(1 − W %n
dn

(k)) gives the value of the label of the root vertex of the tree
containing the k’th vertex, so L̃%ndn(k) gives the value of the label of the k′th vertex
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minus the value of the label of the root vertex of its tree; in other words, L̃%ndn is the
concatenation of the label process of each tree taken individually, so where all labels
have been shifted so that each root receives label 0. The point is that, conditionally
given T %ndn , the two processes L̃%ndn(·) and b%ndn(1−W %n

dn
(·)) are independent.

The Brownian sphere and disks are described similarly by “continuum labelled
trees” which we next recall, following Bettinelli & Miermont [BM17]. Fix % ∈ [0,∞)
and recall that X% denotes the standard Brownian first passage bridge from 0 to −%,
and that for every t ∈ [0, 1], we set X%

t = min06 s6 tX
%
s and then X̃%

t = X%
t −X%

t ; the
processes X% and X̃% each encode in a different way a Brownian forest as explained
previously. For every y ∈ [0, %], let us set τy = inf{t ∈ [0, 1] : X%

t = −y}. We
construct next another process Z% = (Z%

t )t∈ [0, 1] on the same probability space as X%.
First, conditionally on X%, let Z̃% be a centred Gaussian process with covariance

E
[
Z̃%
sZ̃

%
t

∣∣∣ X%
]

= min
r∈ [s, t]

X̃%
r for every 0 6 s 6 t 6 1.

It is classical that Z̃% admits a continuous version and, without further notice, we
shall work throughout this paper with this version. In the case % = 0, we simply set
Z0 = Z̃0. If % > 0, independently of Z̃%, let b% be a standard Brownian bridge from
0 to 0 with duration %, which has the law of (%1/2b(%t))t∈ [0, 1] where b is a standard
Brownian bridge on the time interval [0, 1], and set

Z%
t = Z̃%

t +
√

3 · b%−X%
t

for every 0 6 t 6 1.

This construction is the continuum analogue of the decomposition of the process L%ndn
in (2.3). Observe that, almost surely, Z%

s = Z%
t whenever dX%(s, t) = 0 so Z% can be

seen as a process indexed by TX% by setting Z%
x = Z%

t if x = πX%(t). We interpret
Z%
x as the label of an element x ∈ TX% ; the pair (TX% , (Z%

x;x ∈ TX%)) is a continuum
analogue of labelled plane forests.
For % = 0, the process Z0 is interpreted as a Brownian motion on the Brownian

tree TX0 started from 0 on the root. For % > 0, the space TX% is interpreted as a
collection of Brownian trees glued at their root along the interval [0, %]; for every
y ∈ [0, %], it holds that −X%

τy = y so each point πX%(τy) “at position y” on this
interval receives label

√
3 by and then the labels on each of the trees πX%((τy−, τy])

evolve like independent Brownian motions on them. The Brownian sphere and disks
are constructed from these processes, see Section 3.2 below. The second main result
on the label process is the following.

Theorem 2.6. — Suppose that limn→∞ σ
−1
n %n = % for some % ∈ [0,∞].

(1) If % =∞, then the convergence in distribution(
(2%n)−1/2 L%ndn (Vnt) ; t ∈ [0, 1]

) (d)−→
n→∞

(bt; t ∈ [0, 1])

holds in C([0, 1],R).
(2) If % < ∞ and furthermore limn→∞ σ

−1
n ∆n = 0, then the convergence in

distribution(( 3
2σn

)1/2
L%ndn (Vnt) ; t ∈ [0, 1]

)
(d)−→

n→∞
(Z%

t ; t ∈ [0, 1])
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holds in C([0, 1],R).

Let us point out that in Theorem 2.6 (1), when limn→∞ σ
−1
n %n =∞, we have more

precisely:(
(2%n)−1/2

(
b%ndn (%nt) , L̃%ndn (Vnt)

)
; t ∈ [0, 1]

) (d)−→
n→∞

((bt, 0) ; t ∈ [0, 1]) ,

which, combined with Proposition 2.3 and the decomposition (2.3), implies the claim
of the theorem.

3. Convergence of random maps

The proof of Theorems 2.4, 2.5, and 2.6 on labelled forests will occupy most
of this paper. Before proving them, let us first in this section deduce from them
the results on random maps stated in Theorems 1.1, 1.2 and 1.3. The argument
finds its root in the work of Le Gall [LG13] and has already been adapted in many
contexts [ABA17, ABA21, Abr16, BJM14, BM17, LG13, Mar18a, Mar18b] so we
shall be very brief and refer to the preceding references for details.
Let us first define the topology we use in these theorems. Recall that we view a

planar map as a compact metric space equipped with a Borel probability measure.
In words, two such spaces (X, dX , pX) and (Y, dY , pY ) are close to each other if one
can find a subset of each which carries most of the mass and which are close to be
isometric. Formally, a correspondence between X and Y is a subset R ⊂ X ×Y such
that for every x ∈ X, there exists y ∈ Y such that (x, y) ∈ R and vice-versa. The
distortion of R is defined as

dis(R) = sup
{
|dX(x, x′)− dY (y, y′)| ; (x, y), (x′, y′) ∈ R

}
.

Then the Gromov–Hausdorff–Prokhorov distance between these spaces is the infimum
of all the values ε > 0 such that there exists a coupling ν between pX and pY and a
compact correspondence R between X and Y such that

ν(R) > 1− ε and dis(R) 6 2ε.
This is only a pseudo-distance, but after taking the quotient by measure-preserving
isometries, one gets a genuine distance which is separable and complete, see Mier-
mont [Mie09, Proposition 6].
Recall that starting from a uniformly random map in M%n

dn
, we may sample a

vertex x? independently and uniformly at random to obtain a uniformly random
pointed map in PM%n

dn
, which we may then re-root at one of the %n possible edges on

the boundary chosen uniformly at random which make this pointed map (M%n
dn
, x?)

negative. Let M%n
dn
\ {x?} be the metric measured space given by the vertices of

M%n
dn

different from x?, their graph distance in M%n
dn

and the uniform probability
measure and note that the Gromov–Hausdorff–Prokhorov distance between M%n

dn

and M%n
dn
\ {x?} is bounded by one so it suffices to prove our claims for M%n

dn
\ {x?}.

This will enable us to rely on the bijection with a labelled forest (T %ndn , `).
We shall implicitly assume that dn(0) → ∞, otherwise we may extract a subse-

quence along which the number of vertices in our maps is uniformly bounded, so if
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one removes all the double edges (i.e. glue together both sides of a face with degree 2),
which play no role in the geometry of the associated metric measured space, then
only a bounded number of edges remain and tightness is clear.

3.1. Tightness of planar maps

Let us first construct the possible subsequential limits of M%n
dn
, relying on a sub-

sequential limit of the label process provided by Theorem 2.5 before proving Theo-
rem 1.1.
Recall that in the bijection relating (M%n

dn
, x?) to (T %ndn , `), the vertices of the former

different from x? correspond to the leaves of the latter, and the internal vertices
of T %ndn are identified with their last child. Therefore, for every vertex x of T %ndn , we
let ϕ(x) be the vertex of M%n

dn
\ {x?} in one-to-one correspondence with the right-

most leaf amongst the descendants of x in T %ndn . Let us list the vertices of T %ndn as
x0 < x1 < · · · < xVn−1 in lexicographical order, set xVn = xVn−1, and for every
i, j ∈ {0, . . . , Vn}, let us set

dn(i, j) = dgr
(
ϕ(xi), ϕ(xj)

)
,

where dgr is the graph distance in M%n
dn
. We then extend dn to a continuous function

on [0, Vn]2 by “bilinear interpolation” on each square of the form [i, i+ 1]× [j, j + 1]
as in [LG13, Section 2.5] or [LGM11, Section 7]. For every 0 6 s 6 t 6 1, let us set
d(n)(s, t) = (σn + %n)−1/2 dn (Vns, Vnt) and L(n)(t) = (σn + %n)−1/2 L%ndn (Vnt) .
For a continuous function g : [0, 1]→ R, let us set for every 0 6 s 6 t 6 1,

(3.1) Dg(s, t) = Dg(t, s) = g(s) + g(t)− 2 max
{

min
r∈ [s, t]

g(r); min
r∈ [0, s]∪ [t, 1]

g(r)
}
.

For 0 6 i < j 6 Vn, let [i, j] denote the set of integers from i to j, and let [j, i]
denote [j, Vn]∪ [0, i]. Recall that we construct our map from a labelled forest, using a
Schaeffer-type bijection; following the chain of edges drawn starting from two points
of the forest to the next one with smaller label until they merge, one obtains the
following upper bound on distances:
(3.2) dn (Vns, Vnt) 6 DL%n

dn
(Vns, Vnt) + 2,

see Le Gall [LG07, Lemma 3.1] for a detailed proof in a different context.
According to Theorem 2.5, from every increasing sequence of integers, one can

extract a subsequence along which the processes L(n) converge in distribution to some
limit process, say L. From the previous bound, one can extract a further subsequence
along which we have

(3.3)
(
L(n)(t), DL(n)(s, t), d(n)(s, t)

)
s, t∈ [0, 1]

(d)−→
n→∞

(Lt, DL(s, t), d∞(s, t))s, t∈ [0, 1] ,

where (d∞(s, t))s, t∈ [0, 1] depends a priori on the subsequence and, by (3.2), satisfies
d∞ 6 DL, see [LG07, Proposition 3.2] for a detailed proof in a similar context.
The function d∞ is continuous on [0, 1]2 and is a pseudo-distance (as limit of d(n)).

Let then M∞ be the quotient [0, 1]/{d∞ = 0} equipped with the metric induced
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by d∞, which we still denote by d∞. We let Π∞ be the canonical projection from
[0, 1] to M∞ which is continuous (since d∞ is) so (M∞, d∞) is a compact metric
space, which finally we endow with the Borel probability measure p∞ given by the
push-forward by Π∞ of the Lebesgue measure on [0, 1].
Theorem 1.1 directly follows from the following result.

Proposition 3.1. — On a subsequence along which (3.3) holds we have the
convergence(

V (M%n
dn

) \ {x?}, (σn + %n)−1/2 dgr, punif
) (d)−→

n→∞
(M∞, d∞, p∞)

for the Gromov–Hausdorff–Prokhorov topology. Furthermore, the following identity
in law holds:

(3.4) d∞(U,U ′) (d)= LU − min
t∈ [0, 1]

Lt,

where U , U ′ are i.i.d. uniform random variables on [0, 1] and independent of every-
thing else.

Proof. — Let us implicitly restrict ourselves to a subsequence along which (3.3)
holds. Appealing to Skorokhod’s representation theorem, let us assume furthermore
that it holds almost surely. Recall that for a vertex x of T %ndn , we denote by ϕ(x) the
vertex of M%n

dn
\ {x?} in one-to-one correspondence with the leaf at the extremity of

the right-most ancestral line starting from x in T %ndn . Then the sequence (ϕ(xi))06 i6Vn
lists with redundancies the vertices ofM%n

dn
different from x?. For every 1 6 i 6 dn(0),

let us denote by λ(i) ∈ {0, . . . , Vn − 1} the index such that xλ(i) is the i’th leaf of
T %ndn , and extend λ linearly between integer times. The function λ corresponds to
ζ{−1}( · ;W %n

dn
) with the notation of Lemma 2.2. According to this lemma, we have

(3.5)
(
V −1
n λ (bdn(0)tc) ; t ∈ [0, 1]

) P−→
n→∞

(t; t ∈ [0, 1]) ,

Observe that the sequence (ϕ(xλ(i)))16 i6 dn(0) now lists without redundancies the
vertices of M%n

dn
different from x?. The set

Rn =
{(
ϕ
(
xλ(bdn(0)tc)

)
,Π∞(t)

)
; t ∈ [0, 1]

}
.

is a correspondence between M%n
dn
\ {x?} and M∞. Let further ν be the coupling

between punif and p∞ given by∫
(M%n

dn
\{x?})×M∞

f(x, z)dν(x, z) =
∫ 1

0
f
(
ϕ
(
xλ(bdn(0)tc)

)
,Π∞(t)

)
dt,

for every test function f . Then ν is supported by Rn by construction. Finally, the
distortion of Rn is given by

sup
s, t∈ [0, 1]

∣∣∣∣∣d(n)

(
λ (bdn(0)sc)

Vn
,
λ (bdn(0)tc)

Vn

)
− d∞(s, t)

∣∣∣∣∣ ,
which, appealing to (3.5), tends to 0 whenever the convergence (3.3) holds, which
concludes the proof of the convergence of the maps.
Let us next consider the identity (3.4) which we shall need shortly in the proof of

Theorem 1.2. If U , U ′ are i.i.d. uniform random variables on [0, 1] and independent
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of everything else, then Xn = ϕ(xλ(bdn(0)Uc)) and Yn = ϕ(xλ(bdn(0)U ′c)) are uniform
random vertices of V (M%n

dn
)\{x?}, they can therefore be coupled with two independent

uniform random vertices X ′n and Y ′n of M%n
dn

in such a way that the conditional
probability given M%n

dn
that (Xn, Yn) 6= (X ′n, Y ′n) converges to 0; we implicitly assume

in the sequel that (Xn, Yn) = (X ′n, Y ′n). Since x? is also a uniform random vertex of
M%n

dn
, we obtain that

dgr (Xn, Yn) (d)= dgr (x?, Yn) .
By definition we have dgr(Xn, Yn) = dn(λ(bdn(0)Uc), λ(bdn(0)U ′c)) and by construc-
tion of the labels on T %ndn , we have

dgr (x?, Yn) = L%ndn (λ (bdn(0)U ′c))− min
06 j 6Vn

L%ndn(j) + 1.

Letting n→∞ along the same subsequence as in (3.3) and appealing to (3.5), we
obtain (3.4). �

3.2. Convergence towards a Brownian disk

Let us next turn to the proof of Theorem 1.2; in view of the proof of Theorem 1.1
it suffices to identify the subsequential limit d∞. Fix % ∈ [0,∞) and let us recall
the distance D% of the Brownian disk, following Le Gall [LG07] and Bettinelli &
Miermont [BM17] to which we refer for details. Recall the process Z% defined in
Section 2.4 and let us construct the function DZ% on [0, 1]2 as in (3.1); first, let us
view DZ% as a function on the forest TX% by setting

DZ%(x, y) = inf
{
DZ%(s, t); s, t ∈ [0, 1], x = πX%(s) and y = πX%(t)

}
,

for every x, y ∈ TX% , where we recall the notation πX% for the canonical projection.
This function is not a pseudo-distance on TX% but one can construct one as follows:
for every x, y ∈ TX% , set

D%(x, y) = inf
{

k∑
i=1

DZ%(ai−1, ai); k > 1, (x = a0, a1, . . . , ak−1, ak = y) ∈ TX%

}
.

The function D% is in fact the largest pseudo-distance on TX% which is bounded
by DZ% . Indeed if D is another pseudo-distance with D 6 DZ% , then for every
x, y ∈ TX% , for every k > 1 and every chain x = a0, a1, . . . , ak−1, ak = y in TX% ,
by the triangle inequality, D(x, y) 6 ∑k

i=1D(ai−1, ai) 6
∑k
i=1DZ%(ai−1, ai) and so

D(x, y) 6 D%(x, y). Furthermore, it can be seen as a pseudo-distance on [0, 1] by
setting D%(s, t) = D%(πX%(s), πX%(t)) for every s, t ∈ [0, 1]. Then for all s, t ∈ [0, 1]
such that dX%(s, t) = 0 we have πX%(s) = πX%(t) and so D%(πX%(s), πX%(t)) = 0. We
deduce from the previous maximality property that D% is the largest pseudo-distance
D on [0, 1] satisfying the following two properties:

D 6 DZ% and dX%(s, t) = 0 implies D(s, t) = 0.
The Brownian disk is then given by the quotient [0, 1]/{D% = 0}, endowed with the
metric D% and the push-forward p% of the Lebesgue measure on [0, 1].
Let us now prove Theorem 1.2.
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Proof of Theorem 1.2. — Let us first assume that limn→∞ σ
−1
n ∆n = 0 and that

limn→∞ σ
−1
n %n = % with % ∈ [0,∞) and let us prove that our maps converge to the

Brownian disk. Let us set for all t ∈ [0, 1],

W[n](t) = 1
σn
W %n
dn

(bVntc) and L[n](t) =
( 3

2σn

)1/2
L%ndn (Vnt) ,

and for all s, t ∈ [0, 1]

d[n](s, t) =
( 3

2σn

)1/2
dn (Vns, Vnt) .

Then we infer from Proposition 2.3, Theorem 2.6(2), and the preceding subsection
that from every increasing sequence of integers, one can extract a subsequence along
which we have(

W[n](t), L[n](t), DL[n](s, t), d[n](s, t)
)
s, t∈ [0, 1]

(d)−→
n→∞

(
X%, Z%

t , DZ%(s, t), d∞(s, t)
)
s, t∈ [0, 1]

,

where d∞ depends a priori on the subsequence. Again by Skorokhod’s representation
theorem, let us assume that this holds almost surely. It remains to prove that
d∞ = D% almost surely. Our argument is adapted from the work of Bettinelli &
Miermont [BM17, Lemma 32].
First recall from the previous proof that d∞ is a pseudo-distance on [0, 1] which

satisfies d∞ 6 DZ% almost surely. Let 0 6 s < t 6 1 be such that dX%(s, t) = 0, i.e.
such that X%

s = X%
t = minr∈ [s, t] X

%
r . Suppose first that X%

r > X%
t for all r ∈ (s, t),

then by the preceding convergence one can find two sequences of integers (in)n> 1 and
(jn)n> 1 such that in/Vn → s and jn/Vn → t and for all n large enough W %n

dn
(in) =

W %n
dn

(jn) 6 W %n
dn

(k) for every in + 1 6 k 6 jn − 1. In terms of the forest T %ndn , this
means that the vertex xin is an ancestor of xjn and that furthermore the latter lies on
the right-most ancestral line amongst the descendants of xin in T %ndn , so in particular
ϕ(xin) = ϕ(xjn), hence dn(in, jn) = 0. Letting n→∞ along the same subsequence as
above, we conclude that d∞(s, t) = 0. If there exists r ∈ (s, t) with X%

s = X%
t = X%

r ,
then it is unique and we conclude similarly that d∞(s, r) = d∞(r, t) = 0. From the
maximality property of D%, we deduce the bound

d∞ 6 D% almost surely.
Next let U , U ′ be i.i.d. uniform random variables on [0, 1] and independent of

everything else. Recall the identity (3.4) which reads here d∞(U,U ′) = Z%
U −minZ%

in distribution. The key point is that, according to Le Gall [LG13, Corollary 7.3] for
% = 0 and Bettinelli & Miermont [BM17, Lemma 17 & Corollary 21] for % > 0, the
right-hand side is also distributed as D%(U,U ′). We conclude that the identity

d∞(U,U ′) = D%(U,U ′)
holds in distribution and thus almost surely by the previous bound. The identity
d∞ = D% follows by a density argument.
We end this proof by arguing that our assumption on the largest degree is necessary.

Indeed, extracting a subsequence if necessary, let us assume that σ−1
n %n and σ−1

n ∆n
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converge respectively to % > 0 and δ > 0 and that (V (M%n
dn

), σ−1/2
n dgr, punif) converges

in distribution to some random space (M,D, p) and let us prove that the latter does
not have the topology of M%, which is that of the sphere if % = 0 [LGP08, Mie08]
or the disk if % > 0 [Bet15]. Let us label all the vertices by their graph distance
to the distinguished vertex x?. Let Φn be an inner face with degree 2∆n ∼ 2δσn,
then the labels of its vertices read in clockwise order form a (shifted) bridge with ±1
steps which, when rescaled by a factor of order ∆−1/2

n converges towards a Brownian
bridge. Let x−n , x+

n be two vertices of Φn such that their respective labels are the
minimum and the maximum over all labels on Φn. Then when ε > 0 is small, with
high probability we have that `(x+

n )− `(x−n ) > 6εσ1/2
n .

Our argument is depicted on Figure 3.1; let us describe it. Let us read the vertices
on the face Φn from x−n to x+

n in clockwise order, there is a vertex which is the
last one with label smaller than `(x−n ) + εσ1/2

n and another one which is the first
one with label larger than `(x+

n ) − εσ1/2
n ; let us call “blue vertices” all the vertices

visited between these two. Let us similarly call “green vertices” the vertices defined
similarly when going from x−n to x+

n in counter-clockwise order. A vertex may be
simultaneously green and blue, but in this case, and more generally if there exists
a pair of blue and green vertices at graph distance o(σ1/2

n ) in the whole map, then
this creates at the limit a pinch-point separating the map into two parts each with
diameter larger than εσ1/2

n .

distance to the
distinguished
vertex

x−n

x+n

Figure 3.1. A portion of the pointed map represented as a surface (the so-called
“cactus” representation), seen from the distinguished vertex. If the grey face is
macroscopic and the light blue and light green regions are disjoint, then the red
simple path separates the map into two macroscopic parts.

We assume henceforth that the distance between green and blue vertices is larger
than 4ησ1/2

n for some η > 0; the light blue and light green regions in Figure 3.1
represent the hull of the set of vertices at distance smaller than ησ1/2

n from the blue
and green vertices respectively. Consider the simple red path obtained by taking the
boundary of the light blue region: its extremities lie at macroscopic distance and
it separates two parts of the map with macroscopic diameter. A sphere cannot be
separated by a simple curve with distinct extremities so this yields our claim when
% = 0. This is possible on a disk, if the path touches the boundary twice. Therefore,
in order to avoid a contradiction, the red path must contain (at least) two points at
macroscopic distance from each other, and both at microscopic distance from the
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boundary of the map. If none of these points is at microscopic distance from an
extremity of the path, then the preceding argument still applies, so both extremities,
which belong to Φn must lie at microscopic distance from the boundary, but then
this creates pinch-points at the limit. �

3.3. Convergence to the Brownian tree

Let us finally prove Theorem 1.3 relying on Theorem 2.6(1). The idea is that the
greatest distance in the map to the boundary is small compared to the scaling so only
the boundary remains in the limit, and furthermore this boundary, whose distances
are related to a discrete bridge, converges to the Brownian tree, which is encoded
by the Brownian bridge.
Proof of Theorem 1.3. — Let us denote by b and X0 respectively the standard

Brownian bridge and the standard Brownian excursion. Recall the construction of
the Brownian tree (TX0 , dX0 , pX0) and let us define a random pseudo-distance Db
as in (3.1); let further (Tb, Db, pb) be the space constructed as M∞ where d∞ is
replaced by Db, so TX0 and Tb are obtained by taking the quotient of [0, 1] by
{dX0 = 0} and {Db = 0} respectively. Comparing the definition of Db and dX0 ,
since b and X0 are related by the Vervaat transform, it is easy to prove that the
spaces (TX0 , dX0 , pX0) and (Tb, Db, pb) are isometric so it is equivalent to prove the
convergence in distribution(

V
(
M%n

dn

)
\ {x?}, (2%n)−1/2 dgr, punif

) (d)−→
n→∞

(Tb, Db, pb)

in the Gromov–Hausdorff–Prokhorov topology. From the previous proofs it actually
suffices to prove the convergence in distribution for the uniform topology

(3.6)
(
(2%n)−1/2 dn (Vns, Vnt)

)
s, t∈ [0, 1]

(d)−→
n→∞

(Db(s, t))s, t∈ [0, 1] .

Here we may adapt the argument of the proof of [Bet15, Theorem 5] to which we
refer for details. First, recall the upper bound (3.2):

dn(i, j) 6 L%ndn(i) + L%ndn(j) + 2− 2 max
{

min
k∈ [i, j]

L%ndn(k); min
k∈ [j, i]

L%ndn(k)
}
,

where for 0 6 i < j 6 Vn, the interval [i, j] denotes the set of integers from i to j,
and [j, i] denotes [j, Vn] ∪ [0, i]. We have a very similar lower bound, see the proof
of [CLGM13, Corollary 4.4]:

(3.7) dn(i, j) > L%ndn(i) + L%ndn(j)− 2 max
{

min
k∈ [[i, j]]

L%ndn(k); min
k∈ [[j, i]]

L%ndn(k)
}
,

where the intervals are defined as follows. Let us link the roots of two consecutive
trees in the forest, as well as the first and last one in order to create a cycle. Then
[[i, j]] denotes the set of all indices k such that xk lies in the geodesic path between
xi and xj in this graph; in other words, k > 1 belongs to [[i, j]] if either xk is an
ancestor of xi or of xj (and it is an ancestor of both if and only if it is their last
common one), or if it is the root of a tree which lies between xi and xj in the original
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forest. We define [[j, i]] similarly as the set of all indices k > 1 such that either xk is
an ancestor of xi or of xj, or it is the root of a tree which does not lie between xi
and xj.
Let us suppose that limn→∞ σ

−1
n %n =∞; according to Theorem 2.6(1) the conver-

gence in distribution(
(2%n)−1/2 L%ndn (Vnt) ; t ∈ [0, 1]

) (d)−→
n→∞

(bt; t ∈ [0, 1])

holds in C([0, 1],R). Then the right-hand side of (3.2) with i = Vns and j = Vnt
converges in distribution to Db(s, t) once rescaled by a factor (2%n)−1/2. The same
holds for the right-hand side of (3.7); indeed, the root vertices visited in [i, j] and in
[[i, j]] are the same, so the only difference lies in the non-root vertices, but their label
differ by that of the root of their tree by at most max L̃%ndn − min L̃%ndn = o(%1/2

n ) in
probability by the proof of Theorem 2.6(1). This proves the convergence (3.6) and
hence our claim. �

4. Geometry of random forests with a prescribed degree
sequence

As we already mentioned, most of this paper is devoted to the study of labelled
forests. In this section we focus on the random forest T %ndn , the labels are studied
in Section 5. We first state in Section 4.1 a technical spinal decomposition whose
proof is postponed to the appendix, which approximates the offspring distribution
of the ancestors of random vertices by random picks, without replacement, from the
size-biased offspring distribution ∑k> 1

kdn(k)
En

δk. Then in Section 4.2 we state and
prove some exponential concentration for the random bridge B%n

dn
and the excursion

W %n
dn

which are combined with the spinal decomposition in Section 4.3 to prove
exponential bounds for the height of a random vertex. Finally we prove Theorem 2.4
in Section 4.4 on the convergence of the reduced trees to reduced Brownian trees in
the case of no macroscopic degrees, relying again on the spinal decomposition.
Throughout this section we are given for every n > 1 a degree sequence dn =

(dn(k))k> 0 ∈ ZZ+
+ and T %ndn is sampled uniformly at random in the set T%n

dn
of forests

which possess %n = ∑
k> 0(1− k)dn(k) trees and Vn = ∑

k> 0 dn(k) vertices, amongst
which dn(k) have k children for every k > 0; it therefore has En = ∑

k> 1 kdn(k)
edges and we recall the notation ∆n = max{k > 0 : dn(k) > 0} for the largest
offspring and σ2

n = ∑
k> 1 k(k − 1)dn(k).

4.1. A spinal decomposition

We describe in this section the ancestral lines of i.d.d. random vertices of the
random forest T %ndn . A related result on trees was first obtained by Broutin & Mar-
ckert [BM14] for a single random vertex and it was extended in [Mar18b] to several
vertices. The present one is different, we shall compare them after the statement.
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Suppose that an urn contains initially kdn(k) balls labelled k for every k > 1, so
En balls in total; let us pick balls repeatedly one after the other without replacement;
for every 1 6 i 6 En, we denote the label of the i’th ball by ξdn(i). Conditionally
on (ξdn(i))16 i6En , let us sample independent random variables (χdn(i))16 i6En such
that each χdn(i) is uniformly distributed in {1, . . . , ξdn(i)}. We shall use the fact
that the ξdn(i)’s are identically distributed, with

(4.1)
E [ξdn(i)− 1] =

∑
k> 1

(k − 1)kdn(k)
En

= σ2
n

En
,

Var (ξdn(i)− 1) 6 E
[
(ξdn(1)− 1) ·max

i
(ξdn(i)− 1)

]
6 ∆n

σ2
n

En
.

Let us fix a plane forest F . Recall that we denote by χx the relative position of a
vertex x amongst its siblings; for every 0 6 i 6 |x|, let us also denote by ai(x) the
ancestor of x at height i, so a|x|(x) = x and a0(x) is the root of the tree containing
x. Define next for every vertex x the content of the branch [[a0(x), x[[ as

(4.2) Cont(x) =
((
kai−1(x), χai(x)

)
; 1 6 i 6 |x|

)
.

In words, Cont(x) lists the number of children of each strict ancestor of x and the
position of the next ancestor amongst these children. More generally, let x1, . . . , xq
be q vertices of F and let us consider the forest F reduced to its root and these
vertices: F (x1, . . . , xq) contains only the vertices x1, . . . , xq and their ancestors, and
it naturally inherits a plane forest structure from F . Now let Cont(x1, . . . , xq) be
defined as the collection of pairs (kpr(y), χy) where these quantities are those in the
original forest F , and y ranges in lexicographical order over the set of vertices of the
reduced forest whose parent has only one offspring in this reduced forest. We refer to
Figure 4.1 for an example. Let us stress that the branchpoints of the reduced forest
are excluded from Cont(x1, . . . , xq).

x1 x2

x3

x4

(1, 1)

(2, 1)

(2, 2)

(1, 1)

(1, 1)

(3, 1)

(2, 1)

(1, 1)

(2, 2)

Figure 4.1. A forest F consisting of two trees with four distinguished red vertices,
in blue is the reduced forest F (x1, . . . , x4); the pairs (kpr(y), χy) which form
the associated content Cont(x1, . . . , x4) are indicated next to their node y, the
children of the blue branchpoints are excluded.
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Lemma 4.1. — Fix n ∈ N and a degree sequence dn = (dn(k))k> 1. Let q > 1 and
sample xn, 1, . . . , xn, q independently uniformly at random in T %ndn . Let (ki, ji)hi=1 be
positive integers such that 1 6 ji 6 ki for each i. If q > 2, assume that h, q 6 Vn/4.
Then for every integers b > 0 and c > 1 with b + c 6 q, the probability that
Cont(xn, 1, . . . , xn, q) = (ki, ji)hi=1, and that the reduced forest T %ndn (xn, 1, . . . , xn, q)
possesses c trees, q leaves, and b branchpoints is bounded above by

q22q−1
(
σn
Vn

)q+b (%n
σn

)c−1 %n + (q − 1)∆n +
h∑
i=1

(ki − 1)

σn

times

P

⋂
i6h

{
(ξdn(i), χdn(i)) = (ki, ji)

} .
The proof consists in straightforward but long combinatorial calculations derived

from the decomposition of the forest in the spirit of [BM14] and is given in Appen-
dix A. Let us make two comments. First in the case of a single random vertex, we
have b = 0 and c = 1 so the upper bound reads simply

(4.3)
%n +

h∑
i=1

(ki − 1)

Vn
·P

⋂
i6h

{
(ξdn(i), χdn(i)) = (ki, ji)

} .
Second, the reduced forest T %ndn (xn, 1, . . . , xn, q) possesses q leaves when no xn,i is an
ancestor of another; we shall see below that the height of a random vertex is of
order En/σn, so this occurs with high probability as soon as σn → ∞. Also, if the
reduced forest has b branchpoints, then q + b denotes the number of branches once
we remove these branchpoints; these branches typically have length of order En/σn
in the original forest, so the factor (σn/Vn)q+b is important. The other factors will
be typically bounded in our applications so the upper bound will read

Cst ·
(
σn
Vn

)q+b
·P

⋂
i6h

{
(ξdn(i), χdn(i)) = (ki, ji)

} .
In words, roughly speaking, along distinguished paths (removing the branchpoints),

up to a multiplicative factor, the individuals reproduce according to the size-biased
law (kdn(k)/En)k> 1, and conditionally on the offspring, the paths continue via
offspring chosen uniformly at random. Note that these size-biased picks are not
independent, since we are sampling without replacement. In the case of a single tree
%n = 1, an analogous result when sampling with replacement was obtained by Broutin
& Marckert [BM14] for a single random vertex and it was extended in [Mar18b] to
several vertices. The significant difference is that when comparing to sampling with
replacement, an extra factor of order eh2/En appears in the upper bound, and one
cannot remove it. This was not an issue in [BM14, Mar18b] which focus on the
“finite-variance regime”, when σ2

n is of order En since then the bound (4.5) below
provided by Addario-Berry [AB12] ensures that h2 is at most of order En with high
probability, so the exponential factor does not explode. We mentioned already that
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the height of uniform random vertices is of order En/σn so it does not explode
anyway, but we shall prove this fact by relying on this lemma. Moreover, we feel
that sampling without replacement is more natural in this model.

4.2. Concentration for bridges and excursions

Let us prove two technical bounds which we shall need in the next subsection, as
well as for the proof of Theorem 2.5 on tightness of the label process in Section 5.
Recall the notation B%n

dn
= (B%n

dn
(i))06 i6Vn for a bridge from B%n

dn
(0) = 0 to B%n

dn
(Vn) =

−ρn sampled uniformly at random amongst all those which make exactly dn(k) jumps
with value k − 1 for every k > 0. Recall the construction of the Łukasiewicz path
W %n
dn

of our random forest T %ndn as a cyclic shift of B%n
dn
. In Proposition 2.3 we argued

that then B%n
dn

and so W %n
dn

scale like σn + %n. The next proposition provides a
precise Hölder-continuity like bound for the infimum process which is tailored for
our applications.

Proposition 4.2. — Fix a sequence (dn)n> 1 and ε ∈ (0, 1), then there exists
C > 0 such that, for every n > 1, with probability at least 1− ε, it holds

W %n
dn

(bVnsc)− min
s6 r6 t

W %n
dn

(bVnrc) 6 C · (σn + %n) · |t− s|(1−ε)/2

uniformly for 0 6 s < t 6 1.

The proof relies on the following exponential tail bound for the random bridge
B%n
dn
, adapted from [AB12, Section 3] in the case %n = 1.

Lemma 4.3. — For every α ∈ (0, 1) and every z > 0, we have

P
(

min
i6αVn

B%n
dn

(i) + α%n 6 −z
)
6 exp

(
− (1− α)3z2

2α (σ2
n + %n) + z

)
.

Proof. — It is classical that the “remaining sequence” (remaining space divided
by the remaining time)

Mi =
−%n −B%n

dn
(i)

Vn − i
(0 6 i 6 Vn − 1)

is a martingale for the natural filtration (Fi)06 i6Vn−1, started from M0 = −%n/Vn.
Indeed, for each time i > 1, set ∆B%n

dn
(i) = B%n

dn
(i) − B%n

dn
(i − 1) and let din be the

remaining degree sequence given by din(k) = dn(k)−#{j 6 i : ∆B%n
dn

(j) = k− 1} for
every k > 0; note that din is random and Fi-measurable. Fix 0 6 i 6 Vn − 2; then
we have

P
(
∆B%n

dn
(i+ 1) = k − 1

∣∣∣ Fi) = din(k)
Vn − i

, k > 0,

from which we obtain

E
[
∆B%n

dn
(i+ 1)

∣∣∣ Fi] =
∑
k> 0

(k − 1) d
i
n(k)

Vn − i
= −

%n +B%n
dn

(i)
Vn − i

,
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which shows the martingale property. Furthermore,

E
[
∆B%n

dn
(i+ 1)2

∣∣∣ Fi] =
∑
k> 0

(k − 1)2 d
i
n(k)

Vn − i
6
σ2
n + %n
Vn − i

.

Since B%n
dn

(i+ 1) > B%n
dn

(i)− 1, then for every 0 6 i 6 Vn − 2,

Mi+1 −Mi 6
Vn − i−B%n

dn
(i)− %n

(Vn − (i+ 1))(Vn − i)
6

En
(Vn − (i+ 1))2

and

Var (Mi+1 | Fi) 6
1

(Vn − (i+ 1))2 E
[
∆B%n

dn
(i+ 1)2

∣∣∣ Fi] 6 σ2
n + %n

(Vn − (i+ 1))3 .

Then the martingale Chernoff-type bound, see e.g. McDiarmid [McD98, Theo-
rem 3.15 and the remark at the end of Section 3.5], there about the maximum, shows
that for every z > 0 and every 1 6 k 6 Vn − 1,

P
(

max
i6 k

Mi −M0 > z
)
6 exp

− z2

2k(σ2
n+%n)

(Vn−k)3 + 2
3z

En
(Vn−k)2


6 exp

(
− (Vn − k)3 z2

2k (σ2
n + %n) + En(Vn − k)z

)
.

Observe that for every i 6 k,

− (Mi −M0) =
B%n
dn

(i) + %n
Vn − i

− %n
Vn

=
B%n
dn

(i) + i%n/Vn
Vn − i

6
B%n
dn

(i) + k%n/Vn
Vn − i

,

we infer that for every z > 0 and every 1 6 k 6 Vn − 1,

P
(

min
i6 k

(
B%n
dn

(i) + k%n
Vn

)
6 −z

)
6 P

(
min
i6 k

B%n
dn

(i) + i%n/Vn
Vn − i

6 − z

Vn

)

6 exp
(
− (Vn − k)3 z2/V 2

n

2k (σ2
n + %n) + En (Vn − k) z/Vn

)
.

The claim follows by taking k = αVn with α ∈ (0, 1). �

We may now prove Proposition 4.2.
Proof of Proposition 4.2. — Let us first focus on the bridge B%n

dn
and observe that,

with no jump smaller than −1, we have mini6αVn B
%n
dn

(i) + α%n > −αVn + α%n =
−αEn. Therefore, in Lemma 4.3, the probability on the left-hand side is zero as soon
as z > αEn so for every α ∈ (0, 1/2] and every z > 0,

P
(

min
i6αVn

B%n
dn

(i) + α%n 6 −z
)
6 exp

(
− (1− α)3z2

α (2 (σ2
n + %n) + En)

)

6 exp
(
− z2

16α (σ2
n + %n + En)

)
.
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By exchangeability, for any integers i < j in [0, Vn] with |j − i| 6 Vn/2, we have

P

B%n
dn

(i)− min
i6 k6 j

B%n
dn

(k)− %n
|j − i|
Vn

>

√
(σ2

n + %n + En) |j − i|
Vn

x

 6 exp
(
−x

2

16

)
.

By integrating this tail bound applied to x1/p, we obtain that for every 0 6 s < t 6 1
with |t− s| 6 1/2,

E

B%n
dn

(bVnsc)− min
s6 r6 t

B%n
dn

(bVnrc)− %n|t− s|

(σ2
n + %n + En)1/2 |t− s|1/2

p 6 ∫ ∞
0

exp
(
−x

2/p

16

)
dx.

Let c(p) denote the right hand side. Since ap + bp 6 (a+ b)p 6 2p−1(ap + bp) for every
a, b > 0, we conclude that

E
[(
B%n
dn

(bVnsc)− min
s6 r6 t

B%n
dn

(bVnrc)
)p]

6 2p−1
(

E
[(
B%n
dn

(bVnsc)− min
s6 r6 t

B%n
dn

(bVnrc)− %n|t− s|
)p]

+ (%n|t− s|)p
)

6 2p−1
(
c(p)

(
σ2
n + %n + En

)p/2
|t− s|p/2 + %pn|t− s|p/2

)
6 C(p)

((
σ2
n + En

)1/2
+ %n

)p
|t− s|p/2,

for some C(p) > 0. Upon changing the constant C(p), the restriction |t− s| 6 1/2
can be lifted by the triangle inequality.
Note that the scaling (σ2

n+En)1/2 +%n that appears here is larger than the claimed
one σn+%n. However, in the case dn(1) = 0, it holds that σ2

n = ∑
k> 2 k(k−1)dn(k) >∑

k> 2 kdn(k) = En so both scalings are of the same order. In this case, for some
other constant C(p) > 0, for every s < t, it holds

E
[(
B%n
dn

(bVnsc)− min
s6 r6 t

B%n
dn

(bVnrc)
)p]
6 C(p) (σn + %n)p |t− s|p/2.

In the general case, let us replace the degree sequence dn by d′n(k) = dn(k)1{k 6= 1}
and couple the two forests with degree sequence dn and d′n, by removing all the
vertices with outdegree 1 in T %ndn . Let us denote by V ′n = Vn−dn(1) and E ′n = En−dn(1)
the number of vertices and edges respectively of the new forest T %ndn ′; note that both
σn and %n are unchanged. Note also that the increments which are removed from
B%n
dn

in this operation are all null. Let s < t and assume for notational convenience
that Vns and Vnt are both integers. In the forest T %ndn ′, these two instants correspond
to, say, V ′nsn and V ′ntn respectively, and V ′n|tn − sn| has the binomial distribution
with parameters Vn|t− s| and V ′n/Vn and is independent of the path B%n

dn
to which

we have removed the null increments. Then the moment of order p/2 of V ′n|tn − sn|
is bounded above by some constant times (V ′n|t − s|)p/2, so we conclude from the
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preceding case that

E
[(
B%n
dn

(bVnsc)− min
s6 r6 t

B%n
dn

(bVnrc)
)p]

= E
[
E
[(
B%n
dn
′ (bV ′nsnc)− min

sn 6 r6 tn
B%n
dn
′ (bV ′nrc)

)p ∣∣∣∣ sn, tn]]
6 C(p)(σn + %n)pE

[
|tn − sn|p/2

]
6 C ′(p)(σn + %n)p|t− s|p/2.

The proof of the standard Kolmogorov criterion then shows that the claim of the
proposition holds when we replace W %n

dn
by B%n

dn
.

We finally want to transfer this bound to W %n
dn

by cyclic shift; some care is needed
here. Indeed, recall that we may couple W %n

dn
and B%n

dn
in such a way that B%n

dn
is

obtained by cyclically shifting W %n
dn

at a uniform random time Vn − in independent
of W %n

dn
. Fix again s < t and assume that i = Vns and j = Vnt are integers. There

are two cases: either Vn− in falls (strictly) between i and j, or it does not. If it does
not, then the path of W %n

dn
between i and j is moved without change in B%n

dn
so the

claim follows from the preceding bound applied to the image of i and j after the
cyclic shift operation, which are still at distance |j − i| from each other. Assume
henceforth that Vn − in does fall between i and j, then the part of W %n

dn
between i

and Vn − in is moved to the part of B%n
dn

between i+ in and Vn, and the part of W %n
dn

between Vn − in and j is moved to the part of B%n
dn

between 0 and j + in − Vn, so

W %n
dn

(i)− min
i6 k6 j

W %n
dn

(k)

6
(
W %n
dn

(i)− min
i6 k6Vn−in

W %n
dn

(k)
)

+
(
W %n
dn

(Vn − in)− min
Vn− in 6 k6 j

W %n
dn

(k)
)

=
(
B%n
dn

(i+ in)− min
i+ in 6 k6Vn

B%n
dn

(k)
)

+
(
B%n
dn

(0)− min
06 k6 j+ in−Vn

W %n
dn

(k)
)
.

Using again that for every a, b > 0, we have ap + bp 6 (a+ b)p 6 2p−1(ap + bp), and
since |j− i| = |Vn− (i+ in)|+ |j+ in−Vn|, we conclude from the bound on B%n

dn
. �

4.3. Exponential tails for the height and width

Recall from Section 2.2 that for a vertex x in a tree, we denote by L(x), resp. R(x),
the number of vertices whose parent is a strict ancestor of x and which lie strictly
before, resp. strictly after, x in depth-first search order, so LR(x) = L(x) + R(x)
denotes the total number of vertices different from x branching off the path [[∅, x[[.
In the case of a forest, we consider these quantities in the tree containing x. Recall
finally the identity (2.2): if W is the Łukasiewicz path of the forest, then R(x) =
W (x)−min06 y6xW (y).
Let us note that, as in Lemma 4.3, our argument is not optimal since our bounds

get worse when the number of trees %n grows, but in most cases, this factor is
negligible.
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Proposition 4.4. — Let xn be a uniformly random vertex of T %ndn , then

P
(

LR(xn) > z
(
σ2
n + %n

)1/2
)
6 4 exp

(
− z

288

)
uniformly in z > 1/2 and n ∈ N.

Proof. — Observe that the “mirror forest” obtained from T %ndn by flipping the order
of the children of every vertex has the same law as T %ndn so the random variables
L(xn) and R(xn) have the same law; of course they are not independent. Still, since
LR(xn) = L(xn) + R(xn), it suffices to consider the tail of R(xn) with z/2 in place
of z and to use a union bound. Recall also that W %n

dn
can be obtained by cyclically

shifting the bridge B%n
dn

at the random time in which is uniformly distributed in
{1, . . . , Vn} and is independent of W %n

dn
. In this coupling, we have that

W %n
dn

(Vn − in)− min
06 j 6Vn− in

W %n
dn

(j) = B%n
dn

(Vn)− min
06 j 6Vn

B%n
dn

(j)

= −%n − min
06 j 6Vn

B%n
dn

(j).

Note that Vn − in is uniformly distributed in {0, . . . , Vn − 1} and is independent of
W %n
dn
, so the vertex visited at this time has the same law as xn and therefore R(xn)

has the same law as −%n −min06 j 6Vn B
%n
dn

(j). By considering the two cases where
the minimum of B%n

dn
is achieved on the first half or on the second half, we see that

this is bounded above by(
−%n2 − min

06 j 6Vn/2
B%n
dn

(j)
)

+
(
−%n2 − min

Vn/26 j 6Vn
B%n
dn

(j) +B%n
dn

(
Vn
2

))
,

and the two terms on the right have the same law. Hence for every z > 1/2 we have
after two union bounds

P
(

LR(xn) > z
(
σ2
n + %n

)1/2
)
6 4 ·P

 min
06 j 6Vn/2

B%n
dn

(j) + %n
2 6 −

z (σ2
n + %n)1/2

4

 .
Finally, by Lemma 4.3,

P

 min
i6Vn/2

B%n
dn

(i) + %n
2 6 −

z (σ2
n + %n)1/2

4

 6 exp

−
(1/2)3

(
z(σ2

n+%n)1/2

4

)2

(σ2
n + %n) + z(σ2

n+%n)1/2

4


6 exp

−2−5 (σ2
n + %n)1/2

z2

4 (σ2
n + %n)1/2 + z

 .
Since both z > 1/2 and (σ2

n + %n)1/2 > 1, then 4(σ2
n + %n)1/2 6 8(σ2

n + %n)1/2z and
z 6 (σ2

n + %n)1/2z so the denominator in the last exponential is bounded above by
9(σ2

n + %n)1/2z, which yields our claim. �

Let us next focus on the case of a single tree %n = 1. Let us denote by wid(Tdn)
the maximum over all i > 1 of the number of vertices of Tdn at distance i from the
root, called the width of Tdn , and by ht(Tdn) the greatest i > 1 such that there exists
at least one vertex of Tdn at distance i from the root, called the height of Tdn . The
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preceding result gives a universal tail bound on the first quantity. Indeed, with a
similar reasoning as in the preceding proof, one can check that

(4.4) P
(

min
06 j 6Vn/2

Bdn(j) + 1
2 6 −zσn

)
6 exp

(
− z

48

)
,

for all z > 1. Then following [AB12], by replacing Equation 2 there by this bound,
this yields the existence of two universal constants c1, c2 > 0 such that for every
z > 1,

P (wid(Tdn) > zσn) 6 c1e−c2z.

By observing that wid(Tdn)× ht(Tdn) > En, we also get

P (ht(Tdn) 6 En/(zσn)) 6 c1e−c2z.

Following [AB12] again we may obtain the following upper bound for the height of
the tree Tdn :

(4.5) P
(

ht (Tdn) > z
(
σ2
n + En

)1/2
)
6 c1e−c2z,

for some other constants c1, c2 > 0. However this scaling may be much larger than
En/σn outside the “finite-variance” regime, when σn is of order E1/2

n . We already
mentioned in Section 1.2 that an upper-bound at the scaling En/σn in full generality
is not possible; nonetheless, the scaling En/σn is correct for typical vertices.

Proposition 4.5. — There exists two universal constants c1, c2 > 0 such that
the following holds: if xn is a uniformly random vertex of Tdn , then its height |xn|
satisfies

P (|xn| > zEn/σn) 6 c1e−c2z

uniformly for z > 1 and n ∈ N.

Our argument is the following: if xn is at height at least zEn/σn and if its ancestors
reproduce according to the size-biased law as the ξdn ’s in the preceding section, then,
according to (4.1), the number of vertices LR(xn) branching off its ancestral line is
in average at least (zEn/σn) × (σ2

n/En) = zσn, and we know from Proposition 4.4
that this occurs with a sub-exponential probability.
Proof. — According to Proposition 4.4, it is sufficient to bound

P
(
|xn| > z

En
σn

and LR (xn) 6 z

2σn
)

=
∑

h> z En/σn

P
(
|xn| = h and LR(xn) 6 z

2σn
)
.

Recall the definition of Cont(xn) = ((kai−1(xn), χai(xn)))16 i6 |xn| from (4.2) and note
that we have LR(xn) = ∑

16 i6 |xn|(kai−1(xn) − 1). Let us fix h > zEn/σn. We deduce
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from Lemma 4.1 with a single random vertex that

P
(
|xn| = h and LR(xn) 6 z

2σn
)

=
∑

(ki, ji)hi=1

P
(
Cont (xn) = (ki, ji)hi=1

)
1{ h∑

i=1
(ki−1)6 z2σn

}

6
∑

(ki, ji)hi=1
h∑
i=1

(ki−1)6 z2σn

1 +
h∑
i=1

(ki − 1)

Vn
·P

(
h⋂
i=1

{
(ξdn(i), χdn(i)) = (ki, ji)

})

6
z
2σn + 1
En

P
(

h∑
i=1

(ξdn(i)− 1) 6 z

2σn
)
.

Let us write Xn(i) = ξdn(i)− 1 in order to simplify the notation. Recall from (4.1)
that these random variables have mean σ2

n/En so for h > zEn/σn, the probability in
the last line is bounded above by

P
(

h∑
i=1

(
Xn(i)− E[Xn(i)]

)
6 −hσ

2
n

2En

)
.

The Xn(i)’s come from sampling balls without replacement; as we already mentioned,
by [Ald85, Proposition 20.6], their sum satisfies any concentration inequality based on
controlling the Laplace transform the similar sum when sampling with replacement
does. In particular, we may apply [McD98, Theorem 2.7], and get

P
(

h∑
i=1

(
Xn(i)− E [Xn(i)]

)
6 −hσ

2
n

2En

)
6 exp

−
(
hσ2
n

2En

)2

2h∆nσ2
n

En
+ 2

3
hσ2
n

2En
σ2
n

En


= exp

(
− hσ2

n

8En∆n + 4
3σ

2
n

)
.

Observe that σ2
n 6 En∆n so 8En∆n + 4

3σ
2
n 6 10En∆n, hence

P
(
|xn| > z

En
σn

and LR(xn) 6 z

2σn
)
6
zσn + 2

2En
∑

h> z En/σn

exp
(
− hσ2

n

10En∆n

)

6
zσn + 2

2En
exp

(
− zσn

10∆n

)
1− exp

(
− σ2

n

10En∆n

) .
We next appeal to the following two bounds: first (1 − e−t) > t(1 − t/2) > 19t/20
for every 0 6 t 6 1/10, second te−t 6 e−t/2 for all t > 0. We thus have

P
(
|xn| > z and LR(xn) 6 z

2σn
)
6
zσn + 2

2En
10∆n

zσn
exp

(
− zσn

20∆n

) 200En∆n

19σ2
n

6
1000∆2

n

19σ2
n

(
1 + 2

zσn

)
exp

(
− zσn

20∆n

)
.

TOME 5 (2022)



352 C. MARZOUK

Recall that we assume that ∆n > 2, which implies ∆2
n 6 2σ2

n and also σn > 1. We
thus obtain for every z > 1,

P
(
|xn| > z and LR(xn) 6 z

2σn
)
6

2000× 3
19 exp

(
− z

20
√

2

)
.

Jointly with the exponential bound from Proposition 4.4, this completes the proof
of Proposition 4.5. �

Remark 4.6. — In the more general case of forests, the same argument applies
and the only difference lies in (4.3) where in the numerator of the ratio in front of
the probability, the term “+1” is more generally “+%n”. Then in the last display of
the preceding proof, the term “3” is replaced by “1 +%n/σn”. If this ratio is bounded,
as in Theorem 2.4, then the result of Proposition 4.5 stills holds, except that c1 now
depends on the sequences (%n)n> 1 and (dn)n> 1, but it can be chosen independently
of n and z > 1.

Remark 4.7. — Recall the particular case of uniformly random kn-ary trees dis-
cussed in the introduction, in which every internal vertex has exactly kn offspring, so
En = nkn and σ2

n = nkn(kn−1). In this case, Proposition 4.5 extends to the maximal
height of the tree, without appealing to Lemma 4.1 since in this case, if a vertex x
lies at generation zEn/σn, say, then LR(x) = z(kn − 1)En/σn = zσn. Then, by (4.4)
and the Vervaat transform, the probability that there exists such a vertex is bounded
by c1e−c2z, where c1, c2 > 0 are universal. With this bound at hand, it is not difficult
then to extend the convergence of the reduced trees provided by Theorem 1.5 to the
convergence (1.2) by proving [Ald93, Equation 25]. Precisely, one can show that for
every ε > 0, one can fix q large enough so that with high probability as n → ∞,
each tree in the forest consisting of the complement in T %ndn of the ancestors of the q
random vertices has height smaller εEn/σn. We hope to obtain a more general result
in the future and therefore refrain to provide the details here in this case.

4.4. Convergence of reduced forests

Let us close this section with the proof of Theorem 2.4. Recall that for % ∈ [0,∞),
we denote by X% the first-passage Brownian bridge from 0 to −% with duration
1 and that we denote by X̃%

t = X%
t − min06 s6 tX

%
s for every t ∈ [0, 1]. Let us

assume that limn→∞ σ
−1
n %n = % and that limn→∞ σ

−1
n ∆n = 0. We have shown with

Proposition 2.3 the convergence( 1
σn
W %n
dn

(Vnt) ; t ∈ [0, 1]
)

(d)−→
n→∞

(X%(t); t ∈ [0, 1]) .

We aim at showing that, jointly with this convergence, if for q > 1, we sample
U1, . . . , Uq i.i.d. uniform random variables in [0, 1] independently of the rest, and if
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we denote by 0 = U(0) < U(1) < · · · < U(q) their ordered statistics, then we have

σn
2En

(
H%n
dn

(
VnU(i)

)
, inf
U(i−1) 6 t6U(i)

H%n
dn

(Vnt)
)

16 i6 q

(d)−→
n→∞

(
X̃%
U(i)
, inf
U(i−1) 6 t6U(i)

X̃%
t

)
16 i6 q

.

The proof is inspired from the work of Broutin & Marckert [BM14] which itself finds
its root in the work of Marckert & Mokkadem [MM03]; the ground idea is to compare
the process H%n

dn
which describes the height of the vertices with W %n

dn
which counts

the number of vertices branching off to the right of their ancestral lines. As opposed
to these works, these two processes have different scaling here so one has to be more
careful.
Proof of Theorem 2.4. — Let U have the uniform distribution on [0, 1] indepen-

dently of the forest and let xn be the bVnUc′th vertex of T %ndn in lexicographical order,
so it has the uniform distribution in T %ndn . Then H

%n
dn

(bVnUc) = |xn| denotes its gen-
eration in its tree, whereas R(xn) as defined in (2.2) is the number of individuals
branching off strictly to the right of its ancestral line in its tree. According to Propo-
sition 2.3 and (2.2), the process σ−1

n R(bVn·c) converges in distribution towards X̃%;
we claim that

(4.6)
∣∣∣∣ 1
σn

R(xn)− σn
2En
|xn|

∣∣∣∣ P−→
n→∞

0.

Recall the notation LR(xn) = L(xn) + R(xn) for the total number of individuals
branching off the ancestral line of xn and recall that, by symmetry, L(xn) and R(Xn)
have the same law (but they are not independent in general). Fix ε, η > 0. Let K > 0
be such that

P
(
LR(xn) 6 Kσn and |xn| 6 KEn/σn

)
> 1− η

for every n large enough. This is ensured e.g. by Proposition 4.4 and Remark 4.6.
Then the probability that | 1

σn
R(xn)− σn

2En |xn|| > ε is bounded above by

η + P
(∣∣∣∣∣R (xn)− σ2

n

2En
|xn|

∣∣∣∣∣ > εσn, LR(xn) 6 Kσn, and |xn| 6 KEn/σn

)
.

We next proceed similarly to the previous proof, appealing to the spinal decom-
position obtained in Lemma 4.1 with q = 1. Recall the notation from this lemma;
consider the event that |xn| = h and that for all 0 6 i < h, the ancestor of xn at
generation i has ki offspring and the ji’th one is the ancestor of xn at generation
i+ 1; according to (4.3) its probability is bounded by

%n +
h∑
i=1

(ki − 1)

Vn
·P

⋂
i6h

{
(ξdn(i), χdn(i)) = (ki, ji)

} .
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By decomposing according to the height of xn and taking the worst case, we see that
the probability that | 1

σn
R(xn)− σn

2En |xn|| > ε is bounded above by

η + KEn
σn

%n +Kσn
Vn

sup
h6KEn/σn

P

∣∣∣∣∣∣
∑
i6h

(ξdn(i)− χdn(i))− σ2
n

2En
h

∣∣∣∣∣∣ > εσn

 .
From our assumption, KEn

σn

%n+Kσn
Vn

converges to K(%+K). From the triangle inequal-
ity, the last probability is bounded above by the sum of

P

∣∣∣∣∣∣
∑
i6h

(
(ξdn(i)− χdn(i))− ξdn(i)− 1

2

)∣∣∣∣∣∣ > εσn
2


and

P

∣∣∣∣∣∣
∑
i6h

ξdn(i)− 1
2 − σ2

n

2En
h

∣∣∣∣∣∣ > εσn
2

 .
Recall that the ξdn(i)’s are identically distributed, with mean and variance given
in (4.1). Furthermore, as discussed in the end of Section 4.1 these random variables
are obtained by successive picks without replacement in an urn, and therefore are
negatively correlated. In particular, the variance of their sum is bounded by the sum
of their variances, see e.g. [Ald85, Proposition 20.6]. The Markov inequality then
yields for every h 6 KEn/σn

P

∣∣∣∣∣∣
∑
i6h

ξdn(i)− 1
2 − σ2

n

2En
h

∣∣∣∣∣∣ > εσn
2

 6 h

ε2σ2
n

Var (ξdn(1)− 1) 6 K∆n

ε2σn
,

which converges to 0. Moreover, conditionally on the ξdn(i)’s, the random variables
ξdn(i)−χdn(i) are independent and uniformly distributed on {0, . . . , ξdn(i)−1}, with
mean (ξdn(i)− 1)/2 and variance (ξdn(i)2 − 1)/12. Similarly, the Markov inequality
applied conditionally on the ξdn(i)’s yields for every h 6 KEn/σn:

P

∣∣∣∣∣∣
∑
i6h

(
(ξdn(i)− χdn(i))− ξdn(i)− 1

2

)∣∣∣∣∣∣ > εσn
2

 6 4
ε2σ2

n

· E

∑
i6h

ξdn(i)2 − 1
12


6

∆n + 1
3ε2σ2

n

· h · E [ξdn(1)− 1]

6 K
∆n + 1
3ε2σn

,

which also converges to 0. This completes the proof of (4.6), which, combined with
Proposition 2.3 and (2.2), yields the convergence

σn
2En

(
H%n
dn

(
VnU(i)

))
06 i6 q

(d)−→
n→∞

(
X̃%
U(i)

)
06 i6 q

for any q > 1 fixed.
In order to obtain the full statement of the proposition, we need to prove the

following: Assume that the forest T %ndn reduced to the ancestors of q i.d.d. vertices
has q leaves (this occurs with high probability since the height of such a vertex
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is at most of order En/σn = o(En) as we have seen) and a random number, say,
b ∈ {1, . . . , q − 1} of branchpoints; then remove these b branchpoints from the
reduced forest to obtain a collection of q + b single branches. Then we claim that
uniformly for 1 6 i 6 q + b, the length of the i’th branch multiplied by σn

2En is close
to σ−1

n times the number of vertices branching off strictly to the right of this path
in the original forest. Since this number is encoded by the Łukasiewicz path, the
proposition then follows from Proposition 2.3. Such a comparison follows similarly
as in the case q = 1 above from the spinal decomposition of Lemma 4.1: now we have
to consider not only the length h of a single branch, but those h1, . . . , hq+b of all the
branches, which is compensated by the factor (σn/Vn)q+b in this lemma, the other
terms before the probability are bounded. We leave the details to the reader. �

5. On the label process
The aim of this section is to prove Theorems 2.5 and 2.6 on the label process L%ndn

of a labelled forest (T %ndn , `) sampled uniformly at random in LT%n
dn
. Let us first prove

Theorem 2.5 which asserts that the sequence(
(σn + %n)−1/2 L%ndn (Vnt) ; t ∈ [0, 1]

)
n> 1

is tight in the space C([0, 1],R). We shall rely on Proposition 4.2 and adapt the
argument from [Mar18b]. Then in Section 5.2 we prove that in the case %n � σn of
a large number of trees, this process converges in distribution towards a Brownian
bridge as stated in Theorem 2.6 (1) by identifying the limit of the finite-dimensional
marginals. On the other hand in the case of no macroscopic degree, where both
%n ∼ %σn and ∆n � σn, we deduce Theorem 2.6(2) from the convergence of the
finite-dimensional random marginals which is itself proved in Section 5.3, appealing to
Theorem 2.4. Throughout this section we shall make an extensive use of Lemma 4.1.

5.1. Tightness of the label process

Theorem 2.5 extends [Mar18b, Proposition 7] which is restricted to the case of a
single tree and in a “finite-variance regime”, when σ2

n is of order En. Many arguments
generalise here so shall only briefly recall them and focus on the main difference.
First, we shall need a technical result which resembles [Mar18b, Corollary 3], but a
slight adaptation is needed here.
Recall the notation χz ∈ {1, . . . , kpr(z)} for the relative position of a vertex z ∈ T %ndn

amongst its siblings as well as the interval notation ]]x, y]] for the simple path going
from the vertex x (excluded) to the vertex y.
Lemma 5.1. — Consider the following event which we denote by En: for every

pair of vertices x̂ and x such that x̂ is an ancestor of x and #{z ∈]]x̂, x]] : kpr(z)
> 2} > 2 · 162 ln(4Vn), it holds that

#
{
z ∈ ]]x̂, x]] : χz = 1 and kpr(z) > 2

}
#
{
z ∈ ]]x̂, x]] : kpr(z) > 2

} 6
3
4 .
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Then P(Ecn) 6 2(Vn − dn(1))−2.

In words, if the number of vertices with degree different from 1 tends to infinity,
then with high probability, there is no branch along which, amongst the individuals
which are not single child, as soon as this quantity is at least logarithmic in Vn, the
proportion of individuals which are the left-most (or right-most by symmetry) child
of their parent is larger than 3/4. This will be needed to use a symmetry argument
in the proof of Theorem 2.5; note that we exclude the individuals with only one child
since the label increment in this case is null.
Proof. — Let us first explain the values appearing in the lemma. Since the state-

ment completely ignores the individuals with only one child, then we may replace
the degree sequence dn by d′n(k) = dn(k)1{k 6= 1} and couple the two labelled forests
with degree sequence dn and d′n, by removing all the vertices with outdegree 1 in
T %ndn . Let us denote by V ′n = Vn − dn(1), E ′n = En − dn(1), and d′n(0) = dn(0) the
number of vertices, edges, and leaves respectively of the new forest T %ndn ′. Let us set

gn = d′n(0)
8V ′n

, cn = 2gn + V ′n − d′n(0)
E ′n

, ln = g−2
n ln

(
g−1
n (V ′n)2)

.

Then gn 6 1/8 and since each inner vertex has degree at least 2, then V ′n − d′n(0)
6 E ′n/2, and thus cn 6 3/4. On the other hand we also have gn > 1/16 so
ln 6 162 ln(16(V ′n)2) 6 2 · 162 ln(4Vn). We shall prove that the probability to find a
pair (x̂, x) such that x̂ is an ancestor of x and #{z ∈ ]]x̂, x]] : kpr(z) > 2} > ln and

#
{
z ∈ ]]x̂, x]] : χz = 1 and kpr(z) > 2

}
#
{
z ∈ ]]x̂, x]] : kpr(z) > 2

} > cn

is smaller than or equal to 2(V ′n)−2. Let E ′n ⊃ Ecn denote this event, this implies our
claim.
For a vertex x in the forest T %ndn ′ and 1 6 i 6 |x|, let us denote by αi(x) the ancestor

of x at height |x| − i+ 1, so α1(x) is x itself, α2(x) is its parent, etc. We may then
rewrite the event E ′n as

E ′n =
⋃

x∈T %n
dn
′

⋃
ln 6 l6 |x|

{
l∑

i=1
1{χαi(x)=1} > cnl

}
.

Let xn be a vertex sampled uniformly at random in T %ndn ′; a union bound yields

P (E ′n) 6 V ′n ·P

 |xn|⋃
l=ln

{
l∑

i=1
1{χαi(xn)=1} > cnl

} .
Appealing to Lemma 4.1, since the ratio (%n +∑h

i=1(ki − 1))/V ′n in (4.3) is bounded
by 1, then the previous right-hand side is bounded above by

V ′n
∑
h6V ′n

h∑
l=ln

P

 l∑
i=1

1{
χd′n

(i)=1
} > cnl

 .

ANNALES HENRI LEBESGUE



Scaling limits of planar maps with a prescribed degree sequence 357

Recall that cn = 2gn + V ′n−d′n(0)
E′n

, then a union bound yields

P

 l∑
i=1

1{
χd′n

(i)=1
} > cnl


= P

 l∑
i=1

1{
χd′n

(i)=1
} − lV ′n − d′n(0)

E ′n
> 2gnl


6 P

 l∑
i=1

1{
χd′n

(i)=1
} − l∑

i=1

1
ξd′n(i) > gnl

+ P
(

l∑
i=1

1
ξd′n(i) − l

V ′n − d′n(0)
E ′n

> gnl

)
.

Note that each ξd′n(i)−1 takes values in [0, 1] and has mean

E
[
ξd′n(i)−1

]
=
∑
k> 1

k−1kd
′
n(k)
E ′n

= V ′n − d′n(0)
E ′n

.

If these variables were obtained by sampling with replacement, then we could apply
a well known concentration result, see e.g. [McD98, Theorem 2.3] to obtain

P
(

l∑
i=1

ξd′n(i)−1 − lV
′
n − d′n(0)
E ′n

> gnl

)
6 exp

(
−2g2

nl
)
.

As already noted, this remains true here since this concentration is obtained by
controlling the Laplace transform of ∑l

i=1 ξd′n(i)−1 and the expectation of any convex
function of this sum is bounded above by the corresponding expectation when
sampling with replacement, see e.g. [Ald85, Proposition 20.6]. Further, conditionally
on the ξd′n(i)’s, the variables 1{χd′n (i)=1} are independent and Bernoulli distributed,
with parameter ξd′n(i)−1 respectively, so we have similarly

P

 l∑
i=1

1{
χd′n

(i)=1
} − l∑

i=1
ξd′n(i)−1 > gnl

 6 exp
(
−2g2

nl
)
.

Since gn ∈ (0, 1/2), then it holds that 1− exp(−2g2
n) > g2

n, so we obtain

P (E ′n) 6 Vn
∑
h6V ′n

h∑
l=ln

2 exp
(
−2g2

nl
)

6 2 (V ′n)2 exp (−2g2
nln)

1− exp (−2g2
n)

6 2 (V ′n)2
g−2
n exp

(
−2g2

nln
)
.

Finally, we have chosen ln = g−2
n ln(g−1

n (V ′n)2), so P(E ′n) 6 2(V ′n)−2. �
We may now prove the tightness of the label process, relying on this result and

Proposition 4.2.
Proof of Theorem 2.5. — Suppose first that the number Vn−dn(1) of vertices with

outdegree different from 1 does not tend to infinity; upon extracting a subsequence,
assume that it is uniformly bounded. Then the maximal degree ∆n, and so the
maximal label increment along an edge, is bounded (since the number of leaves is),
and there are a bounded number of edges along which the label increment is not
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zero. In this case, if furthermore the number %n of trees is also bounded, then it is
clear that the label process is tight, and the scaling factor is of constant order. On
the other hand, if Vn − dn(1) is bounded but %n tends to infinity, then the largest
gap between labels in the same tree is uniformly bounded, so it tends to 0 after the
scaling, only the labels of the roots of the trees can give a non zero contribution;
the latter precisely converge after scaling to a Brownian bridge as discussed more
precisely in the proof of Theorem 2.6(1) below.
We henceforth assume that Vn − dn(1) → ∞ as n → ∞. Fix ε > 0 arbitrarily

small, let C be as in Proposition 4.2 and let En be the intersection of the event in
this proposition and that of Lemma 5.1, whose probability is therefore at least 1−2ε
for every n large enough. We claim that for every q > 4, for every β ∈ (0, q/4− 1),
there exists a constant C > 0, which depends on q, β and possibly (dn)n> 0, such
that for every n large enough, for every 0 6 s 6 t 6 1, it holds that

(5.1) E
[∣∣∣L%ndn (Vns)− L%ndn (Vnt)

∣∣∣q ∣∣∣ En] 6 C · (σn + %n)q/2 · |t− s|1+β.

The standard Kolmogorov criterion then implies that for every γ ∈ (0, 1/4), for
another constant K > 0,

lim
K→∞

lim sup
n→∞

P

sup
s 6= t

∣∣∣L%ndn (Vns)− L%ndn (Vnt)
∣∣∣

(σn + %n)1/2 · |t− s|γ
> K

∣∣∣∣∣∣ En
 = 0.

Then the same holds for the unconditioned probability and this implies the tightness
as claimed.
Exactly as in the proof of Proposition 4.2, it suffices to prove (5.1) for the “one-

reduced” forest T %ndn ′ with degree sequence d′n(k) = dn(k)1{k 6= 1} obtained by removing
all the vertices with outdegree 1 in T %ndn . Indeed, as there, these vertices induce a null
label increment and they are located uniformly at random in the forest; therefore,
with the notation of the proof of Proposition 4.2, the suitable rescaled time intervals
[s, t] and [sn, tn] corresponding to the same vertices respectively in T %ndn and in T %ndn ′
are of the same order in the sense that E[|tn−sn|1+β] 6 c · |t−s|1+β for some constant
c independent of s and t; this allows to deduce the bound (5.1) from T %ndn

′ to T %ndn
(with another constant C). Note that the event En is not affected by the reduction.
Let us summarise: we assume henceforth that the degree sequence is such that

dn(1) = 0 and Vn → ∞ as n → ∞, and our aim is to prove (5.1). The rest of the
proof follows closely that of [Mar18b, Proposition 7]. We may, and do, suppose that
Vns and Vnt are integers. Let us view T %ndn as a tree by attaching all the roots to an
extra root vertex, let x and y be the vertices visited at time Vns and Vnt respectively,
and let x̂ and ŷ be the children of their last common ancestor which are ancestor of
x and y respectively. Note that if x and y belong to different trees of T %ndn , then x̂
and ŷ are the roots of these two trees and then the term χŷ − χx̂ below counts the
number of other roots strictly between them, plus one. Let us decompose the label
increment L%ndn(Vns)− L%ndn(Vnt) = `(x)− `(y) as follows:

`(x)− `(y) =
∑

z ∈ ]]x̂, x]]

(
`(z)− `(pr(z))

)
+ (`(ŷ)− `(ŷ)) +

∑
z ∈ ]]ŷ, y]]

(
`(z)− `(pr(z))

)
.
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Then it was argued in [Mar18b], see Equation 22 and the next few lines there, that
E[|`(x)− `(y)|q | T %ndn ] is bounded above by some constant times

 ∑
z ∈ ]]x̂, x]]

(
kpr(z) − χz

)
+ (χŷ − χx̂)

q/2 +
 ∑
z ∈ ]]ŷ, y]]

χz

q/2 .
Furthermore, from Lemma 2.1 and then Proposition 4.2, one gets that there exists
C > 0 such that, for every n > 1, with probability at least 1− ε, it holds

∑
z ∈ ]]x̂, x]]

(
kpr(z) − χz

)
+ (χŷ − χx̂) = W %n

dn
(Vns)− inf

r∈ [s, t]
W %n
dn

(Vnr)

6 C · (σn + %n) · |t− s|(1−ε)/2.

uniformly for 0 6 s < t 6 1. By choosing ε small enough, we deduce that
 ∑
z ∈ ]]x̂,x]]

(
kpr(z) − χz

)
+ (χŷ − χx̂)

q/2 6 Cq/2 · (σn + %n)q/2 · |t− s|1+β,

uniformly for 0 6 s < t 6 1 with probability 1− ε.
We next want a similar bound for the moments of the other term ∑

z ∈ ]]ŷ, y]] χz. We
would like to proceed symmetrically, using the ‘mirror forest’ obtained by flipping
the order of the children of every vertex, but there is a difference with the first
term: the quantity ∑z ∈ ]]x̂, x]](kpr(z) − χz) counts the individuals which lie strictly to
the right of the branch ]]x̂, x]] in the sense that their parent belongs to [[x̂, x[[ but
not themselves, and they lie after this branch in the depth-first search order; on
the other hand, the term ∑

z ∈ ]]ŷ, y]] χz counts similarly the number, say L(]]ŷ, y]]) of
individuals which lie strictly to the left of the branch ]]ŷ, y]] plus the length #]]ŷ, y]]
of this branch. In other words, whilst individuals which are the right-most child of
their parent are not counted in the first term (since `(zkz) = `(z)), those which are
the left-most child of their parent are counted in the second term (since `(z1) 6= `(z)
in general); Lemma 5.1 allows us to control this number as follows. Recall that we
assume dn(1) = 0. Under the event En, if the branch ]]ŷ, y]] has length greater than
ln = 2 · 162 ln(4Vn), then the proportion of individuals which are the first child of
their parent is at most 3/4; all other vertices (a proportion at least 1/4) contribute
to L(]]ŷ, y]]) so there are at most L(]]ŷ, y]]) of them and therefore on the event En, it
holds that

#]]ŷ, y]] + L (]]ŷ, y]]) 6 4L (]]ŷ, y]]) 1{#]]ŷ, y]]> ln} +
(
ln + L(]]ŷ, y]])

)
1{#]]ŷ, y]]< ln}

6 ln + 5L(]]ŷ, y]]).

Now, using the mirror forest, the previous bound on the left branch yields

E
[
L(]]ŷ, y]])q/2

]
6 C (σn + %n)q/2 |t− s|1+β
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for some C > 0 and so, for some other constant C > 0,

E


 ∑
z ∈ ]]ŷ,y]]

χz

q/2 1En

 = E
[(

#]]ŷ, y]] + L (]]ŷ, y]])
)q/2

1En
]

6 C
(
lq/2n + (σn + %n)q/2 |t− s|1+β

)
.

Recall that we assume dn(1) = 0, so σ2
n + %n > En + %n = Vn so V −1/2

n (σn + %n) is
bounded away from 0. Finally, recall also that we have assumed Vns and Vnt to be
integers so |t− s| > V −1

n , and thus, for β < q/4− 1, we have (σn + %n)q/2|t− s|1+β >
(σn+%n)q/2V −(1+β)

n which is bounded below by some constant times a positive power
of Vn, so, for n large enough (but independently of s and t), it is larger than ln which
is of order ln Vn. It follows that for another constant C > 0,

E


 ∑
z ∈ ]]ŷ, y]]

χz

q/2 1En

 6 C · (σn + %n)q/2 · |t− s|1+β,

which completes the proof of (5.1). �

5.2. Brownian labelled forests

Recall from Section 2.4, in particular (2.3), that the label process L%ndn can be
written as

L%ndn(k) = L̃%ndn(k) + b%ndn

(
1−W %n

dn
(k)
)
, (0 6 k 6 Vn)

where, conditionally given T %ndn , the two processes L̃%ndn(·) and b%ndn(1 −W %n
dn

(·)) are
independent. On the one hand L̃%ndn is the concatenation of the label process of each
tree taken individually, so where all labels have been shifted so that each root has
label 0. On the other hand b%ndn(1−W %n

dn
(k)) gives the value of the label of the root

vertex of the tree containing the k’th vertex, with W %n
dn

(k) = min06 i6 kW
%n
dn

(i) and
(b%ndn(i))16 i6 %n which is independent of T %ndn and uniformly distributed in B>−1

%n .
We claim that if limn→∞ σ

−1
n %n =∞, then the convergence in distribution(

(2%n)−1/2
(
b%ndn (%nt) , L̃%ndn (Vnt)

)
; t ∈ [0, 1]

) (d)−→
n→∞

(
(bt, 0) ; t ∈ [0, 1]

)
,

holds in C([0, 1],R2), where b is an independent standard Brownian bridge from 0
to 0 with duration 1. This yields Theorem 2.6(1) as noted just after the statement
of this theorem.
Proof of Theorem 2.6(1). — First, consider the random walk S with step distri-

bution P(S1 = i) = 2−(i+2) for all i > −1, which is centred and with variance 2. One
can check that for any k > 1, the law of the bridge obtained by conditioning S to
satisfy Sk = 0 has the uniform distribution in B>−1

k . Therefore the process b%ndn has
the law of such a random walk bridge with length %n and a conditional version of
Donsker’s invariance principle, see e.g. [Bet10, Lemma 10] for a detailed proof, shows
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that (2%n)−1/2b%ndn(%n·) converges in distribution towards b. Recall Proposition 2.3,
we conclude that the convergence in distribution(

(2%n)−1/2 b%ndn

(
1−W %n

dn
(bVntc)

)
; t ∈ [0, 1]

) (d)−→
n→∞

(bt; t ∈ [0, 1])

holds in C([0, 1],R).
We next claim that %−1/2

n L̃%ndn converges in probability to the null process, which
yields our result by the decomposition (2.3). By this decomposition and the preceding
convergence, tightness follows from Theorem 2.5 so it remains to prove the conver-
gence of the (one-dimensional) marginals. Fix k > 1, and Xk = (Xk, 1, . . . , Xk, k)
a uniform random bridge in B>−1

k , and set Xk, 0 = 0; using the representation as
a bridge of the random walk S, one easily infers that for every q > 2, there exists
C(q) > 0 such that and every i, j ∈ {0, . . . , k},

(5.2) E [|Xk, i −Xk, j|q] 6 C(q) · |i− j|q/2,

see e.g. Le Gall & Miermont [LGM11, Lemma 1]. Fix t ∈ [0, 1]; building on this
bound, as in the preceding proof, we obtain

E
[∣∣∣L̃%ndn (bVntc)

∣∣∣q ∣∣∣ T %ndn ] 6 C(q) ·
∣∣∣W %n

dn
(bVntc)−W %n

dn
bVntc

∣∣∣q/2 .
See e.g. [Mar18b, Equation 22] and the next few lines there, with u = 0 and v = bVntc;
only the case of a single tree is considered there but the argument extends readily.
By Proposition 2.3, the right-hand side divided by %q/2n converges in probability to 0
which yields the convergence in probability to 0 of %−1/2

n L̃%ndn(bVntc) and the proof is
complete. �

Let us next turn to the second part of Theorem 2.6. Recall from Section 2.4 the
process Z% which describes Brownian labels on a forest of Brownian trees coded by
the first-passage bridge X%; it takes the form

Z%
t = Z̃%

t +
√

3 · b%−X%
t

for every 0 6 t 6 1,

where Z̃% is defined conditionally on X̃% = X%−X%, where X is the running infimum
of X%, as a centred Gaussian process with covariance E[Z̃%

sZ̃
%
t | X̃%] = minr∈ [s, t] X̃

%
r

for every 0 6 s 6 t 6 1, and where b% is an independent standard Brownian bridge
from 0 to 0 with duration %.
Then Theorem 2.6(2) claims that if limn→∞ σ

−1
n %n = % with % ∈ [0,∞) and

limn→∞ σ
−1
n ∆n = 0 then the convergence in distribution(( 3

2σn

)1/2
L%ndn (Vnt) ; t ∈ [0, 1]

)
(d)−→

n→∞
(Z%

t ; t ∈ [0, 1])

holds in C([0, 1],R). Since we already proved tightness of this sequence, it only
remains to characterise the subsequential limits.

Proposition 5.2. — Suppose that limn→∞ σ
−1
n %n = % for some % ∈ [0,∞) and

limn→∞ σ
−1
n ∆n = 0. For every n, q > 1, sample (Tdn , `) uniformly at random in

LT%n
dn

and, independently, sample U1, . . . , Uq uniformly at random in [0, 1]. Sample
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Z̃% independently of (U1, . . . , Uq), then we have

(5.3)
( 3

2σn

)1/2 (
L̃%ndn (VnU1) , . . . , L̃%ndn (VnUq)

) (d)−→
n→∞

(
Z̃%
U1 , . . . , Z̃

%
Uq

)
jointly with the convergence of W %n

dn
and H%n

dn
in Proposition 2.3 and Theorem 2.4.

Let us differ the proof of the proposition to the next subsection and finish now the
proof of Theorem 2.6.
Proof of Theorem 2.6(2). — Suppose that limn→∞ σ

−1
n %n = % ∈ [0,∞) and

limn→∞ σ
−1
n ∆n = 0. Then the sequence (σ−1

n W %n
dn

(bVntc))t∈ [0, 1] converges in distri-
bution towards X% by Proposition 2.3 and, as in the previous proof, the sequence
((2%n)−1/2b%ndn(%nt))n> 1 converges in distribution towards b whenever %n →∞. Since
the two are independent, we deduce that, when % > 0,(( 3

2σn

)1/2
b%ndn

(
1−W %n

dn
(Vnt)

))
t∈ [0, 1]

(d)−→
n→∞

(
(3%)1/2 b−%−1X%

t

)
t∈ [0, 1]

in C([0, 1],R) and the limit has the same law as (
√

3b%−X%
t
)t∈ [0, 1]; when % = 0, the

limit is instead the null process.
Next, still as in the previous proof, by Theorem 2.5, the sequence (σ−1/2

n L̃%ndn)n> 1 is
tight; then this equicontinuity combined with the uniform continuity of the process
Z̃% allows to approximate the marginals evaluated at deterministic times by sampling
sufficiently many i.i.d. uniform random times. Hence Proposition 5.2 yields actually
a convergence in C([0, 1],R). Combined with Proposition 2.3 we obtain the joint
convergence(

1
σn
W %n
dn

(Vnt) ,
( 3

2σn

)1/2
L̃%ndn (Vnt)

)
t∈ [0, 1]

(d)−→
n→∞

(
X%
t , Z̃

%
t

)
t∈ [0, 1]

in C([0, 1],R2). Recall the decomposition (2.3) of L%ndn ; we deduce from the conditional
independence of b%ndn and L̃%ndn , that(( 3

2σn

)1/2
L%ndn(Vnt)

)
t∈ [0, 1]

(d)−→
n→∞

(
Z̃%
t + 31/2b%−X%

t

)
t∈ [0, 1]

,

and the right-hand side is the definition of the process Z%. �

5.3. Marginals of the label process

Let us now prove Proposition 5.2 which is the last remaining ingredient to Theo-
rem 2.6 and therefore to Theorem 1.2. We start with the case q = 1 and comment
then on the general case.
We shall need the following technical estimate. Let xn denote a vertex in T %ndn , with

height |xn| and for every 1 6 p 6 |xn|, let kp(xn) denote the number of offspring
of the ancestor of xn at height p − 1 and let jp(xn) the index of the offspring of
this ancestor which is also an ancestor of xn. Conditionally on T %ndn and xn, let
(Bp(xn); 1 6 p 6 xn) be independent random variables, where each Bp(xn) has the
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law of a uniformly random bridge in B>−1
kp(xn) evaluated at time jp(xn). Note that they

are centred, let us denote by σ2
p(xn) the variance of Bp(xn), which is measurable

with respect to T %ndn and xn.

Lemma 5.3. — Assume that limn→∞ σ
−1
n %n = % ∈ [0,∞) and limn→∞ σ

−1
n ∆n

= 0. For every n > 1, sample (T %ndn , `) uniformly at random in LT%n
dn

and independently
sample a vertex xn uniformly at random. Then

3En
σ2
n|xn|

|xn|∑
p=1

σ2
p(xn) P−→

n→∞
1.

Proof. — Let us first prove the claim on the event En(K) defined as follows with
K > 0 large but fixed:

(5.4) En(K) =
{
σn
En
|xn| ∈

[
K−1, K

]
and LR(xn) 6 Kσn

}
.

Indeed by combining Proposition 4.4, Remark 4.6, as well as Theorem 2.4 for the
lower bound on |xn|, we see that limK→∞ lim infn→∞P (En(K)) = 1. Let σ2(k, j)
denotes the variance of a uniformly random bridge in B>−1

k evaluated at time j,
which is known explicitly, see e.g. Marckert & Miermont [MM07, page 1664(1) ]: we
have

σ2(k, j) = 2j(k − j)
k + 1 , so

k∑
j=1

σ2(k, j) = k(k − 1)
3 .

Fix δ > 0, then by (4.3),

P


∣∣∣∣∣∣ 3En
σ2
n|xn|

|xn|∑
p=1

σ2(xn)− 1

∣∣∣∣∣∣ > δ

 ∩ 1En(K)


6 K(%+K + o(1)) sup

K−1En/σn 6h6KEn/σn

P

∣∣∣∣∣∣3Enσ2
nh

h∑
p=1

σ2
p (ξdn(p), χdn(p))− 1

∣∣∣∣∣∣ > δ


We calculate the first two moments: to ease notation, let (ξ, ξ′, χ, χ′) have the law
of the quadruple (ξdn(1), ξdn(2), χdn(1), χdn(2)). Since χ has the uniform distribution
on {1, . . . , ξ}, then

E

 h∑
p=1

σ2 (ξdn(p), χdn(p))
 = h · E

ξ−1
ξ∑
j=1

σ2(ξ, j)
 = h · E

[
ξ − 1

3

]
= σ2

nh

3En
.

It only remains to prove that the variance is small; we have similarly

E


3En
σ2
nh

h∑
p=1

σ2 (ξdn(p), χdn(p))
2


=
(

3En
σ2
nh

)2 (
hE

[
σ2(ξ, χ)2

]
+ h(h− 1)E

[
σ2(ξ, χ)σ2 (ξ′, χ′)

])
.

(1)Note that they consider uniform random bridges in B> −1
k+1 !
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Since the χ’s are independent conditionally on the ξ’s, we have

E
[
σ2(ξ, χ)σ2 (ξ′, χ′)

]
= E

[
(ξ − 1) (ξ′ − 1)

9

]
=
(
σ2
n

3En

)2

(1 + o(1)),

where we used that two samples without replacement decorrelate as the number of
possible picks tends to infinity. We conclude that

E

3En
σ2
nh

h∑
p=1

σ2 (ξdn(p), χdn(p))
 = 1,

and, since σ2(ξ, χ) 6 ξ 6 ∆n, then this random variable has variance(
3En
σ2
nh

)2 (
hE

[
σ2(ξ, χ)2

]
+ h(h− 1)E

[
σ2(ξ, χ)σ2 (ξ′, χ′)

])
− 1

6

(
3En
σ2
nh

)2
h∆n

σ2
n

3En
+ h(h− 1)

(
σ2
n

3En

)2

(1 + o(1))
− 1

6
3En
σ2
nh

∆n + o(1),

which converges to 0 uniformly in h ∈ [K−1En/σn, KEn/σn] since we assume that
∆n = o(σn). This proves that 3En

σ2
n|xn|

∑|xn|
p=1 σ

2
p(xn) converges in probability to 1 on

the event En(K) and therefore also unconditionally by letting further K tend to
infinity. �

We may now prove Proposition 5.2.
Proof of Proposition 5.2. — Let us start with the case q = 1. Let U have the

uniform distribution on [0, 1] and let xn be the uniformly random vertex visited at
the time bVnUc in lexicographical order, with label `(xn) = L%ndn(bVnUc) and height
|xn| = H%n

dn
(bVnUc). Let us write( 3

2σn

)1/2
`(xn) =

(
σn

2En
|xn|

)1/2
(

3En
σ2
n|xn|

)1/2

`(xn).

Recall from Theorem 2.4 that σn
2En |xn| converges in distribution towards X̃%

U , it is
therefore equivalent to show that, jointly with this convergence, we have

(5.5)
(

3En
σ2
n|xn|

)1/2

`(xn) =⇒
n→∞

N(0, 1),

where N(0, 1) denotes the standard Gaussian distribution and “⇒” is a slight abuse
of notation to refer to the weak convergence of the law of the random variable. The
idea is to decompose `(xn) as the sum of the label increments (Bp(xn); 1 6 p 6 |xn|)
between two consecutive ancestors, as defined before the preceding lemma. To ease
notation, let us set Σ2

n = ∑|xn|
p=1 σ

2
p(xn), then the Central Limit Theorem for triangular

arrays shows that the conditional law of Σ−1
n `(xn) converges to the standard Gaussian

distribution as soon as for every ε > 0,
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(5.6) Σ−2
n

|xn|∑
p=1

E
[
Bp(xn)21{|Bp(xn)|>εΣn}

∣∣∣ T %ndn , xn] −→n→∞
0.

Our claim (5.5) then follows from (5.6) and Lemma 5.3. As in the proof of this lemma
we shall implicitly work on the intersection of the event En(K) defined in (5.4) and
{|Σ2

n
3En
σ2
n|xn|
− 1| 6 K−1} with K > 0 fixed, whose probability tends to 1 when first

n → ∞ and then K → ∞. Note that this allows to replace equivalently Σ2
n by σn

in (5.6). As proved in [LGM11, Lemma 1], for every r > 1, there exists a constant
K(r) > 0 such that for every k > j > 1, the (2r)’th moment of a uniformly random
bridge in B>−1

k evaluated at time j is bounded above by K(r)|k − j|r. Fix ε > 0,
then, by first using the Cauchy–Schwarz and the Markov inequalities,

E
[
Bp(xn)21{|Bp(xn)|>εΣn}

∣∣∣ T %ndn , xn]2 6 E
[
Bp(xn)4

∣∣∣ T %ndn , xn] E
[
|Bp(xn)|2 | T %ndn , xn

]
ε2Σ2

n

6 K(2) |kp(xn)− jp(xn)|2 K(1) |kp(xn)− jp(xn)|
ε2Σ2

n

6
K ′

ε2
|kp(xn)− jp(xn)|3

σn
,

where K ′ > 0 depends on K. Therefore the left hand side in (5.6) is upper bounded
by some constant that depends on K and ε times

1
σn

|xn|∑
p=1

√√√√ |kp(xn)− jp(xn)|3

σn
6

√
∆n

σn

1
σn

|xn|∑
p=1
|kp(xn)− jp(xn)| ,

where the inequality is obtained by upper bounding |kp(xn)−jp(xn)| by ∆n. Observe
that the last sum precisely equals the value of the Łukasiewicz path at time bVnUc,
which is of order σn with high probability. Since ∆n/σn → 0, then we conclude that
indeed (5.6) holds on an event which is measurable with respect to T %ndn and xn and
whose probability is arbitrarily close to 1. Combined with Lemma 5.3 this concludes
the proof of (5.5) and thus of the proposition for q = 1.
We next sketch the proof of the claim for q = 2, the general case q > 3 is exactly

the same and only requires more notation. We shall need the following result, which
claims that in the case of no macroscopic degree, there is no macroscopic label
increment in the sense that the maximal difference along an edge is small:

(5.7) σ−1/2
n max

x∈T %n
dn

∣∣∣∣ max
16 j 6 kx

`(xj)− min
16 j 6 kx

`(xj)
∣∣∣∣ P−→

n→∞
0.

This extends [Mar18b, Proposition 2] to which we refer for a proof, just replace Nn
there by σ2

n. Let xn and yn be independent uniform random vertices of T %ndn and let
us consider the three branches consisting of: their common ancestors on one side,
the ancestors of xn only on another side, and finally those of yn only. According
to Theorem 2.4, their lengths jointly converge in distribution, when rescaled by a
factor σn/(2En). By (5.7), the label increments between the last common ancestor
of xn and yn and its offspring which are ancestors of xn and yn respectively are

TOME 5 (2022)



366 C. MARZOUK

small compared to our scaling, and the total label increment on each of the three
remaining branches are independent; it only remains to prove that the law of these
increments, multiplied by (3En/σ2

n)1/2 and divided by the square-root of their length
converges to the standard Gaussian law, as in (5.5). This can be obtained in the
very same way as in the case q = 1, appealing to Lemma 4.1 to compare the content
of each branch with the sequence (ξdn(p), χdn(p))p. As in the proof of Theorem 2.4,
the fact that we now have three branches is compensated by the factor (σn/Vn)3 in
Lemma 4.1, we leave the details to the reader. �

6. Stable Boltzmann maps

In this last section, we study size-conditioned stable Boltzmann random maps by
relying on our main results. In Sections 6.1 and 6.2, we present the precise setup and
the assumptions we shall make on such laws, by relying on the Łukasiewicz path
of the associated labelled forest. Then in Section 6.3 we state and prove the main
result of this section, Theorem 6.2, which shows that the random degree distribution
satisfies the main assumptions from the introduction, according to the value of the
stability index. We then easily derive the behaviour of the maps in Sections 6.4
and 6.5, see Theorems 6.3 and 6.5.
Throughout this section, we shall divide by real numbers which depend on an

integer n, and consider conditional probabilities with respect to events which depend
on n; we shall therefore always implicitly restrict ourselves to those values of n for
which such quantities are well defined and statements such as “as n→∞” should
be understood along the appropriate subsequence of integers.

6.1. On stable domains of attraction

Throughout this section, we work with a sequence (Xi)i> 1 of i.i.d. copies of a
random variable X with distribution, say ν, supported by (a subset of) Z>−1 with
ν(−1) 6= 0, with finite first moment and E[X1] = 0. For every integer n > 1, we
let Sn = X1 + · · · + Xn, and set S0 = 0. For every integers n > 1 and k > −1,
let Kk(n) = #{1 6 i 6 n : Xi = k} be the number of jumps of size k up to time
n; for a subset A ⊂ Z>−1, set then KA(n) = ∑

k∈AKk(n). Finally, for % > 1, let
ζ(S, %) = inf{i > 1 : Si = −%}, and simply write ζ(S) for ζ(S, 1).
We recall that a measurable function l : [0,∞) → [0,∞) is said to be slowly

varying (at infinity) if for every c > 0, we have limx→∞ l(cx)/l(x) = 1. For α ∈ [1, 2],
we say that ν satisfies (Hα) if the tail distribution can be written as

P (X > n) = n−αL1(n),
where L1 is slowly varying. We also include the case where X has finite variance in
(H2). Finally, when α = 1, we say that ν satisfies (Hloc

1 ) when the mass function can
be written as

P (X = n) = n−2L1(n),
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where L1 is slowly varying. The assumption (Hα) corresponds to the domain of
attraction of a stable law with index α, and (Hloc

1 ) is more restrictive than (H1).
When α ∈ (1, 2], it is well known that there exists a sequence (an)n> 1 such that

(n−1/αan)n> 1 is slowly varying and a−1
n (X1 + · · ·+Xn) converges in distribution to

X(α) with Laplace transform given by E[exp(−tX(α))] = exp(tα) for t > 0. Note that
X(2) has the Gaussian distribution with variance 2; as a matter of fact, if X has finite
variance σ2, then we may take an = (nσ2/2)1/2. Moreover, there exists another slowly
varying function L such that for every n > 1, we have Var(X1{X 6n}) = n2−αL(n).
This function is related to L1 by

(6.1) lim
n→∞

L1(n)
L(n) = lim

n→∞

n2P(X > n)
Var

(
X1{X6n}

) = 2− α
α

,

see Feller [Fel71, Chapter XVII, Equation 5.16]. Finally, according to [Kor17, Equa-
tion 7], we have

(6.2) lim
n→∞

nL(an)
aαn

= 1
(2− α)Γ(−α) ,

where, by continuity, the limit is interpreted as equal to 2 if α = 2.
In the case α = 1, when (H1) is the domain of attraction of a Cauchy distribution,

in addition to the sequence (an)n> 1, there exists another sequence (bn)n> 1 such
that both (n−1an)n> 1 and (n−1bn)n> 1 are slowly varying, with bn → −∞ and
bn/an → −∞, and now a−1

n (X1 + · · · + Xn − bn) converges in distribution to X(1)

with Laplace transform given by E[exp(−tX(1))] = exp(t ln t) for t > 0. An example
to have in mind when dealing with this rather unusual regime is given by Kortchemski
& Richier [KR19]: take ν(n) ∼ c

n2 ln(n)2 , then an ∼ cn
ln(n)2 and bn ∼ − cn

ln(n) .

6.2. Local limit theorems and conditioned paths

Let us now describe our model of random paths, these assumptions and notations
shall be used throughout this section. We shall assume that ν satisfies either (Hα) for
some α ∈ [1, 2], or (Hloc

1 ), and then the sequences (an)n> 1 and (bn)n> 1 will always
be as in the preceding subsection. Fix n > 1, %n > 1, and a set A ⊂ Z>−1 with
ν(A) > 0, then:

• Let us denote by W %n the path S stopped when first hitting −%n; if %n = 1,
simply write W .
• If ν satisfies (Hα) for some α ∈ (1, 2], then we let W %n

n,A be the path W %n

conditioned to have made n jumps with value in the set A.
• If ν satisfies (Hloc

1 ), then we only consider A = Z>−1 and we define W %n
n =

W %n
n,Z>−1

similarly so it reduces to conditioning the walk S to first hit −%n at
time n and stopping it there.
• If ν satisfies (H1), then again A = Z>−1 but now %n = 1, and we let W>n be
the walk S conditioned to stay nonnegative at least up to time n and stopped
when first hitting −1 (at a random time).
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We recalled how to construct the path W %n
n by cyclically shifting a bridge, i.e. the

walk S up to time n, conditioned to satisfy Sn = −%n. This construction can be
generalised to any subset A, by cyclically shifting the walk S up to its n’th jump with
value in A, and conditioned to be at −%n at this moment, see Kortchemski [Kor12,
Lemma 6.4] for a detailed proof in the case %n = 1 and A = {−1}; it extends here:
replacing “= −1” by “∈ A” does not change anything, and when %n > 2, there are %n
cyclically shifted bridges which are first-passage bridges, but this factor %n cancels
since the cycle lemma is used twice.
The study of such bridges relies strongly on local limit theorems, which are used

to compare them to unconditioned random walks. By [Kor12, Equation 50] the
following holds: suppose that ν satisfies (Hα) with α ∈ (1, 2], fix A ⊂ Z>−1 such
that ν(A) > 0, and, if ν has infinite variance, suppose that either A or Z>−1 \ A is
finite. Then for any sequence (%n)n> 1 such that lim supn→∞ a−1

n %n <∞, we have

(6.3) lim
n→∞

∣∣∣∣∣n ·P (KA (ζ (S, %n)) = n)− ν(A)1/α%n
an

· p1

(
−ν(A)1/α%n

an

)∣∣∣∣∣ = 0,

where p1 is the density of X(α). We shall mostly be interested in the cases A = Z>−1,
A = {−1}, and A = Z> 0. Nevertheless, Thévenin [Thé20] proposed a different
method, relying on a multivariate local limit theorem, in order to lift the restriction
that either A or its complement should be finite; Proposition 6.5 there corresponds
to (6.3) in the case ρn = 1 on which the latter work focuses, but the general case
can be adapted similarly.
In the Cauchy regime α = 1, such a local limit theorem is not known for general

sets A, which is the reason why we restrict ourselves to the case A = Z>−1. Then
KZ>−1(k) = k so what we consider in (6.3) is simply the first hitting time of −%n. Af-
ter cyclic shift, the probability that the latter equals n is given by n−1%nP(Sn = −%n).
When ν satisfies (Hloc

1 ), we read from the recent work of Berger [Ber19, Theorem 2.4]
that, when %n = O(an) = o(|bn|), we have

(6.4) P (ζ (S, %n) = n) ∼
n→∞

%n ·
L1 (|bn| − %n)
(|bn| − %n)2 ,

see [Ber19, Equation 2.10] with p = α = 1 and x = |bn| − %n. When ν only satisfies
(H1), Kortchemski & Richier [KR19, Proposition 12] proved that, in the case %n = 1,

(6.5) P (ζ(S) > n) ∼
n→∞

Λ(n) · L1(|bn|)
|bn|

,

where Λ is some other slowly varying function unimportant here.

6.3. On the empirical jump distribution

We study in this subsection the random pathsW %n
n,A andW>n described above. Let

ζ(W %n) denote the number of steps of the pathW %n , and for every subset B ⊂ Z>−1,
let

JB (W %n) = #
{

1 6 i 6 ζ (W %n) : W %n(i)−W %n(i− 1) ∈ B
}
,
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and define similar quantities for W %n
n,A and W>n. Our first result is a strong law of

large numbers.

Lemma 6.1. — Let B any subset of Z>−1. Assume that either ν satisfies (Hα) for
some α ∈ (1, 2] and then take A ⊂ Z>−1 arbitrary (with ν(A) > 0), or that ν satisfies
(Hloc

1 ) and then take A = Z>−1. Finally assume that lim supn→∞ a−1
n %n <∞. Then

we have

n−1JB
(
W %n
n,A

)
a.s.−→

n→∞

ν(B)
ν(A) .

If ν satisfies (H1), then

ζ (W>n)−1 JB (W>n) a.s.−→
n→∞

ν(B).

In particular, when α > 1, recalling that n−1/αan is slowly varying, we have for
B = Z>−1:

n−1ζ
(
W %n
n,A

)
a.s.−→

n→∞
ν(A)−1 and so a−1

n aζ(W %n
n,A)

a.s.−→
n→∞

ν(A)−1/α.

When ν satisfies (Hloc
1 ), we simply have ζ(W %n

n ) = n; finally, when ν satisfies (H1),
we obtain appealing to [KR19, Theorem 30] that

|bn|−1
∣∣∣∣bζ(W %n

n )
∣∣∣∣ (d)−→

n→∞
I,

where I has the law P(I > x) = x−1 for all x > 1. Therefore in any case the natural
scaling factor for our conditioned paths, which should involve their total length ζ,
may be replaced by a factor depending only on n. The more general statement, for
an arbitrary set B, shall be used later when dealing with random maps.
Proof. — Let us detail the case α ∈ (1, 2]. Fix δ > 0 small, we claim that there

exist c, C > 0 such that for every n, we have

(6.6) P

∣∣∣∣∣∣ n

JB
(
W %n
n,A

) − ν(A)
ν(B)

∣∣∣∣∣∣ > δ

n1/4

 6 Ce−cn1/2
.

Since the right-hand side is summable, this indeed shows that n/JB(W %n
n,A) converges

to ν(A)/ν(B) almost surely. Let us write this conditional probability as

1
P (JA (W %n) = n) ·P

(∣∣∣∣∣JA (W %n)
JB (W %n) −

ν(A)
ν(B)

∣∣∣∣∣ > δ

n1/4 and JA (W %n) = n

)
.

Recall the local limit estimate in (6.3); it is known that p1 is continuous and positive,
so in particular bounded away from 0 and ∞ on any compact interval. Hence
%−1
n nanP(JA(W %n) = n) is bounded away from 0 and∞ since %n = O(an). Moreover,
%n > 1 and an = O(n3/2) and finally ζ(W %n) > JA(W %n), so the probability that
| n
JB(W %n

n,A) −
ν(A)
ν(B) | >

δ
n1/4 is bounded above by some constant times

n5/2P
(∣∣∣∣∣JA (W %n)
JB (W %n) −

ν(A)
ν(B)

∣∣∣∣∣ > δ

n1/4 and ζ (W %n) > n

)
,
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and it remains to bound this last probability. Straightforward calculations show that
if n is large enough (so e.g. δn−1/4 < ν(B)/2), then the event{∣∣∣∣∣JA (W %n)

ζ (W %n) − ν(A)
∣∣∣∣∣ 6 δ

n1/4

}
∩
{∣∣∣∣∣JB (W %n)

ζ (W %n) − ν(B)
∣∣∣∣∣ 6 δ

n1/4

}

is included in {∣∣∣∣∣JA (W %n)
JB (W %n) −

ν(A)
ν(B)

∣∣∣∣∣ 6 δ′

n1/4

}
,

for some explicit δ′ which depends on δ, ν(A) and ν(B). We may write

P
(∣∣∣∣∣JA (W %n)

ζ (W %n) − ν(A)
∣∣∣∣∣ > δ

n1/4 and ζ (W %n) > n

)

6
∑
N >n

P
(∣∣∣∣∣JA (W %n)

N
− ν(A)

∣∣∣∣∣ > δ

N1/4 and ζ (W %n) = N

)

6
∑
N >n

P
(∣∣∣∣∣#{1 6 i 6 N : Xi ∈ A}

N
− ν(A)

∣∣∣∣∣ > δ

N1/4

)

6
∑
N >n

2 exp
(
−2δ2N1/2

)
,

where the last bound follows from the Chernoff bound for binomial distributions.
The last sum is bounded by some constant times n1/2 exp(−2δ2n1/2); the same holds
with the set B, so we obtain after a union bound,

P
(∣∣∣∣∣ n

JB(W %n
n,A) −

ν(A)
ν(B)

∣∣∣∣∣ > δ

n1/4

)
6 Kn3e−2δ2n1/2

,

for some K > 0 and the proof in the case α ∈ (1, 2] is complete.
The argument is very similar in the case α = 1, appealing to (6.4) and (6.5), we

leave the details to the reader. �

In the next Theorem 6.2, we prove that the empirical jump distribution of our
conditioned paths fits in our general framework. For any path P = (Pi)i> 0, we let
∆(P ) = max{i > 1 : Pi−Pi−1} be the largest jump, and we let ∆′(P ) be the second
largest jump.

Theorem 6.2. — Assume that ν satisfies (Hα) for some α ∈ [1, 2] or (Hloc
1 ) and

fix A ⊂ Z>−1 with ν(A) > 0 arbitrary if α > 1, but take A = Z>−1 otherwise. Let
(%n)n> 1 be such that limn→∞ a

−1
n %n = %ν(A)−1/α for some % ∈ [0,∞).

(1) If ν satisfies (H2), then

a−2
n

∑
k> 1

k(k + 1)Jk
(
W %n
n,A

) P−→
n→∞

2
ν(A) and a−1

n ∆
(
W %n
n,A

) P−→
n→∞

0.

(2) If ν satisfies (Hα) with α ∈ (1, 2), then a−2
n

∑
k> 1 k(k+ 1)Jk(W %n

n,A) converges
in distribution to a random variable Y %

α whose law does not depend on ν.
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(3) If ν satisfies (Hloc
1 ), recall that we take A = Z>−1, then

|bn|−1∆ (W %n
n ) P−→

n→∞
1 and |bn|−2 ∑

k6∆′(W %n
n )

k(k + 1)Jk‘ (W %n
n ) P−→

n→∞
0.

(4) Similarly, if ν satisfies (H1) and %n = 1, let I be distributed as P (I > x) = x−1

for every x > 1, then

|bn|−1∆ (W>n) (d)−→
n→∞

I and |bn|−2 ∑
k6∆′(W>n)

k(k + 1)Jk (W>n) P−→
n→∞

0.

In the case %n = 1, when moreover ν has finite variance, Theorem 6.2 (1) was first
obtained by Broutin & Marckert [BM14] for A = Z>−1 and generalised to any A
in [Mar18b]. The last two statements when α = 1 shall follow easily from [KR19].
A key idea to prove the first two statements, when α > 1, as in [BM14, Mar18b], is
first to observe that the claims are invariant under cyclic shift, so we may consider a
random walk bridge instead of a first-passage bridge, and then to compare the law
of these bridges with that of the unconditioned random walk S for which the claims
are easy to prove. Precisely, when ν satisfies (Hα) for some α ∈ (1, 2] and A ⊂ Z>−1,
let us denote for every real t > 1 by

J−A, t(S) = inf
{
k > 1 : JA ((Si)i6 k) = btc

}
the instant at which the walk S makes its btc′th step in A. Then, as we discussed in
the preceding subsection, the path W %n

n,A has the law of the Vervaat transform of the
path S up to time J−A,n(S) conditioned to be at −%n at this time. Further, from the
Markov property applied to S at time J−A,n/2(S) and the local limit theorem, one
can see that there exists a constant C > 0 such that for every n > 1 and every event
EA,n/2(S) which is measurable with respect to the J−A,n/2(S) first steps of the path
S, we have that

(6.7) lim sup
n→∞

P
(
EA,n/2(S)

∣∣∣∣ SJ−A,n(S) = −%n
)
6 C lim sup

n→∞
P
(
EA,n/2(S)

)
,

see e.g. Kortchemski [Kor12, Lemmas 6.10 and 6.11 and Equation 44], there.
We may now prove Theorem 6.2. Let us start with the Gaussian regime α = 2.
Proof of Theorem 6.2(1). — According to the preceding discussion, it suffices to

prove the convergences

(6.8)
a−2
n

∑
k> 1

k(k + 1)Jk
(

(Si)i6 J−A,n(S)

)) P−→
n→∞

2
ν(A) ,

a−1
n ∆

(
(Si)i6 J−A,n(S)

)) P−→
n→∞

0,

under the conditional probability

P
(
·
∣∣∣∣SJ−A,n(S) = −%n

)
.

Moreover, if we cut this bridge at time J−A,n/2(S), then the time- and space-reversal
of the second part has the same law as the first one. Therefore it suffices to prove
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that (6.8) holds when n is replaced by n/2. By (6.7), it suffices finally to prove
that (6.8) holds for the unconditioned random walk.
Recall the two slowly varying functions L and L1, which are respectively given by

L1(x) = x2P(X > x) and L(x) = Var(X1{|X|6x}) for every x > 0; recall from (6.1)
and (6.2) that L1/L converges to 0 and na−2

n L(an) converges to 2. Then for every
ε > 0, it holds that

P
(
a−1
n max

16 i6n
Xi > ε

)
6 nP (X > εan) = n (εan)−2 L1 (εan) −→

n→∞
0,

where we used the fact that L1 is slowly varying, so L1(εan) ∼ L1(an) = o(L(an)).
Concerning the first convergence, we aim at showing that a−2

n

∑
16 i6nXi(Xi + 1)

converges in probability to 2, which is equivalent to the fact that a−2
n

∑
16 i6nX

2
i

converges in probability to 2 since n−1∑
16 i6nXi converges in probability to 0 by

the law of large numbers, and n = O(a2
n). Let us fix ε > 0, then we have that

E

a−2
n

∑
16 i6n

X2
i 1{|Xi|6ε an}

 = na−2
n E

[
X21{|X|6 εan}

]
= na−2

n L(an)(1 + o(1)),

which converges to 2 and, similarly,

Var
a−2

n

∑
16 i6n

X2
i 1{|Xi|6εan}


= na−4

n Var
(
X21{|X|6ε an}

)
6 ε2na−2

n E
[
X21{|X|6 ε an}

]
which converges to 2ε2. We have shown that with high probability, we have |Xi| 6 εan
for every i 6 n, so we conclude that indeed a−2

n

∑
16 i6nX

2
i converges in probability

to 2. We have thus shown that
a−2
n

∑
k> 1

k(k + 1)Jk ((Si)i6n) P−→
n→∞

2 and a−1
n ∆ ((Si)i6n)) P−→

n→∞
0,

for the unconditioned random walk, and so, since acn ∼ c1/2an,

a−2
n

∑
k> 1

k(k+1)Jk
(
(Si)i6n/ν(A)

) P−→
n→∞

2
ν(A) and a−1

n ∆
(
(Si)i6n/ν(A))

) P−→
n→∞

0.

Since n−1J−A,n(S) converges almost surely to ν(A)−1 by Lemma 6.1, we obtain (6.8)
for the unconditioned random walk and the proof is complete. �

We next consider the regime 1 < α < 2.
Proof of Theorem 6.2(2). — The claim for the unconditioned random walk S is

easy: let X be the α-stable Lévy process whose law at time 1 is X(α), then by a
classical result on random walks, the convergence in distribution of a−1

n Sn towards
X(α) is equivalent to that of (a−1

n Sbntc)t> 0 towards (Xt)t> 0 in the Skorokhod’s J1
topology. Let ∆Xs = Xs −Xs− > 0, then the sum St = ∑

s6 t(∆Xs)2 is well defined;
in fact it is well known that the process (St)t> 0 is an α/2-stable subordinator, whose
law can be easily derived from that of X. Furthermore it is easily seen to be the limit
in distribution of (a−2

n

∑
i6 bntcXi(Xi + 1))t> 0; note that no centring is needed here

since α/2 < 1. A simple consequence of the fact that S is a pure jump process is that
the non-increasing rearrangement of the vector (a−2

n Xi(Xi + 1))16 i6n converges in
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distribution in the `1 topology towards the decreasing rearrangement of the nonzero
jumps of (St)t∈ [0, 1].
Let us return to our random bridges; one may adapt the arguments from [Kor12]

when %n = 1 to obtain the convergence in distribution under

P
(
·
∣∣∣∣SJ−A,n(S) = −%n

)
of the paths ν(A)1/αa−1

n

∑
16 i6bJ−A,n(S)tc

Xi


t∈ [0, 1]

towards the bridge (X%
t )t∈ [0, 1] which is informally the process (Xt)t∈ [0, 1] conditioned

to be at −% at time 1. This implies the convergence of the N largest values amongst
(Xi(Xi + 1))16 i6n towards the N largest values amongst ((∆X%

t )2)06 t6 1 for every
N ; by (6.7) and the preceding paragraph, if N is chosen large enough, the sum of
all the other jumps is small so we obtain under the law

P
(
·
∣∣∣∣SJ−A,n(S) = −%n

)
, ν(A)2/αa−2

n

∑
16 i6n

Xi (Xi + 1) (d)−→
n→∞

∑
t∈ [0, 1]

(∆X%
t )2 .

We conclude as in the preceding proof from the space-time reversal invariance. �

We finally consider the Cauchy regime. Let us start with the local conditioning.
Recall that here we assume that A = Z>−1, andW %n

n is simply the walk S conditioned
to first hit −%n at time n.
Proof of Theorem 6.2(3). — In the case %n = 1, Kortchemski & Richier [KR19,

Theorem 3] found the joint limit of the N largest jumps of W 1
n for any N fixed:

the largest one is equivalent to |bn|, whereas the others are of order an = o(|bn|)
which implies our first claim. This can be generalised to any %n = O(an) = o(bn);
indeed, the key is Proposition 20 there which still applies when one takes the X(n)

i ’s
to be the jumps of the path S (denoted by W there!) conditioned to Sn = −%n
instead of Sn = −1: the only feature of the case %n = 1 which is used is that
P(Sn = −%n) ∼ n%n ·P(X = |bn|), which remains valid as soon as %n = O(an) = o(bn)
by (6.4).
By this extension of [KR19, Proposition 20] the following holds as n → ∞: let

Un = inf{i 6 n : Xi = maxj 6nXj} be the first time at which the path S up to
time n makes its largest jump, then the law under P( · | Sn = −%n) of the vector
(X1, . . . , XUn−1, XUn+1, . . . , Xn) is close in total variation to n − 1 i.d.d. copies of
X. From this, the proof of Theorem 21 from [KR19] can be extended to show that
if we first run the walk S up to time n − 1 and then send it to −%n, and then we
construct Z%n

n as the Vervaat transform of this path (S0, . . . , Sn−1,−%n), then

(6.9) dTV
(
(W %n

n (i))06 i6n , (Z
%n
n (i))06 i6n

)
−→
n→∞

0.

Finally, from these results, the proof of [KR19, Theorem 3] remains unchanged and
our first claim follows. Concerning the second claim, it is equivalent to showing
that |bn|−2∑

i6nX
2
i 1{i 6=Un} converges to 0 under P( · | Sn = −%n). As in the case
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1 < α < 2, we have that a−2
n (X2

1 + · · ·+X2
n) converges in distribution towards some

1/2-stable random variable. Our claim then follows by (6.9) since an = o(|bn|). �

It only remains to consider the tail conditioning. Recall that here A = Z>−1 and
%n = 1.
Proof of Theorem 6.2(4). — Compared to the previous proof, we do not need

any adaption here and the first claim now directly follows from [KR19, Theorem 6].
The second claim is more subtle. First, we have a similar approximation to (6.9)
given by [KR19, Theorem 27]; what replaces Z%n

n there is the process ~Z(n) defined
as follows: first In is the last weak ladder time of (Si)i6n, then conditionally on
{In = j}, the path ~Z(n) consists in three independent parts:

(1) First (~Z(n)
i )i< j has the law of (Si)i< j conditioned to satisfy mini6 j Si > 0.

(2) Then we make a big jump ~Z
(n)
j − ~Z

(n)
j−1, sampled from P( · | X > |bn|).

(3) Finally (~Z(n)
j+i − ~Z

(n)
j )i> 0 continues as the unconditioned random walk S.

The big jump will be excluded in our sum and we have seen previously that the
sum of N copies of X2 is of order a2

N as N → ∞. Therefore, if we consider only
the jumps of W>n after its big jump, then there are less than ζ(W>n) of them, and
|bn|−1ζ(W>n) converges in distribution to I as n→∞ by [KR19, Proposition 3.1],
so the sum of the square of these jumps is at most of order a2

|bn|. We recall that an
is defined by nP(X > an)→ 1; since P(X > x) = x−1L1(x) and that E[|X|] <∞,
then L1(x) → 0, therefore an = o(n), from which we deduce that the sum of the
square of the jumps of the last part is at most of order a2

|bn| = o(|bn|2). Finally, let
us consider the jumps of the first part, up to time In − 1. As in the preceding proof,
the sum of the square of the first In − 1 jumps of ~Z(n) grows like a2

In = o(|bn|2),
and precisely this path converges after scaling to the meander given by a 1/2-stable
process conditioned to be nonnegative at least up to time 1. �

6.4. Boltzmann planar maps

Let us briefly recall the definition of Boltzmann distributions on planar maps, as
introduced by Marckert & Miermont [MM07]. Let us also refer to [BM17] for more
details. For every % > 1, let M% be the set of all finite rooted bipartite maps M with
perimeter 2%, and let PM% be the set of all such rooted and pointed maps (M,x?).
Recall that M1 and PM1 can be seen as the set of maps and pointed maps without
boundary by gluing the two boundary edges, we then drop the exponent 1. Let us
fix a sequence of nonnegative real numbers q = (qi; i > 0) which, in order to avoid
trivialities, satisfies qi > 0 for at least one i > 2; we define a measure w% on M% by
setting

w%(M) =
∏

f inner face
qdeg(f)/2, M ∈M%,

where deg(f) is the degree of the face f . We set W% = w%(M%). We define similarly
a measure w%

? on PM% by w%
?((M,x?)) = w%(M) for every (M,x?) ∈ PM% and we

put W%
? = w%

?(PM%). We say that q is admissible when W? = W1
? is finite; this
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seems stronger than requiring W1 to be finite, but it is not, see [BCM19]; moreover,
this implies that W%

? (and so W%) is finite for any % > 1. If q is admissible, we set

P%(·) = 1
W%

w%(·) and P%,?(·) = 1
W%

?
w%
?(·).

For every integers n, % > 1, let M%
E=n, M%

V=n and M%
F=n be the subsets of M of

maps with respectively n edges, n + 1 vertices, and n inner faces. More generally,
for every A ⊂ N, let M(F,A)=n be the subset of M of maps with n inner faces whose
degree belongs to 2A (and possibly other faces, but with a degree in 2N \ 2A). For
every S ∈ {E, V, F} ∪ ⋃A⊂N{(F,A)} and every n > 2, we define

P%
S=n(M) = P% (M |M ∈M%

S=n) , M ∈M%
S=n,

the law of a rooted Boltzmann map with perimeter 2% conditioned to have ‘size’
n. We also let PE>n be the law of a rooted Boltzmann map without boundary
conditioned to have at least n edges. We define similarly the laws P%,?

S=n on such
pointed maps in PM%

S=n and P?
E>n on ⋃k>n PME=k.

According to [MM07] (see [Mar18b] for a presentation closer to the present work),
the admissibility of a sequence can be checked analytically: q is admissible if and
only if the power series gq : x 7→ 1 +∑

k> 1

(
2k−1
k−1

)
qkx

k (which is convex and strictly
increasing) possesses a fixed point Zq such that g′q(Zq) 6 1; in this case it holds that
Zq = (W? + 1)/2. When q is admissible, the sequence

µq(k) = (Zq)k−1
(

2k − 1
k − 1

)
qk (k > 0),

where µq(0) is understood as (Zq)−1, thus defines a probability measure with mean
smaller than or equal to one, and we say that q is critical when µq has mean exactly
one.
Sample a random labelled forest (T %, `) as follows: first T % has the law of a

Bienaymé–Galton–Watson forest with % trees and offspring distribution µq; this
means that its Łukasiewicz path has the law of the first-passage bridge W % of the
preceding subsections associated with the distribution νq(·) = µq(·+ 1). Then, con-
ditionally on T %, the random labelling ` is obtained by sampling the label of the
roots uniformly at random in B>−1

% as defined in (2.1) and, independently, for ev-
ery branchpoint with outdegree k > 1, the label increments between itself and its
offspring are sampled uniformly at random in B>−1

k .
Then we first construct a negative pointed map from this forest as discussed in

Section 2.1, and then we re-root it at one of the 2% edges along the boundary (keeping
the external face to the right) chosen uniformly at random, then this new pointed
map has the law P%,?. This can be shown in the case % = 1 by adapting the arguments
from [MM07] which rely on the coding of [BDFG04], and the generalisation to % > 2
can be obtained similarly, with a straightforward analogue of [BM17, Lemma 10] for
the re-rooting along the boundary.
Moreover, the pointed map has the law P%,?

S=n when the forest has the law of such
a Bienaymé–Galton–Watson forest conditioned to have n vertices with outdegree in
the set BS ⊂ Z+ given by
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BE = Z+, BV = {0}, BF = N and B(F,A) = A.

Wemay therefore rely on the preceding sections to obtain information about (pointed)
Boltzmann maps.
We let νq(k) = µq(k + 1) for every k > −1 which is centred if and only if q is

critical. Let the sequences (an)n> 1 and (bn)n> 1 be as in Section 6.2: when α > 1,
the sequence (n−1/αan)n> 1 is slowly varying and a−1

n (X1 + · · · + Xn) converges in
distribution to an α-stable random variable, where the Xi’s are i.i.d. with law νq;
when α = 1, both (n−1an)n> 1 and (n−1bn)n> 1 are slowly varying, with bn → −∞
and bn/an → −∞, and now a−1

n (X1 + · · ·+Xn − bn) converges in distribution.

Theorem 6.3. — Assume that q is an admissible and critical sequence such that
the law νq satisfies (Hα) for some α ∈ [1, 2] or (Hloc

1 ). Let (%n)n> 1 be such that
lim supn→∞ a−1

n %n <∞.
(1) Fix S ∈ {E, V, F} ∪ ⋃A⊂N{(F,A)}. Suppose that νq satisfies (Hα) with

α ∈ (1, 2]. For every n > 1, let M%n
S=n have the law P%n

S=n. Then from every
increasing sequence of integers, one can extract a subsequence along which
the spaces (

V (M%n
S=n) , a−1/2

n dgr, punif
)
n> 1

converge in distribution in the Gromov–Hausdorff–Prokhorov topology to a
limit with a nonzero diameter.

(2) Suppose furthermore that α = 2; let cq, S = (µq(BS)/2)1/2 and suppose
that there exists % ∈ [0,∞) such that limn→∞ a

−1
n %n = %/cq, S, then the

convergence in distribution(
V (M%n

S=n)
(3cq, S

2an

)1/2
dgr, punif

)
(d)−→

n→∞
(M%, D%, p%)

holds in the Gromov–Hausdorff–Prokhorov topology, where M0 is the Brow-
nian sphere and M% is the Brownian disk with perimeter % if % > 0.

(3) Suppose that νq satisfies (Hloc
1 ). For every n > 1, let M%n

E=n have the law
P%n
E=n. Then the convergence in distribution(

V (M%n
E=n) , |2bn|−1/2 dgr, punif

) (d)−→
n→∞

(TX0 , dX0 , pX0)

holds in the Gromov–Hausdorff–Prokhorov topology, whereX0 is the standard
Brownian excursion.

(4) Suppose that νq satisfies (H1). For every n > 1, letME>n have the law PE>n.
Then the convergence in distribution(

V (ME>n) , |2bn|−1/2 dgr, punif
) (d)−→

n→∞
(TI1/2X0 , dI1/2X0 , pI1/2X0)

holds in the Gromov–Hausdorff–Prokhorov topology, whereX0 is the standard
Brownian excursion, and I is independently sampled from the law P(I > x) =
x−1 for all x > 1.

Finally, the same results hold when the maps are obtained by forgetting the distin-
guished vertex in the pointed versions of the laws.
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For maps without boundary, the case where νq satisfies (Hα) with α ∈ (1, 2) was
first introduced by Le Gall & Miermont [LGM11] in a more restricted case, where
νq(n) ∼ Cst ·n−1−α, and extended to (Hα) in [Mar18a]. More is known for this model
than just the above statement; in particular the height and label process of the
associated labelled tree converge in distribution. This could be extended to maps
with a boundary in a similar way. Le Gall & Miermont [LGM11] also proved that
the subsequential limits all have Hausdorff dimension 2α and showing that these
limits all have the same topology and further the same distribution (at α fixed) is
the object of current investigation.
Proof. — The statements for random pointed maps follow easily from Theorem 6.2

and the results from the introduction. Indeed the statement (1) for α ∈ (1, 2) follows
from Theorem 1.1 and Theorem 6.2(2): According to the latter, the factor σ1/2

n

in Theorem 1.1 for the random degree sequence of M%n
S=n is of order a1/2

n ; since
furthermore conditionally on these degrees the map has the uniform distribution on
the set of all possible maps, we may then apply Theorem 1.1 conditionally on the
degrees, with a1/2

n instead of σ1/2
n , and then average with respect to the degrees. The

statement (2) for α = 2 follows similarly from Theorem 1.2 and Theorem 6.2 (1); here
the scaling constant (3/(2σn))1/2 is given by ((9µq(BS))/(8a2

n))1/4. The statements (3)
and (4) finally follow from Theorem 1.3 and Theorems 6.2 (3) and 6.2(4) respectively.
In the next proposition, we compare pointed and non-pointed maps, which allows

to transfer these results to non-pointed maps. �

Let φ : PM → M be the projection φ((M,x?)) = M which “forgets the distin-
guished vertex”. We stress that, unless in the case S = V for which there is no bias, the
law P%

S=n and the push-forward φ∗P%, ?
S=n differ at n fixed. Nonetheless, this bias disap-

pears at the limit as shown in several works [Abr16, BJM14, BM17, Mar18a, Mar18b].

Proposition 6.4. — Under the assumption of Theorem 6.3(1), (3), and (4)
respectively, each corresponding total variation distance

‖P%
S=n − φ∗P

%, ?
S=n‖TV , ‖P%

E=n − φ∗P
%, ?
E=n‖TV , and

∥∥∥PE>n − φ∗P?
E>n

∥∥∥
TV

,

converges to 0 as n→∞.

Proof. — This result generalises [Mar18b, Proposition 12] whose proof extends
readily here: for notational convenience, suppose that we are in the first case of
the theorem. Let Λ(T %nn,BS) denote the number of leaves of the forest T %nn,BS , which
equals the number of vertices minus one in the associated map. Then the above total
variation distance is bounded above by

E



∣∣∣∣∣∣∣∣∣∣∣∣
1

Λ
(
T %nn,BS

)
+ 1

1

E

 1
Λ
(
T %nn,BS

)
+1

 − 1

∣∣∣∣∣∣∣∣∣∣∣∣

 .

see e.g. the proof of [Mar18b, Proposition 12]. It thus suffices to prove that this
expectation tends to 0, which is the content of [Mar18b, Lemma 8]. The proof of this
lemma is fairly general once we have the exponential concentration of the proportion
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of leaves we obtained in the proof of Lemma 6.1: take the sets A and B in (6.6) to
be respectively BS and {−1} here. We refer to [Mar18b] for details. �

6.5. Subcritical maps

Let us end this paper with a condensation result similar to Theorem 6.3(3) and (4)
for subcritical maps, that is, when the weight sequence q is so that the law µq has
mean

mq =
∑
k> 0

kµq(k) < 1.

In order to directly use the results available in the literature, we shall only work
with maps without boundary, so %n = 1. The first convergence below, for pointed
maps, is the main result of Janson & Stefánsson [JS15].

Theorem 6.5. — Assume that q is an admissible sequence such that mq < 1.
(1) Suppose that there exists a slowly varying function L and an index β > 1

such that we have

µq(k) = k−(1+β)L(k), k > 1.

For every n > 1, let ME=n have the law PE=n. Then the convergence in
distribution(

V (ME=n) , (2n)−1/2dgr, punif
) (d)−→

n→∞

(
Tγ1/2X0 , dγ1/2X0 , pγ1/2X0

)
holds in the Gromov–Hausdorff–Prokhorov topology, whereX0 is the standard
Brownian excursion and γ = 1−mq.

(2) Under the weaker assumption that there exists a slowly varying function L
and an index β > 1 such that

µq ([k, ∞)) = k−βL(k), k > 1,

if now ME>n has the law PE>n, then the convergence in distribution(
V (ME>n) , (2n)−1/2dgr, punif

) (d)−→
n→∞

(TI1/2X0 , dI1/2X0 , pI1/2X0)

holds in the Gromov–Hausdorff–Prokhorov topology, whereX0 is the standard
Brownian excursion, and I is independently sampled from the law P(I > x) =
(1−mq

x
)β for all x > 1−mq.

Finally, the same results hold when the maps are obtained by forgetting the
distinguished vertex in the pointed versions of the laws.

Proof. — The proof goes exactly as that of Theorem 6.3 in the case α = 1. First,
the analogue of Theorem 6.2(3) is provided by Kortchemski [Kor15]: according to
Theorem 1 there, with the notation of Theorem 6.2 here, we have in the first case,

n−1 (∆(Wn),∆′(Wn)) P−→
n→∞

; (1−mq, 0) .
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This implies that n−2∑
k6∆′(Wn) k(k + 1)Jk(Wn) 6 n−1(1 + ∆′(Wn))2 converges in

probability to 0. The analogue of Theorem 6.2(4) in the second case is provided by
Kortchemski & Richier [KR20]: the convergence in distribution

n−1 (∆(Wn),∆′(Wn)) (d)−→
n→∞

(I, 0)

follows from Proposition 9 there, and again this implies that n−2∑
k6∆′(Wn) k(k+ 1)

Jk(Wn) converges in probability to 0. Theorem 1.3 allows us to conclude in the case
of pointed maps.
In order to consider non-pointed maps, we need an analogous result to Proposi-

tion 6.4, which holds as soon as the proportion of leaves in the tree coded by Wn or
W>n satisfies an exponential concentration as in (6.6). The proof is easily adapted:
we only need the analogue of Equations (6.5) and (6.4) with %n = 1 on the hitting
time of −1; the former, in the case of the tail conditioning, is given by [KR20, Equa-
tion 9] and references therein, and the latter, in the case of the local conditioning,
is given by [Kor15, Equation 14]. �

Appendix A. Proof of the spinal decomposition

In this appendix we prove Lemma 4.1 on the geometry of random forests spanned
by q > 1 random vertices. We start with the simpler case q = 1, the case q > 2 is
very similar but requires more notation.

A.1. Proof of the one-point decomposition

Let us first consider the simpler case of a single random vertex. In this case, we
have b = 0 and c = 1 so the upper bound reads simply

%n +
h∑
i=1

(ki − 1)

Vn
·P

⋂
i6h

{
(ξdn(i), χdn(i)) = (ki, ji)

} .
Proof of Lemma 4.1 for q = 1. — The proof relies on the fact that there is a one-to-

one correspondence between a plane forest with % trees and a distinguished vertex x
on the one hand, and on the other hand the triplet given by the knowledge of which of
the % trees contains x, the vector Cont(x), and the plane forest obtained by removing
all the strict ancestors of x; note that this forest contains % + ∑

06 i< |x|(kai(x) − 1)
trees. Recall that for any sequence θ = (θ`)`> 0 of nonnegative integers with finite
sum |θ|, the number of plane forests having exactly θ` vertices with ` offspring for
every ` > 0 is given by

#F(θ) = r

|θ|

(
|θ|

(θ`)`> 0

)
,

where r = ∑
`> 0(1− `)θ` is the number of roots. Fix (ki, ji)hi=1 a sequence of positive

integers such that 1 6 ji 6 ki for each i. For every ` > 1, let m` = #{1 6 i 6 h :
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ki = `} and assume that m` 6 dn(`); let also m0 = 0 and m = (m`)`> 0. By the
preceding bijection, if xn is a vertex chosen uniformly at random, then we have

P
(
Cont(xn) = (ki, ji)hi=1

)
= %n#F(dn −m)

Vn#F(dn)

=
%n

%n+
h∑
i=1

(ki−1)

Vn−h

(
Vn−h

(dn(`)−m`)`> 0

)
Vn

%n
Vn

(
Vn

(dn(`))`> 0

)

=
%n +

h∑
i=1

(ki − 1)

Vn − h
(Vn − h)!

Vn!
∏
`> 1

dn(`)!
(dn(`)−m`)!

.

Let us set

P
(
(ki, ji)i6h

)
= P

⋂
i6h

{
(ξdn(i), χdn(i)) = (ki, ji)

}
=
∏
`> 1 `

−m` (`dn(`)) (`dn(`)− 1) · · · (`dn(`)−m` + 1)
En(En − 1) · · · (En − h+ 1)

= (En − h)!
En!

∏
`> 1

`−m`
(`dn(`))!

(`dn(`)−m`)!
.

Then the probability that Cont(un) = (ki, ji)hi=1 equals P ((ki, ji)i6h) times

%n +
h∑
i=1

(ki − 1)

Vn − h
(Vn − h)!

Vn!
En!

(En − h)!

∏
`> 1

`m`
dn(`)! (`dn(`)−m`)!

(dn(`)−m`)! (`dn(`))!

 .
Observe that Vn > En + 1, so

(Vn − h)!
Vn!

En!
(En − h)! = Vn − h

Vn

h−1∏
i=0

En − i
Vn − 1− i 6

Vn − h
Vn

.

Moreover, we claim that `m` dn(`)!(`dn(`)−m`)!
(dn(`)−m`)!(`dn(`))! 6 1 for every ` > 1. Indeed, it equals 1

when ` = 1; we suppose next that ` > 2, so in particular m` 6 dn(`) 6 `dn(`)/2. It
is simple to check that for every x ∈ [0, 1/2], we have (1− x)−1 6 22x, and for every
x ∈ [0, 1], we have 1− x 6 2−x. It follows that for every ` > 2 such that dn(`) 6= 0,

`m`
dn(`)! (`dn(`)−m`)!

(dn(`)−m`)! (`dn(`))! = dn(`)!
(dn(`)−m`)!dn(`)m`

(`dn(`)−m`)! (`dn(`))m`
(`dn(`))!

=
m`−1∏
i=0

dn(`)− i
dn(`)

`dn(`)
`dn(`)− i

6
m`−1∏
i=0

exp
(

ln 2
(
− i

dn(`) + 2i
`dn(`)

))
,
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which is indeed bounded by 1 for ` > 2. We have thus shown that

P
(
Cont(un) = (ki, ji)hi=1

)
6
%n +

h∑
i=1

(ki − 1)

Vn
P ((ki, ji)i6h) ,

which corresponds to our claim in the case q = 1. �

A.2. Proof of the multi-point decomposition

We next turn to the proof in the general case; the difference is that one has to deal
with the branchpoints of the reduced forest, which, we recall, are not considered in
the vector of content.
Proof of Lemma 4.1 for q > 2. — Sample xn, 1, . . . , xn, q i.i.d. uniformly random

vertices in T %ndn and assume that none is an ancestor of another. As in the case q = 1,
there is a one-to-one correspondence between the plane forest T %ndn and xn, 1, . . . , xn, q
on the one hand, and on the other hand the plane forest obtained by removing their
strict ancestors, the vector Cont(xn, 1, . . . , xn, q), and the following data: first the
number c of trees containing at least one of the xn, i’s and the knowledge of which
ones, second for each of the b branchpoints: their total number r of children in T %ndn ,
their number d of children which are ancestors of at least one xn, j, and the relative
positions zi’s of these children.
Therefore, fix (ki, ji)hi=1, also c ∈ {1, . . . , q}, b ∈ {0, . . . , q − 1}, and for every

p ∈ {1, . . . , b}, fix r(p) > d(p) > 2 and integers 1 6 zp,1 < · · · < zp,d(p) 6 r(p), and
let us consider the following event: first Cont(xn,1, . . . , xn,q) = (ki, ji)hi=1, second,
in the forest spanned by xn, 1, . . . , xn, q, we have c trees, b branchpoints, for every
p 6 b, the p’th branchpoint in lexicographical order has r(p) children in total in the
original forest T %ndn , amongst which d(p) belong to the reduced forest, and the relative
positions of the latter are given by the zp, i’s. If we set m0 = 0 and for every ` > 1, we
let m` = #{1 6 i 6 h : ki = `} and m` = m`+∑b

p=1 1{r(p)=`}, then on this event, the
complement of the reduced forest is a forest with degree sequence (dn(`)−m`)`> 0;
note that it contains R = %n − c + q +∑b

p=1(r(p)− d(p)) +∑h
i=1(ki − 1) trees and

Vn − h− b vertices. Therefore the probability of our event is given by

(
%n
c

)
#F (dn −m)
V q
n#F(dn) =

(
%n
c

)
R

Vn−h−b

(
Vn−h−b

(dn(`)−m`)`> 0

)
V q
n
%n
Vn

(
Vn

(dn(`))`> 0

)
=

(
%n
c

)
R

%nV
q−1
n (Vn − h− b)

(Vn − h− b)!
Vn!

∏
`> 1

(dn(`))!
(dn(`)−m`)!

.

Now as previously,

(Vn − h− b)!
Vn! 6

(Vn − h− b)!
(Vn − h)!

Vn − h
Vn

(En − h)!
En! = (Vn − h− b)!

Vn (Vn − h− 1)!
(En − h)!

En! .
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Next, ∏
`> 1

(dn(`))!
(dn(`)−m`)!

=
∏
`> 1

(dn(`))!
(dn(`)−m`)!

∏
`> 1

(dn(`)−m`)!(
dn(`)−m` −

b∑
p=1

1{r(p) = `}

)
!

6
∏
`> 1

(dn(`))!
(dn(`)−m`)!

b∏
p=1

dn(r(p)).

Finally, we have seen that

P

⋂
i6h

{
(ξdn(i), χdn(i)) = (ki, ji)

} = (En − h)!
En!

∏
`>1

`−m`
(`dn(`))!

(`dn(`)−m`)!
,

which we shall denote by P ((ki, ji)i6h). We infer that(
%n
c

)
#F(dn −m)
V q
n#F(dn)

6

(
%n
c

)
R

%nV
q−1
n (Vn − h− b)

(Vn − h− b)!
Vn (Vn − h− 1)!

(En − h)!
En!

∏
`> 1

(dn(`))!
(dn(`)−m`)!

b∏
p=1

dn(r(p))

6

(
%n
c

)
R

%nV
q
n

(Vn − h− b− 1)!
(Vn − h− 1)!

∏
`> 1

`m`
(`dn(`)−m`)! (dn(`))!
(`dn(`))! (dn(`)−m`)!︸ ︷︷ ︸

6 1

b∏
p=1

dn(r(p)) · P
(
(ki, ji)i6h

)
,

where the fact that the first product is bounded by 1 was shown at the very end
of the proof of the case q = 1.
Since c > 1, b 6 q − 1, and 2 6 d(p) 6 r(p) 6 ∆n, we have

−c+ q +
b∑

p=1
(r(p)− d(p)) 6 −1 + q + b (∆n − 1) 6 (q − 1)∆n,

hence

R = %n − c+ q +
b∑

p=1
(r(p)− d(p)) +

h∑
i=1

(ki − 1) 6 %n + (q − 1)∆n +
h∑
i=1

(ki − 1) .

Moreover, from our assumption that h, q 6 Vn/4,
(Vn − h− b− 1)!

(Vn − h− 1)! 6
( 1
Vn − h− b

)b
6
( 2
Vn

)b
,

and finally, since
(
%n
c

)
6 %cn, we obtain(

%n
c

)
#F (dn −m)
V q
n#F(dn) 6 2b%cn

%n + (q − 1)∆n +∑h
i=1(ki − 1)

%nV
q+b
n

P
(
(ki, ji)i6h

)
·
b∏

p=1
dn(r(p)).

On the left is the probability that Cont(xn, 1, . . . , xn, q) = (ki, ji)hi=1 and that the
reduced forest has c trees, q leaves, and b branchpoints and that for every p 6 b, the
p’th branchpoint has r(p) children, amongst which d(p) > 2 belong to the reduced
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forest, with relative positions given by 1 6 zp, 1 < · · · < zp, d(p) 6 r(p). We now want
to sum over all possible z’s, all vectors d’s and r’s; note that the quantities on the
right before the product sign do not depend on them so we only focus on the term∏b
p=1 dn(r(p)). First note that the sum of this product over all the possible z’s is

bounded by
b∏

p=1

(
r(p)
d(p)

)
dn(r(p)) 6

b∏
p=1

∆d(p)−2
n r(p)(r(p)− 1)dn(r(p))

6 ∆q−c−b
n

b∏
p=1

r(p)(r(p)− 1)dn(r(p)),

where for the last inequality, we note that, since the d(p)’s are the number of children
of the branchpoints in the reduced forest, which contains c trees and q leaves, then
we have q = c+∑b

p=1(d(p)− 1) = c+ b+∑b
p=1(d(p)− 2). Note also the very crude

bound: there are less than bq 6 q2 such vectors (d(1), . . . , d(b)). We finally want to
sum the last bound times q2 over all the vectors (r(1), . . . , r(b)); we have

∑
r(1), ..., r(b)6∆n

b∏
p=1

r(p) (r(p)− 1) dn(r(p)) =
 ∑
r6∆n

r(r − 1)dn(r)
b = σ2b

n .

Since ∆n > 2, then ∆2
n 6 2∆n(∆n − 1) 6 2σ2

n, so finally, since q − c − b 6 0, then
2(q−c−b)/2 6 1 and so

∑
r(1), ..., r(b)6∆n

q2
b∏

p=1

(
r(p)
d(p)

)
dn(r(p)) 6 q2∆q−c−b

n σ2b
n 6 q2σq−c+bn .

We conclude that the probability that Cont(xn, 1, . . . , xn, q) = (ki, ji)hi=1 and the
reduced forest has q leaves, c trees, and b branchpoints is bounded by

2b%cn
%n + (q − 1)∆n +

h∑
i=1

(ki − 1)

%nV
q+b
n

P
(
(ki, ji)i6h

)
q2σq−c+bn

= q22b
(
σn
Vn

)q+b (%n
σn

)c−1 %n + (q − 1)∆n +∑h
i=1 (ki − 1)

σn
P
(
(ki, ji)i6h

)
,

and the proof is complete since b 6 q − 1. �
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