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Abstract

We study the asymptotic behavior of uniform random maps
with a prescribed face-degree sequence, in the bipartite case,
as the number of faces tends to infinity. Under mild assump-
tions, we show that, properly rescaled, such maps converge
in distribution toward the Brownian map in the Gromov–
Hausdorff sense. This result encompasses a previous one of
Le Gall for uniform random q-angulations where q is an
even integer. It applies also to random maps sampled from
a Boltzmann distribution, under a second moment assump-
tion only, conditioned to be large in either of the sense of
the number of edges, vertices, or faces. The proof relies
on the convergence of so-called “discrete snakes” obtained
by adding spatial positions to the nodes of uniform random
plane trees with a prescribed child sequence recently stud-
ied by Broutin and Marckert. This paper can alternatively be
seen as a contribution to the study of the geometry of such
trees.
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1 INTRODUCTION

1.1 Random planar maps as metric spaces
The study of scaling limits of large random maps, viewed as metric spaces, toward a universal object
called the Brownian map has seen numerous developments over the last decade. This paper is another

Random Struct Alg. 2018;00:1–56. wileyonlinelibrary.com/journal/rsa © 2018 Wiley Periodicals, Inc. 1

2 MARZOUK

step toward this universality as we show that the Brownian map appears as limit of maps with a
prescribed face-degree sequence. This particular model is introduced in the next subsection, let us the
first discuss the general idea of such studies and recall some previous results.

Recall that a (planar) map is an embedding of a finite connected graph into the two-dimensional
sphere, viewed up to orientation-preserving homeomorphisms. For technical reasons, the maps we
consider will always be rooted, which means that an oriented edge is distinguished. Maps have been
widely studied in combinatorics and random maps are of interest in theoretical physics, for which they
are a natural discretized version of random geometry, in particular in the theory of quantum gravity
(see eg [7]). One can view a map as a (finite) metric space by endowing the set of vertices with the
graph distance: the distance between two vertices is the minimal number of edges of a path going from
one to the other; throughout this paper, if M is a map, we shall denote the associated metric space, with
a slight abuse of notation, by (M, dgr). The set of all compact metric spaces, considered up to isometry,
can be equipped with a metric, called the Gromov–Hausdorff distance, which makes it separable and
complete [14,16]; we can then study the convergence in distribution of random maps viewed as metric
spaces.

The first and fundamental result in this direction has been obtained simultaneously by Le Gall [27]
and Miermont [40] using different approaches. We call faces of a map the connected components of
the complement of the edges; the degree of a face is then the number of edges incident to it, with
the convention that if both sides of an edge are incident to the same face, then it is counted twice. A
quadrangulation is a map in which all faces have degree 4. In [27] and [40], it is shown that if Qn is a
uniform random rooted quadrangulation with n faces, then the convergence in distribution

(
Qn,

(
9

8n

)1/4

dgr

)
(d)−→

n→∞
(M , D),

holds in the sense of Gromov–Hausdorff, where the limit (M , D), called the Brownian map, is a
random compact metric space, which is almost surely homeomorphic to the 2-sphere (Le Gall and
Paulin [30], Miermont [39]) and has Hausdorff dimension 4 (Le Gall [26]). Let us mention that the
Brownian map first appeared in the work of Marckert and Mokkadem [35] as a limit of rescaled
quadrangulations for a distance different than the Gromov–Hausdorff distance.

Le Gall [27] designs also a general method to prove such a limit theorem for other classes of random
maps, using the above convergence of quadrangulations. Indeed, the main result in [27] is stated for q-
angulations (which are maps in which each face has degree q) with n faces, for any q ∈ {3, 4, 6, 8, . . . }
fixed. The limit is always the Brownian map as well as the scaling factor n−1/4, only the multiplicative
constant (9/8)1/4 above depends on q (see the precise statement below). Note that apart from the case
q = 3 of triangulations, [27] only deals with maps with even face-degrees, which corresponds in the
planar case to bipartite maps. The non-bipartite case is technically more involved and we henceforth
restrict ourselves to bipartite maps as well. In this paper, we consider a large class of maps which
enables us to recover and extend previous results, but we stress that it does not recover the one above
on quadrangulations; as a matter of fact, as in [27], we use the latter in our proof.

1.2 Main result and notation
We generalize q-angulations by considering maps with possibly faces of different degrees. For every
integer n ≥ 2, we are given a sequence n = (ni; i ≥ 1) of non-negative integers satisfying

∑
i≥1

ni = n,
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and we denote by M(n) the finite1 set of rooted planar maps with ni faces of degree 2i for every i ≥ 1.
Let us introduce the notation that we shall use throughout this paper. Set

Nn =
�
i≥1

ini and n0 = 1 + Nn − n. (1)

It is easy to see that every map in M(n) contains n faces and Nn edges so, according to Euler’s formula,
it has 2 + Nn − n = n0 + 1 vertices (this shift by one will simplify some statements later). We next
define a probability measure and its variance by

pn(i) = ni

Nn + 1
for i ≥ 0 and σ2

n =
�
i≥1

i2pn(i) −
�

Nn

Nn + 1

�2

.

The probability pn is (up to the fact that there are n0 + 1 vertices) the empirical half face-degree
distribution of a map in M(n) if one sees the vertices as faces of degree 0. Last, let us denote by

Δn = max{i ≥ 0 : ni > 0}

the right edge of the support of pn.
Our main assumption is the following: there exists a probability measure p = (p(i); i ≥ 0) with

mean 1 and variance σ2
p = �

i≥1 i2p(i) − 1 ∈ (0, ∞) such that, as |n| = n → ∞,

pn ⇒ p, σ2
n → σ2

p and n−1/2Δn → 0, (H)

where “⇒” denotes the weak convergence of probability measures, which is here equivalent to pn(i) →
p(i) for every i ≥ 0.

Theorem 1 Under (H), if Mn is sampled uniformly at random in M(n) for every n ≥ 2,
then the following convergence in distribution holds in the sense of Gromov–Hausdorff:

⎛
⎝Mn,

�
9
4

1 − p(0)

σ2
p

1
n

�1/4

dgr

⎞
⎠ (d)−→

n→∞
(M , D).

Since the graph distance is defined in terms of edges, it would be natural to make the rescaling
depend on Nn rather than n. Under (H), we have n/Nn → 1 − p(0) as n → ∞ so the previous
convergence is equivalent to

⎛
⎝Mn,

�
9

4σ2
p

1
Nn

�1/4

dgr

⎞
⎠ (d)−→

n→∞
(M , D).

This result recovers the aforementioned one of Le Gall [27] for 2κ-angulations for κ ≥ 2. Indeed,
these correspond to M(n) where ni = n if i = κ and ni = 0 otherwise. In this case Nn = nκ and (H) is
fulfilled with

p(κ) = 1 − p(0) = κ−1 and so σ2
p = κ − 1.

Theorem 1 therefore immediately yields:

1Its cardinal was first calculated by Tutte [41] who considered the dual maps, that is, Eulerian maps with a prescribed vertex-
degree sequence.
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Corollary 1 (Le Gall [27]) Fix κ ≥ 2 and for every n ≥ 2, let M(κ)
n be a uniform

random 2κ-angulation with n faces. The following convergence in distribution holds in
the sense of Gromov–Hausdorff:

(
M(κ)

n ,
(

9
4κ(κ − 1)

1
n

)1/4

dgr

)
(d)−→

n→∞
(M , D).

1.3 Boltzmann random maps
Theorem 1 also applies to random maps sampled from a Boltzmann distribution. Given a sequence
q = (qk; k ≥ 1) of non-negative real numbers, we define a measure Wq on the set M of rooted bipartite
maps by the formula

W q(M) =
∏

f ∈Faces(M)

qdeg(f )/2, M ∈ M,

where Faces(M) is the set of faces of M and deg(f ) is the degree of such a face f . Set Zq = Wq(M);
whenever it is finite, the formula

Pq(·) = 1
Zq

Wq(·)

defines a probability measure on M. We consider next such random maps conditioned to have a large
size for several notions of size. For every integer n ≥ 1, let ME=n, MV=n and MF=n be the subsets of
M of those maps with respectively n edges, n vertices and n faces. For every S = {E, V , F} and every
n ≥ 1, we define

Pq
S=n(M) = Pq(M | M ∈ MS=n), M ∈ MS=n,

the law of a Boltzmann map conditioned to have size n; here and later, we shall always, if necessary,
implicitly restrict ourselves to those values of n for which Wq(MS=n) �= 0, and limits shall be understood
along this subsequence.

Under mild integrability conditions on q, we prove in Section 7 that for every S ∈ {E, V , F}, there
exists a constant Kq

S > 0 such that if Mn is sampled from Pq
S=n for every n ≥ 1, then the convergence

in distribution
(

Mn,
(

Kq
S

n

)1/4

dgr

)
(d)−→

n→∞
(M , D),

holds in the sense of Gromov–Hausdorff. We refer to Theorem 3 for a precise statement. Observe that
for any choice S ∈ {E, V , F}, if Mn is sampled from Pq

S=n then, conditional on its degree sequence, say,
νMn = (νMn(i); i ≥ 1), it has the uniform distribution in M(νMn). The proof of the above convergence
consists in showing that νMn satisfies (H) in probability for some deterministic limit law pq. Indeed,
by Skorohod’s representation Theorem, there exists then a probability space where versions of νMn

under Pq
S=n satisfy (H) almost surely so we may apply Theorem 1 and conclude the convergence in

law of the rescaled maps.
The case S = V was obtained by Le Gall [27, Theorem 9.1], relying on results of Marckert and

Miermont [33], when q is regular critical, meaning that the distribution pq (which is roughly that of
the half-degree of a typical face when we see vertices as faces of degree 0) admits small exponential
moments. Here, we generalize this result (and consider other conditionings) to all generic critical
sequences q, that is, those for which pq admits a second moment.
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Let us mention that Le Gall and Miermont [29] have also considered Boltzmann random maps
with n vertices in which the distribution of the degree of a typical face is in the domain of attraction of
a stable distribution with index α ∈ (1, 2) and obtained different objects at the limit (after extraction
of a subsequence). Also, Janson and Stefánsson [21] have studied maps with n edges which exhibit
a condensation phenomenon and converge, after rescaling, toward the Brownian tree: a unique giant
face emerges and its boundary collapses into a tree.

The conditioning S = E by the number of edges is somewhat different since the set ME=n is finite2

so the distribution Pq
E=n(·) = Wq(·)/Wq(ME=n) on ME=n makes sense even if Wq(M) is infinite; we

shall see that the above convergence still holds in this case (Theorem 4). The simplest example is the
constant sequence qk = 1 for every k ≥ 1, in which case Pq

E=n corresponds to the uniform distribution
in ME=n; in this case, we calculate Kq

E = 1/2, which recovers a result first due to Abraham [1]:

Corollary 2 (Abraham [1]) For every n ≥ 1, let Bn be a uniform random bipartite map
with n edges. The following convergence in distribution holds in the sense of Gromov–
Hausdorff:

(
Bn,

(
1

2n

)1/4

dgr

)
(d)−→

n→∞
(M , D).

1.4 Approach and organization of the paper
Our approach to proving Theorem 1 follows closely the robust one of Le Gall [27]. Specifically, we
code our map Mn by a certain labeled (or spatial) two-type tree (Tn, �n) via a bijection due to Bouttier,
Di Francesco and Guitter [12]: Tn is a plane tree and �n is a function which associates with each vertex
of Tn a label (or a spatial position) in Z. Such a labeled tree is itself encoded by a pair of discrete paths
(C◦

n , L◦
n); we show that under (H), this pair, suitably rescaled, converges in distribution toward a pair

(e, Z) called in the literature the “head of the Brownian snake” (eg, [20,32,34]). The construction of the
Brownian map from (e, Z) is analogous to the Bouttier–Di Francesco–Guitter bijection; as it was shown
by Le Gall [27], Theorem 1 follows from this functional limit theorem as well as a certain“invariance
under re-rooting” of our maps.

To prove such an invariance principle for (Tn, �n), we further rely on a more recent bijection due to
Janson and Stefánsson [21] which maps two-type trees to one-type trees which are easier to control. As
a matter of fact, if Mn is uniformly distributed in M(n) and (Tn, ln) is its corresponding labeled one-
type tree, then the unlabeled tree Tn is a uniform random tree with a prescribed degree (in the sense of
offspring) sequence as studied by Broutin and Marckert [13]. The labeled tree (Tn, ln) is again encoded
by a pair of functions (Hn, Ln) and the main result of [13] is, under the very same assumption (H),
the convergence of Hn suitably rescaled toward e. Our main contribution, see Theorem 2, consists in
strengthening this result by adding the labels to show that the pair (Hn, Ln), suitably rescaled, converges
toward (e, Z), and then transporting this invariance principle back to the two-type tree (Tn, �n).

The previous works on the convergence of large random labeled trees focus on the case when the tree
is a size-conditioned (one or multi-type) Galton–Watson tree and a lot of effort has been put to reduce
the assumptions of the labels as much as possible, maintaining quite strong assumption on the tree
itself; a common assumption is indeed to consider a Galton–Watson tree whose offspring distribution
admits small exponential moments; in order to reduce the assumption on the labels, Marckert [32] even
supposes the offsprings to be uniformly bounded. In this paper, we take the opposite direction: we focus
only on the labels given by the bijection with planar maps, which satisfy rather strong assumptions,

2See Walsh [42, Equation 7] for an expression of its cardinal.
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and work under weak assumptions on the tree (essentially a second moment condition). Furthermore,
we consider trees with a prescribed degree sequence, which are more general than Galton–Watson
trees and on which the literature is limited, which explains the length of this work.

Let us mention that other convergences toward the Brownian map similar to Theorem 1 have
been obtained using also other bijections with labeled trees: Beltran and Le Gall [8] studied random
quadrangulations without vertices of degree one, Addario-Berry and Albenque [3] considered ran-
dom triangulations and quadrangulations without loops or multiple edges and Bettinelli, Jacob, and
Miermont [10] uniform random maps with n edges.

This work leaves open two questions that we plan to investigate in the future. First, one can
consider non-bipartite maps with a prescribed degree sequence; we restricted ourselves here to bipartite
maps because (except in the notable case of triangulations), in the non-bipartite case, the Bouttier–
Di Francesco–Guitter bijection yields a more complicated labeled three-type tree which is harder to
analyze; moreover, the Janson–Stefánsson bijection does not apply to such trees so the method of
proof should be different. A second direction of future work would be to relax the assumption (H),
in particular to consider maps with large faces. A first step would be to extend the work of Broutin
and Marckert [13] on plane trees; we believe that the family of so-called inhomogeneous continuum
random trees introduced in [6, 15] appears at the limit; one would then construct a family of random
maps from these trees, replacing the Brownian excursion e by their “exploration process” studied in [5].

This paper is organized as follows. In Section 2, we first introduce the notion of labeled one-type and
two-type trees and their encoding by functions, then we describe the Bouttier–Di Francesco–Guitter
and Janson–Stefánsson bijections. In Section 3, we define the pair (e, Z) and the Brownian map and
we state our main results on the convergence of discrete paths. Section 4 is a technical section in which
we extend a “backbone decomposition” of Broutin and Marckert [13], the results are stated there and
proved in Appendix A. We prove the convergence of the pairs (C◦

n , L◦
n) and (Hn, Ln), which encode

the labeled trees (Tn, �n) and (Tn, ln) respectively, in Section 5. Then we prove Theorem 1 in section
6. Finally, we apply our results to Boltzmann random maps in Section 7.

2 MAPS AND TREES

2.1 Plane trees and their encoding with paths
Let N = {1, 2, . . . } be the set of all positive integers, set N0 = {∅} and consider the set of words

U =
⋃
n≥0

Nn.

For every u = (u1, . . . , un) ∈ U, we denote by |u| = n the length of u; if n ≥ 1, we define its prefix
pr(u) = (u1, . . . , un−1) and for v = (v1, . . . , vm) ∈ U, we let uv = (u1, . . . , un, v1, . . . , vm) ∈ U be the
concatenation of u and v. We endow U with the lexicographical order: given u, v ∈ U, let w ∈ U be
their longest common prefix, that is u = w(u1, . . . , un), v = w(v1, . . . , vm) and u1 �= v1, then u < v if
u1 < v1.

A plane tree is a non-empty, finite subset τ ⊂ U such that:

(i) ∅ ∈ τ;
(ii) if u ∈ τ with |u| ≥ 1, then pr(u) ∈ τ;
(iii) if u ∈ τ, then there exists an integer ku ≥ 0 such that ui ∈ τ if and only if 1 ≤ i ≤ ku.

We shall denote the set of plane trees by T. We will view each vertex u of a tree τ as an individual
of a population for which τ is the genealogical tree. The vertex ∅ is called the root of the tree and for
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We shall denote the set of plane trees by T. We will view each vertex u of a tree τ as an individual
of a population for which τ is the genealogical tree. The vertex ∅ is called the root of the tree and for
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every u ∈ τ, ku is the number of children of u (if ku = 0, then u is called a leaf, otherwise, u is called
an internal vertex) and u1, . . . , uku are these children from left to right, |u| is its generation, pr(u) is
its parent and more generally, the vertices u, pr(u), pr ◦ pr(u), . . . , pr|u|(u) = ∅ are its ancestors; the
longest common prefix of two elements is their last common ancestor. We shall denote by �u, v� the
unique non-crossing path between u and v.

Fix a tree τ with N edges and let ∅ = u0 < u1 < · · · < uN be its vertices, listed in lexicographical
order. We describe three discrete paths which each encodeτ. First, its Łukasiewicz path W = (W(j); 0 ≤
j ≤ N + 1) is defined by W(0) = 0 and for every 0 ≤ j ≤ N ,

W(j + 1) = W(j) + kuj − 1.

One easily checks that W(j) ≥ 0 for every 0 ≤ j ≤ N but W(N + 1) = −1. Next, we define the height
process H = (H(j); 0 ≤ j ≤ N) by setting for every 0 ≤ j ≤ N ,

H(j) = |uj|.

Finally, define the contour sequence (c0, c1, . . . , c2N) of τ as follows: c0 = ∅ and for each i ∈
{0, . . . , 2N − 1}, ci+1 is either the first child of ci which does not appear in the sequence (c0, . . . , ci), or
the parent of ci if all its children already appear in this sequence. The lexicographical order on the tree
corresponds to the depth-first search order, whereas the contour order corresponds to “moving around
the tree in clockwise order”. The contour process C = (C(j); 0 ≤ j ≤ 2N) is defined by setting for
every 0 ≤ j ≤ 2N ,

C(j) = |cj|.
Without further notice, throughout this work, every discrete path shall also be viewed as a

continuous function after interpolating linearly between integer times.

2.2 Labeled plane trees and label processes
2.2.1 Two-type trees

We will use the expression “two-type tree” for a plane tree in which we distinguish vertices at even and
odd generation; call the former white and the latter black, we denote by ◦(T ) and •(T ) the sets of white
and black vertices of a two-type tree T . We denote by T◦,• the set of two-type trees. Let N be the number
of edges of such a tree T , denote by (c0, . . . , c2N) its contour sequence and C = (C(k); 0 ≤ k ≤ 2N) its
contour process; for every 0 ≤ k ≤ N , set c◦

k = c2k , the sequence (c◦
0, . . . , c◦

N) is called the white contour
sequence of T and we define its white contour process C◦ = (C◦(k); 0 ≤ k ≤ N) by C◦(k) = |c◦

k |/2 for
every 0 ≤ k ≤ N . One easily sees that supt∈[0,1] |C(2Nt) − 2C◦(Nt)| = 1 so C◦ encodes the geometry
of the tree up to a small error.

A labeling � of a two-type tree T is a function defined on the set ◦(T ) of its white vertices to Z
such that

• the root of T is labeled 0,
• for every black vertex, the increments of the labels of its white neighbors in clockwise

order are greater than or equal to −1.

We define the white label process L◦ = (L◦(k); 0 ≤ k ≤ N) of T by L◦(k) = �(c◦
k) for every

0 ≤ k ≤ N . The labeled tree (T , �) is, up to a small error, encoded by the pair (C◦, L◦), see Figure 1.
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0 ≤ k ≤ N . The labeled tree (T , �) is, up to a small error, encoded by the pair (C◦, L◦), see Figure 1.

8 MARZOUK

FIGURE 1 A two-type labeled tree, its white contour process on top and its white label process below

2.2.2 One-type trees

As opposed to two-type trees, plane trees in which vertices at even and odd generation play the same
role will be called “one-type trees” and not just “trees” to emphasize the difference. Recall that the
geometry of a one-type tree T is encoded by its height process H . A labeling l of such a tree is a
function defined on the set of vertices to Z such that

• the root of T is labeled 0,
• for every internal vertex, its right-most child carries the same label as itself,
• for every internal vertex, the label increment between itself and its first child is greater

than or equal to −1, and so are the increments between every two consecutive children
from left to right.

Define the label process L(k) = l(uk), where (u0, . . . , uN) is the sequence of vertices of T in
lexicographical order; the labeled tree is (exactly) encoded by the pair (H , L), see Figure 2.

2.2.3 Notational remark

We use roman letters T , l, H , L for one-type trees and calligraphic letters T , �, C, L for two-type trees.
We stress also that we consider the contour order for two-type trees and the lexicographical order for
one-type trees.

FIGURE 2 A one-type labeled tree, its height process on top and its label process below
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FIGURE 3 The Bouttier–Di Francesco–Guitter bijection

2.3 The Bouttier–Di Francesco–Guitter bijection
A map is said to be pointed if a vertex is distinguished. Given a sequence n of non-negative integers,
we denote by M�(n) the set of rooted and pointed planar maps with ni faces with degree 2i for every
i ≥ 1. Let T◦,•(n) denote the set of two-type trees with ni black vertices with degree i for every i ≥ 1;
note that such a tree has n0 white vertices and Nn edges, which are both defined in (1). Let further
LT◦,•(n) be the set of such labeled two-type trees.

Bouttier, Di Francesco, and Guitter [12] show that M�(n) and {−1, +1}×LT◦,•(n) are in bijection,
we shall refer to it as the BDG bijection. Let us only recall how a map is constructed from a labeled
two-type tree (T , �), as depicted by Figure 3. Let N be the number of edges of T , we write (c◦

0, . . . , c◦
N)

for its white contour sequence and we adopt the convention that c◦
N+i = c◦

i for every 0 ≤ i ≤ N . A
white corner is a sector around a white vertex delimited by two consecutive edges; there are N white
corners, corresponding to the vertices c◦

0, . . . , c◦
N−1; for every 0 ≤ i ≤ 2N we denote by ei the corner

corresponding to c◦
i . We add an extra vertex � outside the tree T and construct a map on the vertex-set

of T and � by drawing edges as follows: for every 0 ≤ i ≤ N − 1,

• if �(c◦
i ) > min0≤k≤N−1 �(c◦

k), then we draw an edge between ei and ej where j =
min{k > i : �(c◦

k) = �(c◦
i ) − 1},

• if �(c◦
i ) = min0≤k≤N−1 �(c◦

k), then we draw an edge between ei and �.

It is shown in [12] that this procedure indeed produces a planar map M, pointed at �, and rooted at the
first edge that we drew, for i = 0, oriented according to an external choice ε ∈ {−1, +1} and, further,
that this operation is invertible. Observe that M has N edges, as many as T , and that the faces of
M correspond to the black vertices of T ; one can check that the degree of a face is twice that of the
corresponding black vertex, we conclude that the above procedure indeed realizes a bijection between
M�(n) and {−1, +1} × LT◦,•(n). One may be concerned with the fact that the vertices of M different
from � are labeled, which seems at first sight to be an extra information; shift these labels by adding to
each the quantity 1−minc◦∈◦(T ) �(c◦) and label 0 the vertex �, then the label of each vertex corresponds
to its graph distance in M to the origin �.

2.4 The Janson–Stefánsson bijection
Let T(n) denote the set of one-type trees possessing ni vertices with i children for every i ≥ 0; note that
such a tree has Nn edges and that pn defined in Section 1.2 is its empirical offspring distribution. Uniform
random trees in T(n) have been studied by Addario-Berry [2] who obtained uniform sub-Gaussian tail
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FIGURE 4 The Janson–Stefánsson bijection from two-type trees to one-type trees

bounds for their height and width and Broutin and Marckert [13] who showed that, properly rescaled,
under our assumption (H), they converge in distribution in the sense of Gromov–Hausdorff, toward
the celebrated Brownian tree, see (4) below.

Janson and Stefánsson [21] show that T(n) and T◦,•(n) are in bijection, we shall refer to it as the
JS bijection. In this bijection, the white vertices of the tree in T◦,•(n) are mapped onto the leaves of the
tree in T(n) and the black vertices in the former, with degree k ≥ 1, are mapped onto (internal) vertices
of the latter with k children. Let us recall the construction of this bijection in the two directions.

Let us start with a two-type tree T ; we construct a one-type tree T with the same vertex-set as
follows. First, if T = {∅} is a singleton, then set T = {∅}; otherwise, for every white vertex u ∈ ◦(T ),
do the following:

• if u is a leaf of T , then draw an edge between u and pr(u);
• if u is an internal vertex, with ku ≥ 1 children, then draw edges between any two

consecutive black children u1 and u2, u2 and u3, …, u(ku − 1) and uku, draw also an
edge between u and uku;

• if furthermore u �= ∅, then draw an edge between its first child u1 and its parent pr(u)

in the first corner at the left of the edge between u and pr(u).

We root the new tree T at the first child of the root of T . See Figure 4 for an illustration.
Conversely, given a one-type tree T , we construct a two-type tree T as follows. Again, set T = {∅}

whenever T = {∅}; otherwise, for every leaf u of T , denote by u� its last ancestor whose last child is
not an ancestor of u; formally set

u� = sup
{
w ∈ �∅, u�: wkw /∈�∅, u�} .

The set on the right may be empty, in which case u� = ∅ by convention. Then draw an edge between u
and every vertex v ∈ �u�, u�, in the first corner at the right of the edge between v and its only child which
belongs to �u�, u�. This yields a tree that we root at the last leaf of T . See Figure 5 for an illustration.
One can check that the two procedures are the inverse of one another.

Let further LT(n) be the set of labeled one-type trees possessing ni vertices with i children for
every i ≥ 0, the JS bijection extends to a bijection between LT(n) and LT◦,•(n) if every black vertex
of a two-type tree is given the label of its white parent. Let us explain how this bijection translates in
terms of the processes encoding the labeled trees (one may look at Figures 1 and 2 for an illustration).
Fix (T , �) a two-type labeled tree and denote by C◦ its white contour process and L◦ its white label
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corresponding black vertex, we conclude that the above procedure indeed realizes a bijection between
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bounds for their height and width and Broutin and Marckert [13] who showed that, properly rescaled,
under our assumption (H), they converge in distribution in the sense of Gromov–Hausdorff, toward
the celebrated Brownian tree, see (4) below.

Janson and Stefánsson [21] show that T(n) and T◦,•(n) are in bijection, we shall refer to it as the
JS bijection. In this bijection, the white vertices of the tree in T◦,•(n) are mapped onto the leaves of the
tree in T(n) and the black vertices in the former, with degree k ≥ 1, are mapped onto (internal) vertices
of the latter with k children. Let us recall the construction of this bijection in the two directions.

Let us start with a two-type tree T ; we construct a one-type tree T with the same vertex-set as
follows. First, if T = {∅} is a singleton, then set T = {∅}; otherwise, for every white vertex u ∈ ◦(T ),
do the following:

• if u is a leaf of T , then draw an edge between u and pr(u);
• if u is an internal vertex, with ku ≥ 1 children, then draw edges between any two

consecutive black children u1 and u2, u2 and u3, …, u(ku − 1) and uku, draw also an
edge between u and uku;

• if furthermore u �= ∅, then draw an edge between its first child u1 and its parent pr(u)

in the first corner at the left of the edge between u and pr(u).

We root the new tree T at the first child of the root of T . See Figure 4 for an illustration.
Conversely, given a one-type tree T , we construct a two-type tree T as follows. Again, set T = {∅}

whenever T = {∅}; otherwise, for every leaf u of T , denote by u� its last ancestor whose last child is
not an ancestor of u; formally set

u� = sup
{
w ∈ �∅, u�: wkw /∈�∅, u�} .

The set on the right may be empty, in which case u� = ∅ by convention. Then draw an edge between u
and every vertex v ∈ �u�, u�, in the first corner at the right of the edge between v and its only child which
belongs to �u�, u�. This yields a tree that we root at the last leaf of T . See Figure 5 for an illustration.
One can check that the two procedures are the inverse of one another.

Let further LT(n) be the set of labeled one-type trees possessing ni vertices with i children for
every i ≥ 0, the JS bijection extends to a bijection between LT(n) and LT◦,•(n) if every black vertex
of a two-type tree is given the label of its white parent. Let us explain how this bijection translates in
terms of the processes encoding the labeled trees (one may look at Figures 1 and 2 for an illustration).
Fix (T , �) a two-type labeled tree and denote by C◦ its white contour process and L◦ its white label
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FIGURE 5 The Janson–Stefánsson bijection from one-type trees to two-type trees

process (in contour order). Fix also (T , l) a one-type labeled tree and denote by H its height process
and L its label process (in lexicographical order). Finally, introduce a modified version of the height
process: let N be the number of edges of T and (u0, . . . , uN) be its vertices listed in lexicographical
order; for each integer j ∈ {0, . . . , N}, we let H̃(j) denote the number of strict ancestors of uj whose
last child is not an ancestor of uj, that is,

H̃(j) = #
{
w ∈ �∅, uj�: wkw /∈�∅, uj�

}
.

Lemma 1 If (T , l) and (T , �) are related by the JS bijection, then

L◦ = L and C◦ = H̃ .

Proof Let us first prove the equality of the label processes. We use the observation from
[23] that the lexicographical order on the vertices of T corresponds to the contour order
on the black corners of T which, by a shift, corresponds to the contour order on the white
corners of T . Specifically, let N be the number of edges of both trees, fix j ∈ {0, . . . , N}
and consider the j-th white corner of T : it is a sector around a white vertex delimited by
two consecutive edges, whose other extremity is therefore black; consider the previous
black corner in contour order, in the construction of the JS bijection, an edge of T starts
from this corner and we claim that the other extremity of this edge is uj the j-th vertex of
T in lexicographical order. We refer to the proof of Proposition 2.1 and Figure 4 in [23].

It follows that if c◦
j ∈ ◦(T ) is the white vertex of T visited at the j-th step in the white

contour sequence, then the image of uj by the JS bijection is

• either c◦
j : this is the case when c◦

j is a leaf or when the white corner is the one between
the last child of c◦

j and its parent;
• or a child of c◦

j : precisely, its first child if the white corner is the one between the parent
of c◦

j and its first child, and its k-th child if the corner is the one between the k − 1st
and k-th children of c◦

j .

Since a black vertex inherits the label of its white parent, we conclude that in both cases
we have L(j) = l(uj) = �(c◦

j ) = L◦(j).
Next, for every u ∈ T , set

H̃(u) = #
{
w ∈ �∅, u�: wkw /∈�∅, u�} ;
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if H̃(u) �= 0, recall the definition

u� = sup
{
w ∈ �∅, u�: wkw /∈�∅, u�} .

Fix v ∈ ◦(T ) a white vertex of T and w ∈ •(T ) one of its children, if it has any. Denote by
JS(v), JS(w) ∈ T their image by the JS bijection, we argue that H̃(JS(v)) and H̃(JS(w))

are both equal to half the generation of v in T . Denote by u = JS(v); from the construction
of the JS bijection, if v is different from the root of T , then its parent in T is mapped onto
u� and its children onto �u�, u�, thus

H̃(JS(w)) = H̃(JS(v)) = H̃(u) = H̃(u�) + 1 = H̃(JS(pr(v))) + 1.

If v is the root of T , then u is the right-most leaf of T and v and its children are mapped
onto the vertices of T for which H̃ = 0. We conclude after an induction on the generation
of v that indeed, H̃(JS(w)) and H̃(JS(v)) are equal, and their common value is given by
half the generation of v in T .

Recall the notation c◦
j ∈ ◦(T ) for the white vertex of T visited at the j-th step in the

white contour sequence and uj for the j-th vertex of T in lexicographical order. Since the
image of uj by the JS bijection is either c◦

j or one of its children (if it has any), we conclude
in both cases that H̃(uj) is half the generation of c◦

j in T , that is, H̃(j) = C◦(j).

Recall the well-known identity between the height process H and the Łukasiewicz path W of a
one-type tree (see, eg, Le Gall and Le Jan [28]):

H(j) = #
{

i ∈ {0, . . . , j − 1} : W(i) ≤ inf
[i+1,j]

W
}

for each 0 ≤ j ≤ N . (2)

Indeed, for i < j, we have W(i) ≤ inf [i+1,j] W if and only if ui is an ancestor of uj; moreover, the
inequality is an equality if and only if the last child of ui is also an ancestor of uj. A consequence of
Lemma 1 is therefore the identity

C◦(j) = #
{

i ∈ {0, . . . , i − 1} : W(i) < inf
[i+1,j]

W
}

for each 0 ≤ j ≤ N . (3)

The latter was already observed by Abraham [1, Equation 5] without the formalism of the JS bijection,
where W (which corresponds to Y − 1 there) was defined directly from the two-type tree.

3 THE BROWNIAN MAP

3.1 The Brownian snake and the Brownian map
Denote by e = (et; t ∈ [0, 1]) the standard Brownian excursion. For every s, t ∈ [0, 1], set

me(s, t) = min
r∈[s∧t,s∨t]

er and de(s, t) = es + et − 2me(s, t).

One easily checks that de is a random pseudo-metric on [0, 1], we then define an equivalence relation
on [0, 1] by setting s ∼e t whenever de(s, t) = 0. Consider the quotient space Te = [0, 1]/ ∼e, we let
πe be the canonical projection [0, 1] → Te; de induces a metric on Te that we still denote by de. The
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process (in contour order). Fix also (T , l) a one-type labeled tree and denote by H its height process
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process: let N be the number of edges of T and (u0, . . . , uN) be its vertices listed in lexicographical
order; for each integer j ∈ {0, . . . , N}, we let H̃(j) denote the number of strict ancestors of uj whose
last child is not an ancestor of uj, that is,
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}
.

Lemma 1 If (T , l) and (T , �) are related by the JS bijection, then

L◦ = L and C◦ = H̃ .

Proof Let us first prove the equality of the label processes. We use the observation from
[23] that the lexicographical order on the vertices of T corresponds to the contour order
on the black corners of T which, by a shift, corresponds to the contour order on the white
corners of T . Specifically, let N be the number of edges of both trees, fix j ∈ {0, . . . , N}
and consider the j-th white corner of T : it is a sector around a white vertex delimited by
two consecutive edges, whose other extremity is therefore black; consider the previous
black corner in contour order, in the construction of the JS bijection, an edge of T starts
from this corner and we claim that the other extremity of this edge is uj the j-th vertex of
T in lexicographical order. We refer to the proof of Proposition 2.1 and Figure 4 in [23].

It follows that if c◦
j ∈ ◦(T ) is the white vertex of T visited at the j-th step in the white

contour sequence, then the image of uj by the JS bijection is

• either c◦
j : this is the case when c◦

j is a leaf or when the white corner is the one between
the last child of c◦

j and its parent;
• or a child of c◦

j : precisely, its first child if the white corner is the one between the parent
of c◦

j and its first child, and its k-th child if the corner is the one between the k − 1st
and k-th children of c◦

j .

Since a black vertex inherits the label of its white parent, we conclude that in both cases
we have L(j) = l(uj) = �(c◦

j ) = L◦(j).
Next, for every u ∈ T , set

H̃(u) = #
{
w ∈ �∅, u�: wkw /∈�∅, u�} ;
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if H̃(u) �= 0, recall the definition

u� = sup
{
w ∈ �∅, u�: wkw /∈�∅, u�} .

Fix v ∈ ◦(T ) a white vertex of T and w ∈ •(T ) one of its children, if it has any. Denote by
JS(v), JS(w) ∈ T their image by the JS bijection, we argue that H̃(JS(v)) and H̃(JS(w))

are both equal to half the generation of v in T . Denote by u = JS(v); from the construction
of the JS bijection, if v is different from the root of T , then its parent in T is mapped onto
u� and its children onto �u�, u�, thus

H̃(JS(w)) = H̃(JS(v)) = H̃(u) = H̃(u�) + 1 = H̃(JS(pr(v))) + 1.

If v is the root of T , then u is the right-most leaf of T and v and its children are mapped
onto the vertices of T for which H̃ = 0. We conclude after an induction on the generation
of v that indeed, H̃(JS(w)) and H̃(JS(v)) are equal, and their common value is given by
half the generation of v in T .

Recall the notation c◦
j ∈ ◦(T ) for the white vertex of T visited at the j-th step in the

white contour sequence and uj for the j-th vertex of T in lexicographical order. Since the
image of uj by the JS bijection is either c◦

j or one of its children (if it has any), we conclude
in both cases that H̃(uj) is half the generation of c◦

j in T , that is, H̃(j) = C◦(j).

Recall the well-known identity between the height process H and the Łukasiewicz path W of a
one-type tree (see, eg, Le Gall and Le Jan [28]):

H(j) = #
{

i ∈ {0, . . . , j − 1} : W(i) ≤ inf
[i+1,j]

W
}

for each 0 ≤ j ≤ N . (2)

Indeed, for i < j, we have W(i) ≤ inf [i+1,j] W if and only if ui is an ancestor of uj; moreover, the
inequality is an equality if and only if the last child of ui is also an ancestor of uj. A consequence of
Lemma 1 is therefore the identity

C◦(j) = #
{

i ∈ {0, . . . , i − 1} : W(i) < inf
[i+1,j]

W
}

for each 0 ≤ j ≤ N . (3)

The latter was already observed by Abraham [1, Equation 5] without the formalism of the JS bijection,
where W (which corresponds to Y − 1 there) was defined directly from the two-type tree.

3 THE BROWNIAN MAP

3.1 The Brownian snake and the Brownian map
Denote by e = (et; t ∈ [0, 1]) the standard Brownian excursion. For every s, t ∈ [0, 1], set

me(s, t) = min
r∈[s∧t,s∨t]

er and de(s, t) = es + et − 2me(s, t).

One easily checks that de is a random pseudo-metric on [0, 1], we then define an equivalence relation
on [0, 1] by setting s ∼e t whenever de(s, t) = 0. Consider the quotient space Te = [0, 1]/ ∼e, we let
πe be the canonical projection [0, 1] → Te; de induces a metric on Te that we still denote by de. The
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space (Te, de) is a so-called compact real-tree, naturally rooted at πe(0) = πe(1), called the Brownian
tree coded by e, introduced by Aldous [4].

We construct next another process Z = (Zt; t ∈ [0, 1]) on the same probability space as e which,
conditional on e, is a centred Gaussian process satisfying for every s, t ∈ [0, 1],

E
[|Zs − Zt|2

∣∣ e
] = de(s, t) or, equivalently, E

[
ZsZt

∣∣ e
] = me(s, t).

It is known (see, eg, Le Gall [24, Chapter IV.4] on a more general path-valued process called the
Brownian snake whose Z is only the “tip”) that the pair (e, Z) admits a continuous version and, without
further notice, we shall work throughout this paper with this version. Observe that, almost surely,
Z0 = 0 and Zs = Zt whenever s ∼e t so Z can be seen as a Brownian motion indexed by Te by
setting Zπe(t) = Zt for every t ∈ [0, 1]. We interpret Zx as the label of an element x ∈ Te; the pair
(Te, (Zx; x ∈ Te)) is a continuous analog of labeled plane trees and the construction of the Brownian
map from this pair, that we next recall, is somewhat an analog of the BDG bijection presented above.

Let us follow Le Gall [26] to which we refer for details. For every s, t ∈ [0, 1], define

Ž(s, t) =
{

min{Zr ; r ∈ [s, t]} if s ≤ t,
min{Zr ; r ∈ [s, 1] ∪ [0, t]} otherwise,

and then

DZ(s, t) = Zs + Zt − 2 max{Ž(s, t); Ž(t, s)}.
For every x, y ∈ Te, set

DZ(x, y) = inf {DZ(s, t); s, t ∈ [0, 1], x = πe(s) and y = πe(t)} ,

and finally

D(x, y) = inf

{
k∑

i=1

DZ(ai−1, ai); k ≥ 1, (x = a0, a1, . . . , ak−1, ak = y) ∈ Te

}
.

The function D is a pseudo-distance on Te, we define an equivalence relation by setting x ≈ y whenever
D(x, y) = 0 for x, y ∈ Te. The Brownian map is the quotient space M = Te/ ≈ equipped with the
metric induced by D , that we still denote by D . Note that D can be seen as a pseudo-distance on [0, 1]
by setting D(s, t) = D(πe(s), πe(t)) for every s, t ∈ [0, 1], thus M can be seen as a quotient space of
[0, 1].

The following observation shall be used later on. As a function on T 2
e , we clearly have D ≤ DZ

and in fact, D is the largest pseudo-distance on Te satisfying this property. Indeed, if D is another such
pseudo-distance, then for every x, y ∈ Te, for every k ≥ 1 and every a0, a1, . . . , ak−1, ak ∈ Te with
a0 = x and ak = y, by the triangle inequality D(x, y) ≤ ∑k

i=1 D(ai−1, ai) ≤ ∑k
i=1 DZ(ai−1, ai) and so

D(x, y) ≤ D(x, y). Furthermore, if we view D as a function on [0, 1]2, then for all s, t ∈ [0, 1] such
that de(s, t) = 0 we have πe(s) = πe(t) and so D(πe(s), πe(t)) = 0. We deduce from the previous
maximality property that D is the largest pseudo-distance D on [0, 1] satisfying the following two
properties:

D ≤ DZ and de(s, t) = 0 implies D(s, t) = 0.
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3.2 Functional invariance principles
Let Tn ∈ T(n) be a one-type tree; it has Nn = �

i≥1 ini edges, we denote by Wn, Hn, and Cn respectively
its Łukasiewicz path, its height process and its contour process. The main result of Broutin and Marckert
[13] is the following: under (H), if Tn is sampled uniformly at random in T(n) for every n ≥ 1, then
the following convergence in distribution holds in C ([0, 1], R3):

�
Wn(Nnt)

N1/2
n

,
Hn(Nnt)

N1/2
n

,
Cn(2Nnt)

N1/2
n

�

t∈[0,1]

(d)−→
n→∞

�
σpe,

2
σp

e,
2
σp

e
�

t∈[0,1]
. (4)

Denote by Ln the label process (in lexicographical order) of a labeled tree (Tn, ln) ∈ LT(n). Consider
also a labeled two-type tree (Tn, �n) ∈ LT◦,•(n); it has Nn edges as well, we denote by C◦

n its white
contour function and by L◦

n its label function (in contour order).

Theorem 2 If (Tn, ln) and (Tn, �n) are related by the JS bijection and have the uniform
distribution in LT(n) and LT◦,•(n) respectively for every n ≥ 1, then, under (H), the
following convergences in distribution hold jointly in C ([0, 1], R2):

⎛
⎝

�
σ2

p

4
1

Nn

�1/2

Hn(Nnt),

�
9

4σ2
p

1
Nn

�1/4

Ln(Nnt)

⎞
⎠

t∈[0,1]

(d)−→
n→∞

(et , Zt)t∈[0,1], (5)

and
⎛
⎝

�
σ2

p

4p2
0

1
Nn

�1/2

C◦
n(Nnt),

�
9

4σ2
p

1
Nn

�1/4

L◦
n(Nnt)

⎞
⎠

t∈[0,1]

(d)−→
n→∞

(et , Zt)t∈[0,1]. (6)

Remark 1 Denote by Cn the contour function of Tn. We have already observed in Section
2.2 that supt∈[0,1] |Cn(2Nnt) − 2C◦

n(Nnt)| = 1, so (6) implies

⎛
⎝

�
σ2

p

16p2
0

1
Nn

�1/2

Cn(2Nnt)

⎞
⎠

t∈[0,1]

(d)−→
n→∞

(et)t∈[0,1].

Consequently, we have the joint convergences in the sense of Gromov–Hausdorff:

�
Tn, N−1/2

n dgr
� (d)−→

n→∞

�
Te,

4p0

σp
de

�
, and

�
Tn, N−1/2

n dgr
� (d)−→

n→∞

�
Te,

2
σp

de

�
.

Remark 2 By definition, if (T , l) is a labeled one-type tree and u is a vertex of T with
r ≥ 1 children, then the sequence (0, l(u1) − l(u), . . . , l(ur) − l(u)) belongs to the set of
bridges

B+
r = �

(x0, . . . , xr) : x0 = xr = 0 and xj − xj−1 ∈ {−1, 0, 1, 2, . . . } for 1 ≤ j ≤ r
�

. (7)

Since the cardinal of B+
r is

�2r−1
r−1

�
, it follows that a one-type tree T possesses

�
u∈T :ku≥1

�
2ku − 1
ku − 1

�
(8)
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space (Te, de) is a so-called compact real-tree, naturally rooted at πe(0) = πe(1), called the Brownian
tree coded by e, introduced by Aldous [4].

We construct next another process Z = (Zt; t ∈ [0, 1]) on the same probability space as e which,
conditional on e, is a centred Gaussian process satisfying for every s, t ∈ [0, 1],

E
[|Zs − Zt|2

∣∣ e
] = de(s, t) or, equivalently, E

[
ZsZt

∣∣ e
] = me(s, t).

It is known (see, eg, Le Gall [24, Chapter IV.4] on a more general path-valued process called the
Brownian snake whose Z is only the “tip”) that the pair (e, Z) admits a continuous version and, without
further notice, we shall work throughout this paper with this version. Observe that, almost surely,
Z0 = 0 and Zs = Zt whenever s ∼e t so Z can be seen as a Brownian motion indexed by Te by
setting Zπe(t) = Zt for every t ∈ [0, 1]. We interpret Zx as the label of an element x ∈ Te; the pair
(Te, (Zx; x ∈ Te)) is a continuous analog of labeled plane trees and the construction of the Brownian
map from this pair, that we next recall, is somewhat an analog of the BDG bijection presented above.

Let us follow Le Gall [26] to which we refer for details. For every s, t ∈ [0, 1], define

Ž(s, t) =
{

min{Zr ; r ∈ [s, t]} if s ≤ t,
min{Zr ; r ∈ [s, 1] ∪ [0, t]} otherwise,

and then

DZ(s, t) = Zs + Zt − 2 max{Ž(s, t); Ž(t, s)}.
For every x, y ∈ Te, set

DZ(x, y) = inf {DZ(s, t); s, t ∈ [0, 1], x = πe(s) and y = πe(t)} ,

and finally

D(x, y) = inf

{
k∑

i=1

DZ(ai−1, ai); k ≥ 1, (x = a0, a1, . . . , ak−1, ak = y) ∈ Te

}
.

The function D is a pseudo-distance on Te, we define an equivalence relation by setting x ≈ y whenever
D(x, y) = 0 for x, y ∈ Te. The Brownian map is the quotient space M = Te/ ≈ equipped with the
metric induced by D , that we still denote by D . Note that D can be seen as a pseudo-distance on [0, 1]
by setting D(s, t) = D(πe(s), πe(t)) for every s, t ∈ [0, 1], thus M can be seen as a quotient space of
[0, 1].

The following observation shall be used later on. As a function on T 2
e , we clearly have D ≤ DZ

and in fact, D is the largest pseudo-distance on Te satisfying this property. Indeed, if D is another such
pseudo-distance, then for every x, y ∈ Te, for every k ≥ 1 and every a0, a1, . . . , ak−1, ak ∈ Te with
a0 = x and ak = y, by the triangle inequality D(x, y) ≤ ∑k

i=1 D(ai−1, ai) ≤ ∑k
i=1 DZ(ai−1, ai) and so

D(x, y) ≤ D(x, y). Furthermore, if we view D as a function on [0, 1]2, then for all s, t ∈ [0, 1] such
that de(s, t) = 0 we have πe(s) = πe(t) and so D(πe(s), πe(t)) = 0. We deduce from the previous
maximality property that D is the largest pseudo-distance D on [0, 1] satisfying the following two
properties:

D ≤ DZ and de(s, t) = 0 implies D(s, t) = 0.
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3.2 Functional invariance principles
Let Tn ∈ T(n) be a one-type tree; it has Nn = �

i≥1 ini edges, we denote by Wn, Hn, and Cn respectively
its Łukasiewicz path, its height process and its contour process. The main result of Broutin and Marckert
[13] is the following: under (H), if Tn is sampled uniformly at random in T(n) for every n ≥ 1, then
the following convergence in distribution holds in C ([0, 1], R3):
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Denote by Ln the label process (in lexicographical order) of a labeled tree (Tn, ln) ∈ LT(n). Consider
also a labeled two-type tree (Tn, �n) ∈ LT◦,•(n); it has Nn edges as well, we denote by C◦

n its white
contour function and by L◦

n its label function (in contour order).

Theorem 2 If (Tn, ln) and (Tn, �n) are related by the JS bijection and have the uniform
distribution in LT(n) and LT◦,•(n) respectively for every n ≥ 1, then, under (H), the
following convergences in distribution hold jointly in C ([0, 1], R2):

⎛
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Remark 1 Denote by Cn the contour function of Tn. We have already observed in Section
2.2 that supt∈[0,1] |Cn(2Nnt) − 2C◦

n(Nnt)| = 1, so (6) implies

⎛
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Consequently, we have the joint convergences in the sense of Gromov–Hausdorff:
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Tn, N−1/2
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Remark 2 By definition, if (T , l) is a labeled one-type tree and u is a vertex of T with
r ≥ 1 children, then the sequence (0, l(u1) − l(u), . . . , l(ur) − l(u)) belongs to the set of
bridges

B+
r = �

(x0, . . . , xr) : x0 = xr = 0 and xj − xj−1 ∈ {−1, 0, 1, 2, . . . } for 1 ≤ j ≤ r
�

. (7)

Since the cardinal of B+
r is

�2r−1
r−1
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, it follows that a one-type tree T possesses
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�
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possible labelings. Observe that this quantity is constant over T(n) so if we first sample
an unlabeled tree Tn uniformly at random in T(n) and if we then add labels uniformly at
random, in the sense that the sequences (0, l(u1)− l(u), . . . , l(uku)− l(u))u∈Tn are sampled
independently and uniformly at random in B+

ku respectively, then the labeled tree has the
uniform distribution in LT(n).

Let us comment on the constants in Theorem 2. The one in front of Hn is taken from (4). Next, the
label of a vertex u ∈ Tn is the sum of the increments of the labels between consecutive ancestors; there
are |u| such terms, which are independent and distributed, when an ancestor has i children and the one
on the path to u is the j-th one, as the j-th marginal of a uniform random bridge in B+

i , as defined in (7);
the latter is a centred random variable with variance 2j(i − j)/(i + 1). As we will see, there is typically
a proportion about pn(i) of such ancestors so Ln(u) has variance about

�
i≥1

i�
j=1

|u|pn(i)
2j(i − j)

i + 1
= |u|

�
i≥1

pn(i)
i(i − 1)

3
≈ |u|σ

2
p

3
.

If u is the vertex visited at time �Nnt� in lexicographical order, then |u| ≈ (4Nn/σ
2
p)

1/2et so we expect
Ln(Nnt), once rescaled by N1/4

n , to be asymptotically Gaussian with variance

�
4
σ2

p

�1/2

et
σ2

p

3
=

�
4σ2

p

9

�1/2

et .

Regarding the two-type tree, the proof of the convergence of C◦
n relies on showing that, as n → ∞, it

is close to p0Hn when Tn and Tn are related by the JS bijection. Finally, according to Lemma 1, when
Tn and Tn are related by the JS bijection, then the processes L◦

n and Ln are equal.
We next explain how Theorem 2 will follow from several results proved in Section 5.

Proof of Theorem 2 Recall from Lemma 1 that the processes Ln and L◦
n are equal.

Appealing to this lemma, we shall also obtain in Proposition 1 below the joint convergence

⎛
⎝
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σ2

p

4
1

Nn

�1/2

Hn(Nnt),

�
σ2

p

4p2
0Nn

�1/2

C◦
n(Nnt)

⎞
⎠

t∈[0,1]

(d)−→
n→∞

(et , et)t∈[0,1].

In Proposition 4, we shall prove that, jointly with this convergence, for every k ≥ 1, if
(U1, . . . , Uk) are i.i.d. uniform random variables in [0, 1] independent of the trees, then
the convergence

�
9

4σ2
p

1
Nn

�1/4

(Ln(NnU1), . . . , Ln(NnUk))
(d)−→

n→∞
�
ZU1 , . . . , ZUk

�
(9)

holds in Rk , where the process Z is independent of (U1, . . . , Uk). Finally, in Proposition
7, we shall prove that the sequence

�
N−1/4

n Ln(Nnt); t ∈ [0, 1]�n≥1
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is tight in C ([0, 1], R). This ensures that the sequences on the left-hand side of (5) and (6)
are tight in C ([0, 1], R2). Using the equicontinuity given by this tightness, as well as the
uniform continuity of the pair (e, Z), one may transpose (9) to a convergence for deter-
ministic times, by approximating them by i.i.d. uniform random times, see, for example,
Addario-Berry and Albenque [3, proof of Proposition 6.1] for a detailed argument; this
characterizes the sub-sequential limits of (5) and (6) in C ([0, 1], R2) as (e, Z).

The proofs of the above intermediate results are deferred to Section 5, they rely on a precise
description of the branches from the root of Tn to i.i.d. vertices which is the content of the next section.

4 SPINAL DECOMPOSITIONS

In this section, we describe the branches from the root to i.i.d. vertices in a tree Tn sampled uniformly
at random in T(n), extending results due to Broutin and Marckert [13]. We only state the results, the
proofs are technical and are deferred to Appendix A for the sake of clarity.

4.1 A one-point decomposition
For a given vertex u in a plane tree T , we denote by Ai(u) its number of strict ancestors with i children:

Ai(u) = #
{
v ∈ �∅, u�: kv = i

}
.

We write A(u) = (Ai(u); i ≥ 1); note that |u| = |A(u)| = ∑
i≥1 Ai(u). The quantity A(u) is crucial

in order to control the label ln(u) of the vertex u ∈ Tn when (Tn, ln) is chosen uniformly at random in
LT(n). Indeed, one can write

ln(u) =
∑

v∈�∅,u�
ln(v) − ln(pr(v)),

and, conditional on Tn, the random variables ln(v) − ln(pr(v)) are independent and their law depends
on the number of children of pr(v).

If m = (mi; i ≥ 1) is a sequence of non-negative integers, then we set

LR(m) = 1 +
∑
i≥1

(i − 1)mi.

The notation comes from the fact that removal of the path �∅, u� produces a forest of LR(A(u)) trees,
so, in other words, LR(A(u)) is the number of vertices lying directly on the left or on the right of this
path (and the component “above”). For every x > 0 define the following set of “good” sequences:

Good(n, x) = {
m ∈ ZN

+ : LR(m) ≤ xN1/2
n and |m| ≤ xN1/2

n
}

.

Consider also the more restrictive set

Good+
(n, x) = {

m ∈ ZN
+ : LR(m) ≤ xN1/2

n and x−1N1/2
n ≤ |m| ≤ xN1/2

n
}

.

The following result has been obtained by Broutin and Marckert [13]; it is not written explicitly
there but the arguments that we recall in Appendix A can be found in Sections 3 and 5.2 there.
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possible labelings. Observe that this quantity is constant over T(n) so if we first sample
an unlabeled tree Tn uniformly at random in T(n) and if we then add labels uniformly at
random, in the sense that the sequences (0, l(u1)− l(u), . . . , l(uku)− l(u))u∈Tn are sampled
independently and uniformly at random in B+

ku respectively, then the labeled tree has the
uniform distribution in LT(n).

Let us comment on the constants in Theorem 2. The one in front of Hn is taken from (4). Next, the
label of a vertex u ∈ Tn is the sum of the increments of the labels between consecutive ancestors; there
are |u| such terms, which are independent and distributed, when an ancestor has i children and the one
on the path to u is the j-th one, as the j-th marginal of a uniform random bridge in B+

i , as defined in (7);
the latter is a centred random variable with variance 2j(i − j)/(i + 1). As we will see, there is typically
a proportion about pn(i) of such ancestors so Ln(u) has variance about
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σ2

p

�1/2

et
σ2

p

3
=

�
4σ2

p

9

�1/2

et .

Regarding the two-type tree, the proof of the convergence of C◦
n relies on showing that, as n → ∞, it

is close to p0Hn when Tn and Tn are related by the JS bijection. Finally, according to Lemma 1, when
Tn and Tn are related by the JS bijection, then the processes L◦

n and Ln are equal.
We next explain how Theorem 2 will follow from several results proved in Section 5.

Proof of Theorem 2 Recall from Lemma 1 that the processes Ln and L◦
n are equal.

Appealing to this lemma, we shall also obtain in Proposition 1 below the joint convergence

⎛
⎝

�
σ2

p

4
1

Nn

�1/2

Hn(Nnt),

�
σ2

p

4p2
0Nn

�1/2

C◦
n(Nnt)

⎞
⎠

t∈[0,1]

(d)−→
n→∞

(et , et)t∈[0,1].

In Proposition 4, we shall prove that, jointly with this convergence, for every k ≥ 1, if
(U1, . . . , Uk) are i.i.d. uniform random variables in [0, 1] independent of the trees, then
the convergence

�
9

4σ2
p

1
Nn

�1/4

(Ln(NnU1), . . . , Ln(NnUk))
(d)−→

n→∞
�
ZU1 , . . . , ZUk

�
(9)

holds in Rk , where the process Z is independent of (U1, . . . , Uk). Finally, in Proposition
7, we shall prove that the sequence

�
N−1/4

n Ln(Nnt); t ∈ [0, 1]�n≥1
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is tight in C ([0, 1], R). This ensures that the sequences on the left-hand side of (5) and (6)
are tight in C ([0, 1], R2). Using the equicontinuity given by this tightness, as well as the
uniform continuity of the pair (e, Z), one may transpose (9) to a convergence for deter-
ministic times, by approximating them by i.i.d. uniform random times, see, for example,
Addario-Berry and Albenque [3, proof of Proposition 6.1] for a detailed argument; this
characterizes the sub-sequential limits of (5) and (6) in C ([0, 1], R2) as (e, Z).

The proofs of the above intermediate results are deferred to Section 5, they rely on a precise
description of the branches from the root of Tn to i.i.d. vertices which is the content of the next section.

4 SPINAL DECOMPOSITIONS

In this section, we describe the branches from the root to i.i.d. vertices in a tree Tn sampled uniformly
at random in T(n), extending results due to Broutin and Marckert [13]. We only state the results, the
proofs are technical and are deferred to Appendix A for the sake of clarity.

4.1 A one-point decomposition
For a given vertex u in a plane tree T , we denote by Ai(u) its number of strict ancestors with i children:

Ai(u) = #
{
v ∈ �∅, u�: kv = i

}
.

We write A(u) = (Ai(u); i ≥ 1); note that |u| = |A(u)| = ∑
i≥1 Ai(u). The quantity A(u) is crucial

in order to control the label ln(u) of the vertex u ∈ Tn when (Tn, ln) is chosen uniformly at random in
LT(n). Indeed, one can write

ln(u) =
∑

v∈�∅,u�
ln(v) − ln(pr(v)),

and, conditional on Tn, the random variables ln(v) − ln(pr(v)) are independent and their law depends
on the number of children of pr(v).

If m = (mi; i ≥ 1) is a sequence of non-negative integers, then we set

LR(m) = 1 +
∑
i≥1

(i − 1)mi.

The notation comes from the fact that removal of the path �∅, u� produces a forest of LR(A(u)) trees,
so, in other words, LR(A(u)) is the number of vertices lying directly on the left or on the right of this
path (and the component “above”). For every x > 0 define the following set of “good” sequences:

Good(n, x) = {
m ∈ ZN

+ : LR(m) ≤ xN1/2
n and |m| ≤ xN1/2

n
}

.

Consider also the more restrictive set

Good+
(n, x) = {

m ∈ ZN
+ : LR(m) ≤ xN1/2

n and x−1N1/2
n ≤ |m| ≤ xN1/2

n
}

.

The following result has been obtained by Broutin and Marckert [13]; it is not written explicitly
there but the arguments that we recall in Appendix A can be found in Sections 3 and 5.2 there.
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Lemma 2 For every n ≥ 1, sample Tn uniformly at random in T(n) and then sample
a vertex un uniformly at random in Tn. For every ε > 0, there exists x > 0 such that,
under (H),

lim inf
n≥1

P
(
A(u) ∈ Good(n, x) for all u ∈ Tn

) ≥ 1 − ε,

and

lim inf
n≥1

P
(
A(un) ∈ Good+

(n, x)
) ≥ 1 − ε.

Furthermore, there exists a constant C > 0 (which depends on x) such that for every
sequence m ∈ Good(n, x), setting h = |m|, we have

P (A(un) = m) ≤ C · N−1/2
n · P

(
Ξ(h)

n = m
)

,

where Ξ(h)
n = (Ξ

(h)
n,i ; i ≥ 1) has the multinomial distribution with parameters h and

(ini/Nn; i ≥ 1).

Observe that replacing A(un) by such a multinomial sequence means that the random variables
(kpr(v); v ∈�∅, un�) are independent and distributed according to the size-biased law (ini/Nn; i ≥ 1).
Also, clearly, conditional on (kpr(v); v ∈�∅, un�), the random variables (χv; v ∈�∅, un�) are independent
and each one has the uniform distribution in {1, . . . , kpr(v)} respectively.

The following corollary, which shall be used in Section 5.5, sheds some light on Lemma 2. The
argument used in the proof shall be used at several other occasions.

Corollary 3 Recall the notation χw ∈ {1, . . . , kpr(w)} for the relative position of a vertex
w ∈ Tn among its siblings. Let c = 1 − p0

2 and hn = 16
p2

0
ln Nn and consider the event

En =
{

#{w ∈�u, v� : χw = 1}
#�u, v� ≤ c for every u, v ∈ Tn such that u ∈ �∅, v� and #�u, v� > hn

}
.

If Tn is sampled uniformly at random in T(n), then under (H), we have P(En) → 1 as
n → ∞.

In words, this means that in Tn, there is no branch longer than some constant times ln n along which
the proportion of individuals which are the left-most child of their parent is too large.

Proof For every v ∈ Tn, for every 1 ≤ j ≤ |v|, let us denote by aj(v) the unique element
of �∅, v� such that #�aj(v), v� = j, then set Xj(v) = 1 if χaj(v) = 1 and Xj(v) = 0
otherwise so

En =
⋂
v∈Tn

⋂
hn≤j≤|v|

{
#{1 ≤ i ≤ j : Xi(v) = 1} ≤ c · j

}
=

⋂
v∈Tn

⋂
hn≤j≤|v|

{ j∑
i=1

Xi(v) ≤ c · j
}

.

Let u0, . . . , uNn be the vertices of Tn listed in lexicographical order. Sample qn uniformly at
random in {1, . . . , Nn} and independently of Tn, let vn = uqn and let Ξ(h)

n denote a random
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sequence with the multinomial distribution with parameters h and (ini/Nn; i ≥ 1). Fix
ε > 0, and let x > 0 and C > 0 as in Lemma 2. Then for n large enough,

P
(
E c

n

) ≤ ε +
∑

1≤q≤Nn

∑

hn≤j≤xN1/2
n

∑

j≤h≤xN1/2
n

∑
m∈Good(n,x)

|m|=h

P

( j∑
i=1

Xi(uq) > c · j and A(uq) = m

)

≤ ε + Cx2N3/2
n sup

j≥hn
sup
h≥j

∑
m∈Good(n,x)

|m|=h

P

( j∑
i=1

Xi(vn) > c · j
∣∣∣∣ A(vn) = m

)
P

(
Ξ(h)

n = m
)

.

Observe that conditional on the offsprings kai(vn)’s of the ancestors ai(vn)’s, the Xi(vn)’s
are independent and have the Bernoulli distribution with parameter 1/kai(vn) respectively.
We thus have

∑
m∈Good(n,x)

|m|=h

P

( j∑
i=1

Xi(vn) > c · j
∣∣∣∣ A(vn) = m

)
P

(
Ξ(h)

n = m
) = P

( j∑
i=1

Yn,i > c · j

)
,

where the Yn,i’s are independent and have the Bernoulli distribution with parameter

∑
r≥1

1
r

· rnr

Nn
= 1 − n0 − 1

Nn
.

Recall that c = 1 − p0
2 ; fix n large enough so that, according to (H), n0−1

Nn
>

3p0
4 and so

c − (1 − n0−1
Nn

) = n0−1
Nn

− p0
2 >

p0
4 . The Chernoff bound then reads

P

( j∑
i=1

Yn,i > c · j

)
≤ P

( j∑
i=1

(Yn,i − E
[
Yn,i

]
) >

p0

4
· j

)
≤ exp

(
−p2

0

8
· j

)
,

so finally, for n large enough,

P
(
E c

n

) ≤ ε + Cx2N3/2
n exp

(
−p2

0

8
· hn

)
,

which converges to ε as n → ∞ from our choice of hn.

4.2 A multi-point decomposition
We next extend the previous decomposition according to several i.i.d. uniform random vertices. Let
us first introduce some notation. Fix a plane tree T and k distinct vertices u1, . . . , uk of T and denote
by T(u1, . . . , uk) the tree T reduced to its root and these vertices:

T(u1, . . . , uk) =
⋃

1≤j≤k

�∅, uj�,

which naturally inherits a plane tree structure from T . Denote by k� ≤ k − 1 the number of branch-
points of T(u1, . . . , uk) and by v1, . . . , vk� these branch-points. Let F(u1, . . . , uk) be the forest obtained
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from T(u1, . . . , uk) by removing the edges linking these branch-points to their children; note that
F(u1, . . . , uk) contains k + k� connected components which are only single paths, that is, each one
contains one root and only one leaf and the latter is either one of the ui’s or one of the vi’s. Let us rank
these connected components in increasing lexicographical order of their root and denote by ∅j and λj

respectively the root and the leaf of the j-th one. For every 1 ≤ j ≤ k + k� and every i ≥ 1, we set

A(j)
i (u1, . . . , uk) = #

�
z ∈ �∅j, λj�: kz = i

�
,

where kz must be understood as the number of children in the original tree T of the vertex z. We set

A(u1, . . . , uk) =
�

A(1)(u1, . . . , uk), . . . , A(k+k�)(u1, . . . , uk)
�

.

Fix n, k ≥ 1, sample Tn uniformly at random in T(n) and then sample i.i.d. uniform random vertices
un,1, . . . , un,k in Tn; denote by Bink the following event: the reduced tree Tn(un,1, . . . , un,k) is binary, has
k leaves and its root has only one child. Note that on this event, the un,i’s are distinct and the number
of branch-points of the reduced tree is k� = k − 1. Let us also denote by Bin+

k = {maxa∈Tn |a| ≤
N3/4

n } ∩ Bink . The next result is proved in Appendix A.

Lemma 3 For every n ≥ 1, sample Tn uniformly at random in T(n) and then sample
i.i.d. uniform random vertices un,1, . . . , un,k in Tn. For every ε > 0, there exists x > 0 such
that, under (H),

lim inf
n≥1

P

�
Bin+

k ∩
2k−1�
i=1

�
A(i)(un,1, . . . , un,k) ∈ Good+

(n, x)
�� ≥ 1 − ε.

Furthermore, there exists C > 0 (which depends on x) such that for every sequences
m(1), . . . , m(2k−1) ∈ Good(n, x), setting |m(j)| = hj for each 1 ≤ j ≤ 2k − 1, we have

P
�
A(un,1, . . . , un,k) = (m(1), . . . , m(2k−1))

�� Bin+
k

� ≤ C · N−(2k−1)/2
n ·

2k−1�
j=1

P
�
Ξ

(hj)
n = m

�
,

where Ξ
(hj)
n = (Ξ

(hj)
n,i ; i ≥ 1) has the multinomial distribution with parameters hj and

(ini/Nn; i ≥ 1).

5 FUNCTIONAL INVARIANCE PRINCIPLES

We state and prove in this section the intermediate results used in the proof of Theorem 2. Let (Tn, ln)

be a uniform random labeled tree in LT(n) and let Hn and Ln denote its height and label processes.
Let also Tn be its associated two-type tree, which has the uniform distribution in T◦,•(n), with white
contour process C◦

n . Our aim is to show that, under (H), the three convergences

⎛
⎝

�
σ2

p

4p2
0Nn

�1/2

C◦
n(Nnt); t ∈ [0, 1]

⎞
⎠ (d)−→

n→∞
(et; t ∈ [0, 1]) (10)
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as well as
⎛
⎝

�
σ2

p

4
1

Nn

�1/2

Hn(Nnt); t ∈ [0, 1]
⎞
⎠ (d)−→

n→∞
(et; t ∈ [0, 1]) (11)

and
⎛
⎝

�
9

4σ2
p

1
Nn

�1/4

Ln(Nnt); t ∈ [0, 1]
⎞
⎠ (d)−→

n→∞
(Zt; t ∈ [0, 1]), (12)

hold jointly in C ([0, 1], R). The second one is the main result of [13] recalled in (4). We prove (10)
in the next subsection. Then we prove the convergence of random finite-dimensional marginals of
(N−1/4

n Ln(Nn·))n≥1 in Section 5.3 and the tightness of this sequence in Section 5.5.

5.1 Convergence of the contour
Let Tn have the uniform distribution in T(n) and let Tn be its associated two-type tree, which has the
uniform distribution in T◦,•(n).

Proposition 1 Under (H), we have the convergence in distribution in C ([0, 1], R2)

⎛
⎝

�
σ2

p

4
1

Nn

�1/2

Hn(Nnt),

�
σ2

p

4p2
0Nn

�1/2

C◦
n(Nnt)

⎞
⎠

t∈[0,1]

(d)−→
n→∞

(et , et)t∈[0,1].

The key observation is the identity from Lemma 1:

C◦
n = �Hn,

where �Hn(j) is the number of strict ancestors of the j-th vertex of Tn whose last child is not one of its
ancestors. We have seen in the previous section that for a “typical” vertex u of Tn, at generation |u|,
the number of ancestors having i children for i ≥ 1 forms approximately a multinomial sequence with
parameters |u| and (ini/Nn; i ≥ 1); further, for each such ancestor, there is a probability 1 − 1/i that
its last child is not an ancestor of u and therefore contributes to C◦

n . Since
�

i≥1(1 − 1/i)(ini/Nn) →
1 − (1 − p0) = p0, we conclude that, at a “typical” time, C◦

n ≈ p0Hn.

Proof The convergence of the first marginal comes from (4); since, under (H), we have
p0 = limn→∞(n0 − 1)/Nn it suffices then to prove that

N−1/2
n sup

0≤t≤1

�����Hn(Nnt) − n0 − 1
Nn

Hn(Nnt)
����

P−→
n→∞

0.

Note that we may restrict ourselves to times t of the form i/Nn with i ∈ {1, . . . , Nn}. We
proceed as in the proof of Corollary 3. Let in be a uniform random integer in {1, . . . , Nn}
and un the in-th vertex of Tn in lexicographical order. Fix δ, ε > 0 and choose x > 0 and
C > 0 as in Lemma 2. Then for n large enough,
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P
(

sup
1≤i≤Nn

∣∣∣∣H̃n(i) − n0 − 1
Nn

Hn(i)
∣∣∣∣ > δN1/2

n

)

≤ ε + xN3/2
n sup

1≤h≤xN1/2
n

∑
m∈Good(n,x)

|m|=h

P (A(un) = m) P
(∣∣∣∣H̃n(in) − n0 − 1

Nn
h
∣∣∣∣ > δN1/2

n

∣∣∣∣ A(un) = m
)

.

≤ ε + CxNn sup
1≤h≤xN1/2

n

∑
m∈Good(n,x)

|m|=h

P
(
Ξ(h)

n = m
)

P
(∣∣∣∣H̃n(in) − n0 − 1

Nn
h
∣∣∣∣ > δN1/2

n

∣∣∣∣ A(un) = m
)

.

Observe that conditional on the vector (kv; v ∈ �∅, un�), the random variable H̃n(in) is a
sum of independent Bernoulli random variables, with respective parameter (1 − k−1

v ; v ∈
�∅, un�). Note that

∑
i≥1

(
1 − 1

i

)
· ini

Nn
= n0 − 1

Nn
,

we let (Yn,i; 1 ≤ i ≤ h) be independent Bernoulli random variables with parameter
(n0 − 1)/Nn. We then conclude, applying the Chernoff bound for the second inequality,
that for every n large enough,

P
(

sup
1≤i≤Nn

∣∣∣∣H̃n(i) − n0 − 1
Nn

Hn(i)
∣∣∣∣ > δN1/2

n

)
≤ ε + CxNn sup

1≤h≤xN1/2
n

P

(∣∣∣∣∣
h∑

i=1

Yn,i − n0 − 1
Nn

h

∣∣∣∣∣ > δN1/2
n

)

≤ ε + CxNn sup
1≤h≤xN1/2

n

2e−2δ2Nn/h,

which converges to ε as n → ∞.

5.2 Maximal displacement at a branch-point
Recall that for every vertex u, we denote by ku its number of children and these children by u1, . . . , uku.

Proposition 2 For every n ≥ 1, sample (Tn, ln) uniformly at random in LT(n). Under
(H), we have the convergence in probability

N−1/4
n max

u∈Tn

∣∣∣∣ max
1≤j≤ku

ln(uj) − min
1≤j≤ku

ln(uj)
∣∣∣∣

P−→
n→∞

0.

To prove this result, we shall need the following sub-Gaussian tail bound for the maximal gap in
a random walk bridge. The proof is easy, we refer to Appendix B.

Lemma 4 Let (Sk; k ≥ 0) be a random walk such that S0 = 0 and (Sk+1 − Sk; k ≥ 0)

are i.i.d. random variables, taking values in Z ∩ [−b, ∞) for some b ≥ 0, centred and
with variance σ2 ∈ (0, ∞). There exists two constants c, C > 0 which only depend on b
and σ such that for every r ≥ 1 and x ≥ 0, we have

P
(

max
0≤k≤r

Sk − min
0≤k≤r

Sk ≥ x
∣∣∣∣ Sr = 0

)
≤ Ce−cx2/r .
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Proof of Proposition 2 Recall that conditional on Tn, the sequences (0, ln(u1) −
ln(u), . . . , ln(uku) − ln(u))u∈Tn are independent and distributed respectively uniformly at
random in B+

r defined in (7), with r = ku, and that there are nr such vertices in Tn. Con-
sider the random walk (Si; i ≥ 0) such that S0 = 0 and (Si+1 − Si; i ≥ 0) are i.i.d. random
variables, distributed as a shifted geometric law: P (S1 = k) = 2−(k+2) for every k ≥ −1.
Then it is easy to check that for every r ≥ 1, on the event {Sr = 0}, the path (S0, . . . , Sr)

has the uniform distribution in B+
r . Therefore, according to Lemma 4, there exists two

universal constants c, C > 0 such that for every ε > 0, for every n large enough,

P
�

max
u∈Tn

���� max
1≤i≤ku

ln(ui) − min
1≤i≤ku

ln(ui)
���� ≤ εN1/4

n

�
=

Δn�
r=1

P
�

max
0≤k≤r

Sk − min
0≤k≤r

Sk ≤ εN1/4
n

���� Sr = 0
�nr

≥
Δn�
r=1

�
1 − C exp

�−cε2N1/2
n /r

��nr

≥ exp

⎛
⎝−

Δn�
r=1

nr
C exp

�−cε2N1/2
n /r

�

1 − C exp
�
−cε2N1/2

n /r
�
⎞
⎠

≥ exp

�
−C

Δn�
r=1

nr exp
�−cε2N1/2

n /r
�
(1 + o(1))

�
,

where we have used the bound ln(1−x) ≥ − x
1−x for x < 1, jointly with the fact that, under

(H), we have sup1≤r≤Δn exp(−cε2N1/2
n /r) → 0 since Δn = o(N1/2

n ). Recall furthermore
that under (H), we have

�Δn
r=1 r2nr/Nn → σ2

p + 1 < ∞, we conclude that for every n
large enough, since x �→ x2e−x is decreasing on [2, ∞),

Δn�
r=1

nr exp
�

−cε2 N1/2
n

r

�
≤

Δn�
r=1

r2nr

Nn
× Nn

Δ2
n

exp
�

−cε2 N1/2
n

Δn

�
−→
n→∞

0,

and the claim follows.

5.3 Random finite-dimensional convergence
As in Section 4, in order to make the notation easier to follow, we first treat the one-dimensional case.

Proposition 3 For every n ≥ 1, sample independently (Tn, ln) uniformly at random in
LT(n) and U uniformly at random in [0, 1]. Under (H), the convergence in distribution

�
9

4σ2
p

1
Nn

�1/4

Ln(NnU)
(d)−→

n→∞
ZU

holds jointly with (11), where the process Z is independent of U.

Proof The approach of the proof was described in Section 3.2 when explaining the
constant (9/(4σ2

p))
1/4. Note that the vertex un visited at the time �NnU� in lexicographical
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order has the uniform distribution in Tn;3 denote by ln(un) = Ln(�NnU�) its label and by
|un| = Hn(�NnU�) its height and observe that

(
9

4σ2
p

1
Nn

)1/4

ln(un) =

√√√√
√

σ2
p

4
1

Nn
|un| ·

√
3
σ2

p

1√|un| ln(un).

Since, according to (11), the first term on the right converges in distribution toward eU , it
is equivalent to show that, jointly with (11), we have

1√|un| ln(un) =⇒
n→∞

N
(

0,
σ2

p

3

)
, (13)

where N (0, σ2
p/3) denotes the centred Gaussian distribution with variance σ2

p/3 and “⇒”
is a slight abuse of notation to refer to the weak convergence of the law of the random
variable.

Recall that we denote by Ai(un) the number of strict ancestors of un with i children:

Ai(un) = #
{
v ∈ �∅, un�: kv = i

}
;

denote further by Ai,j(un) the number of strict ancestors of un with i children, among which
the j-th one is again an ancestor of un:

Ai,j(un) = #
{
v ∈ �∅, un�: kv = i and vj ∈�∅, un�

}
.

We have seen in Section 4 that when Tn is uniformly distributed in T(n) and un is uniformly
distributed in Tn, then A(un) = (Ai(un); i ≥ 1) can be compared to a multinomial sequence
with parameters |un| and (ini/Nn; i ≥ 1). Observe further that given the sequence A(un),
the vectors (Ai,j(un); 1 ≤ j ≤ i)i≥1 are independent and distributed respectively according
to the multinomial distribution with parameters Ai(un) and ( 1

i , . . . , 1
i ).

Let (Xi,j,k; 1 ≤ j ≤ i ≤ Δn, k ≥ 1) be a collection of independent random variables
which is also independent of A(un), and such that Xi,j,k has the law of the j-th marginal of
a uniform random bridge in B+

i ; note that the latter is centred and has variance, say, σ2
i,j.

Then let us write

ln(un) =
Δn∑
i=1

i∑
j=1

Ai,j(un)∑
k=1

Xi,j,k , and lK
n (un) =

K∑
i=1

i∑
j=1

Ai,j(un)∑
k=1

Xi,j,k , for K ≥ 1.

The proof of (13) is divided into two steps: we first show that for every K ≥ 1,
lK
n (un)/

√|un| converges toward a limit which depends on K and which in turn converges
toward N (0, σ2

p/3) as K → ∞, and then we show that |ln(un) − lK
n (un)|/√|un| can be

made arbitrarily small uniformly for n large enough by choosing K large enough.
Let us first prove the convergence of lK

n (un) as n → ∞. For every h ≥ 1, let Ξ(h)
n =

(Ξ
(h)
n,i ; i ≥ 1) denote a random sequence with the multinomial distribution with parameters

h and (ini/Nn; i ≥ 1) and fix ε > 0, and let x > 0 and C > 0 as in Lemma 2.

3Precisely un has the uniform distribution in Tn \ {∅}, but we omit this detail for the sake of clarity.
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Fix i ≥ 1 such that p(i) �= 0. Since Ξ
(h)
n,i has the binomial distribution with parameters

h and ini/Nn, Lemma 2 and Markov inequality yield for every δ > 0 and every n large
enough,

P
�����

Nn

|un|ini
Ai(un) − 1

���� > δ

�
≤ ε + Cx sup

x−1N1/2
n ≤h≤xN1/2

n

P
�����

Nn

hini
Ξ

(h)
n,i − 1

���� > δ

�

≤ ε + Cx sup
x−1N1/2

n ≤h≤xN1/2
n

h−1δ−2
�

Nn

ini
− 1

�
,

which converges to ε as n → ∞ since ini/Nn → ip(i) ∈ (0, 1). Given Ai(un), the
vector (Ai,j(un); 1 ≤ j ≤ i) has the multinomial distribution with parameters Ai(un) and
( 1

i , . . . , 1
i ) so for every 1 ≤ j ≤ i, we further have

Nn

|un|ni
Ai,j(un)

P−→
n→∞

1.

Since the random variables Xi,j,k are independent, centred and have variance σ2
i,j, the central

limit theorem then reads, when p(i) �= 0,

1√|un|
Ai,j(un)�

k=1

Xi,j,k =⇒
n→∞

N
�
0, p(i)σ2

i,j
�

. (14)

In the case p(i) = 0, we claim that

1√|un|
i�

j=1

Ai,j(un)�
k=1

Xi,j,k
P−→

n→∞
0. (15)

Indeed, with the same argument as above, it suffices to show that for every δ > 0, we
have

lim
n→∞

sup
x−1N1/2

n ≤h≤xN1/2
n

�
|m|=h

P
�
Ξ(h)

n = m
�

P

⎛
⎝

������
i�

j=1

Mi,j�
k=1

Xi,j,k

������
≥ δ

√
h

⎞
⎠ = 0,

where the vector (Mi,j; 1 ≤ j ≤ i) has the multinomial distribution with parameters mi

and ( 1
i , . . . , 1

i ) and is independent of the Xi,j,k’s. For every sequence m, we have

P

⎛
⎝

������
i�

j=1

Mi,j�
k=1

Xi,j,k

������
≥ δ

√
h

⎞
⎠ ≤ 1

δ2h

i�
j=1

E
�
Mi,j

�
σ2

i,j = 1
δ2h

mi

i

i�
j=1

σ2
i,j,

whence

�
|m|=h

P
�
Ξ(h)

n = m
�

P

⎛
⎝

������
i�

j=1

Mi,j�
k=1

Xi,j,k

������
≥ δ

√
h

⎞
⎠ ≤

�
|m|=h

P
�
Ξ(h)

n = m
� 1

δ2h
mi

i

i�
j=1

σ2
i,j
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≤ E
�
Ξ

(h)
n,i

� 1
δ2h

1
i

i�
j=1

σ2
i,j

≤ ni

Nn

1
δ2

i�
j=1

σ2
i,j.

Under (H), we have ni/Nn → p(i) = 0 as n → ∞ and (15) follows.
We conclude using (14), (15) and the independence of the Xi,j,k’s as i and j vary that

for every K ≥ 1, the convergence

1√|un| lK
n (un) =⇒

n→∞
N

�
0,

K�
i=1

p(i)
i�

j=1

σ2
i,j

�

holds. Marckert and Miermont [33, page 1664]4 have calculated the variance of the
random variables Xi,j,k:

σ2
i,j = 2j(i − j)

i + 1
so

i�
j=1

σ2
i,j = i(i − 1)

3
.

Consequently,

K�
i=1

p(i)
i�

j=1

σ2
i,j −→

K→∞

∞�
i=1

p(i)
i(i − 1)

3
= σ2

p

3
,

which implies

N
�

0,
K�

i=1

p(i)
i�

j=1

σ2
i,j

�
=⇒
K→∞

N
�

0,
σ2

p

3

�
.

It only remains to show that for every δ > 0, we have

lim
K→∞

lim sup
n→∞

P
���ln(un) − lK

n (un)
�� ≥ δ

�|un|
�

= 0. (16)

Again, with the same notation as above, it is enough to show that for every x > 0 and
every δ > 0, we have

lim
K→∞

lim sup
n→∞

sup
x−1N1/2

n ≤h≤xN1/2
n

�
|m|=h

P
�
Ξ(h)

n = m
�

P

⎛
⎝

������
Δn�
i=K

i�
j=1

Mi,j�
k=1

Xi,j,k

������
≥ δ

√
h

⎞
⎠ = 0.

By the same calculation as above,

�
|m|=h

P
�
Ξ(h)

n = m
�

P

⎛
⎝

������
Δn�
i=K

i�
j=1

Mi,j�
k=1

Xi,j,k

������
≥ δ

√
h

⎞
⎠ ≤

�
|m|=h

P
�
Ξ(h)

n = m
� 1

δ2h

Δn�
i=K

mi

i

i�
j=1

σ2
i,j

4Note that they consider uniform random bridges in B+
i+1!
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= 1
δ2h

Δn∑
i=K

1
i

E
[
Ξ

(h)
n,i

] i∑
j=1

σ2
i,j

= 1
δ2

Δn∑
i=K

ni

Nn

i(i − 1)

3
,

Under (H), we have

Δn∑
i=K

ni

Nn
i(i − 1) −→

n→∞

∑
i≥K

p(i)i(i − 1) −→
K→∞

0.

This concludes the proof of (16).

We next give a multi-dimensional extension of Proposition 3. The proof of the latter relied on
Lemma 2, the proof of its extension appeals to Lemma 3.

Proposition 4 For every n ≥ 1, sample independently (Tn, ln) uniformly at random
in LT(n) and U1, . . . , Uk uniformly at random in [0, 1]. Under (H), the convergence in
distribution

(
9

4σ2
p

1
Nn

)1/4

(Ln(NnU1), . . . , Ln(NnUk))
(d)−→

n→∞
(
ZU1 , . . . , ZUk

)

holds jointly with (11), where the process Z is independent of (U1, . . . , Uk).

Proof As for Lemma 3, we focus on the case k = 2 and comment on the general case at
the end. Let un and vn be independent uniform random vertices of Tn and wn be their most
recent common ancestor, let further ûn and v̂n be the children of wn which are respectively
an ancestor of un and vn. We write:

ln(un) = ln(wn) + (ln(ûn) − ln(wn)) + (ln(un) − ln(ûn)),

and we have a similar decomposition for vn. The point is that, conditional on Tn, un and vn,
the random variables ln(wn), ln(un)− ln(ûn) and ln(vn)− ln(v̂n) are independent. Moreover,
according to Proposition 2, with high probability, ln(ûn) − ln(wn) and ln(v̂n) − ln(wn) are
both small compared to N1/4

n .
According to (11), we have

(
σ2

p

4
1

Nn

)1/2 (|wn|, |un| − |ûn|, |vn| − |v̂n|
) (d)−→

n→∞
(me(U, V), eU − me(U, V), eV − me(U, V)) ,

where U and V are i.i.d uniform random variables on [0, 1] independent of e. We shall
prove that, jointly with (11),

√
3
σ2

p

(
ln(wn)√|wn| ,

ln(un) − ln(ûn)√|un| − |ûn|
,

ln(vn) − ln(v̂n)√|vn| − |v̂n|

)
(d)−→

n→∞
(G1, G2, G3) , (17)
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where G1, G2, G3 are i.i.d. standard Gaussian random variables. Proposition 2 and (17)
then imply that, jointly with (11), the pair

⎛
⎝

�
9

4σ2
p

1
Nn

�1/4

(ln(un), ln(vn))

⎞
⎠

n≥1

converges in distribution toward

��
me(U, V)G1 +

�
eU − me(U, V)G2,

�
me(U, V)G1 +

�
eV − me(U, V)G3

�
= (ZU1 , ZU2).

The proof of (17) is mutatis mutandis the same as that of Proposition 3: consider the
three branches �∅, wn�, �ûn, un�, and �v̂n, vn�, we use Lemma 3 to compare the number of
elements in each branch which have i children and among which the j-th one belongs to
the branch to independent multinomial distributions; then we may use the arguments of
the proof of Proposition 3 to each branch independently which yields (17).

The general case k ≥ 2 hides no difficulty. Sample i.i.d. uniform random vertices
un,1, . . . , un,k of Tn; appealing to Proposition 2, we neglect the contribution of the branch-
points of the reduced tree Tn(un,1, . . . , un,k) and we decompose the labels of each vertex un,i

as the sum of the increments over all the branches of the forest Fn(un,1, . . . , un,k); Lemma
3 then yields the generalization of (17).

5.4 Concentration results for discrete excursions
In this subsection, we shall prove two concentration inequalities for the Łukasiewicz path of Tn. The
first one shall be used to derive the tightness of the label process in the next subsection, and the second
one in Section 6 in the proof of Theorem 1.

Proposition 5 Assume that (H) holds and let Wn be the Łukasiewicz path of a tree
sampled uniformly at random in T(n). There exists a constant C > 0 such that, uniformly
for t ≥ 0, n ∈ N and 0 ≤ j < k ≤ Nn + 1 with k − j ≤ Nn/2,

P
�

Wn(j) − min
j≤i≤k

Wn(i) > t
�

≤ exp
�

− t2

C · (k − j)

�
.

Consequently, for every r > 0, if C(r) = Γ(1 + r
2 ) · Cr/2, then the bound

E
��

Wn(j) − min
j≤i≤k

Wn(i)
�r�

≤ C(r) · (k − j)r/2,

holds uniformly for n ∈ N and 0 ≤ j < k ≤ Nn + 1 such that k − j ≤ Nn/2.

This result follows from Section 3 of Addario-Berry [2]. Fix m = (m0, m1, m2, . . . ) a sequence of
non-negative integers with finite sum satisfying

M =
�
i≥0

mi,
�
i≥0

(i − 1)mi = −1 and ς2 =
�
i≥0

(i − 1)2mi,
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and define

B(m) = {
x = (x1, . . . , xM) : #{j : xj = i − 1} = mi for every i ≥ 0

}
.

Given x ∈ B(m), we consider the walk Sx defined by Sx(0) = 0 and Sx(k) = x1 + · · · + xk for
1 ≤ k ≤ M. A careful reading of [2, Section 3] which focuses on the case k = �M/2�, and which
relies on a concentration inequality similar to Lemma 4 applied to the martingale (Sx(k)+1)/(M − k),
yields the following result.

Lemma 5 (Addario-Berry [2]) If x is sampled uniformly at random in B(m), then

P
(

− min
0≤i≤k

Sx(i) ≥ t
)

≤ exp

(
− t2

(16 ς2
M + 8

3 (1 − 1
M ))k

)

for every 1 ≤ k ≤ �M/2� and every t ≥ 0.

Observe that Sx(M) = −1 for every x ∈ B(m); we define further

E(m) = {x ∈ B(m) : Sx(k) ≥ 0 for every 1 ≤ k ≤ M − 1} .

The sets E(m) and T(m) are in one-to-one correspondence: each path Sx with x in E(m) is the
Łukasiewicz path of a tree in T(m). For x ∈ B(m) and j ∈ {1, . . . , M}, denote by x(j) ∈ B(m) the j-th
cyclic shift of x defined by

x(j)
k = xk+j mod M , 1 ≤ k ≤ M.

It is well-known that, given x ∈ B(m), we have x(j) ∈ E(m) if and only if j is the least time at which
the walk Sx achieves its minimum overall value:

j = inf
{

1 ≤ k ≤ M : Sx(k) = inf
1≤i≤M

Sx(i)
}

. (18)

Given x ∈ B(m), we let x∗ be the unique cyclic shift of x in E(m). It is a standard fact that if x has the
uniform distribution in B(m), then the time j satisfying (18) has the uniform distribution on {1, . . . , M}
and furthermore x∗ = x(j) is uniformly distributed in E(m) and is independent of j.

Proof of Proposition 5 According to the previous remark, we know that Wn is distributed
as Sx∗ where x has the uniform distribution in B(n). With the previous notation, M = Nn+1
and

ς2 = (Nn + 1)σ2
n + N2

n

Nn + 1
− Nn + 1 = (Nn + 1)σ2

n + 1
Nn + 1

.

We then apply Lemma 5 to Sx∗ : for every t ≥ 1, for every 1 ≤ k − j ≤ �Nn/2�,

P
(

Sx∗(j) − min
j≤i≤k

Sx∗(i) ≥ t
)

= P
(

− min
0≤i≤k−j

Sx(i) ≥ t
)

≤ exp

(
− t2

(16(σ2
n + 1

Nn+1 ) + 8
3 (1 − 1

Nn+1 )(k − j)

)
,
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which corresponds to the first claim, with C = supn≥1{16(σ2
n+ 1

Nn+1 )+ 8
3 (1− 1

Nn+1 )} < ∞;
the second claim follows by integrating this tail bound applied to t1/r .

We next show that the vertices of Tn with a given offspring are in some sense uniformly distributed
for large n. If T ∈ T is a tree and u0, . . . , uN are its vertices listed in lexicographical order, then for
every set A ⊂ Z+ and every integer 1 ≤ i ≤ N + 1, we let

ΛT ,i(A) = #
{

0 ≤ j ≤ i − 1 : kuj ∈ A
}

be the number of vertices of T amongst the first i which have a number of children in A. The next result
shows that this quantity grows roughly linearly with i.

Proposition 6 Assume that (H) holds and sample Tn uniformly at random in T(n) for
every n ≥ 1. Then for every A ⊂ Z+,

P
(

max
1≤i≤Nn+1

∣∣ΛTn ,i(A) − pn(A)i
∣∣ > N3/4

n

)
−→
n→∞

0.

Proof For every y ∈ B(n), every A ⊂ Z+ and every 1 ≤ i ≤ Nn + 1, set

λy,i(A) = #{1 ≤ k ≤ i : yk + 1 ∈ A}.

Note that λy,Nn+1(A) = (Nn + 1)pn(A). As previously discussed, the Łukasiewicz path of
Tn has the law of Sx where x is uniformly distributed in E(n), so

P
(

max
1≤i≤Nn+1

∣∣ΛTn ,i(A) − pn(A)i
∣∣ > N3/4

n

)
= P

(
max

1≤i≤Nn

∣∣λx,i(A) − pn(A)i
∣∣ > N3/4

n

)
.

Let us first consider y uniformly distributed in B(n). For each 1 ≤ i ≤ Nn + 1 fixed,
λy,i(A) = ∑i

k=1 1{yk+1∈A} is the sum of i dependent Bernoulli random variables, which
arise from a sampling without replacement in an urn with initial configuration of

∑
i∈A ni

“good” balls and Nn + 1 − ∑
i∈A ni “bad” balls. It is well-known that the expected value

of any continuous convex function of λy,i(A) is bounded above by the corresponding
quantity for the sum of i i.i.d. Bernoulli random variables with parameter pn(A), which
arise from sampling with replacement, see, for example, Hoeffding’s seminal paper [18,
Theorem 4]. In particular, the Chernoff bound for binomial random variables still holds
and yields

P
(

max
1≤i≤Nn

∣∣λy,i(A) − pn(A)i
∣∣ > N3/4

n

)
≤ Nn max

1≤i≤Nn
P

(∣∣λy,i(A) − pn(A)i
∣∣ > N3/4

n
)

≤ 2Nn max
1≤i≤Nn

exp
(−2N3/2

n /i
)

= o(N−1
n ).

Next, let j be as in (18) and recall that j is uniformly distributed in {1, . . . , Nn +1} and
that x = y∗ = y(j) is uniformly distributed in E(n) and independent of j. If j = Nn + 1,
then x = y and our claim follows from the above bound. We then implicitly condition j
to be less than Nn +1, in which case it has the uniform distribution in {1, . . . , Nn} and it is
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independent of x. Observe that Nn + 1 − j also has the uniform distribution in {1, . . . , Nn}
and is independent of x, so

P
(

max
1≤i≤Nn

∣∣λx,i(A) − pn(A)i
∣∣ > N3/4

n

)
≤ NnP

(∣∣λx,Nn+1−j(A) − pn(A)(Nn + 1 − j)
∣∣ > N3/4

n
)

.

Furthermore, in our coupling, λx,Nn+1−j(A) = #{1 ≤ k ≤ Nn + 1 − j : xk + 1 ∈ A} is also
equal to #{1 ≤ k ≤ Nn + 1 − j : yNn+2−k + 1 ∈ A}. By time-reversal, we have the identity

(
(yNn+2−k; 1 ≤ k ≤ Nn + 1); Nn + 1 − j

) (d)= (
(yk; 1 ≤ k ≤ Nn + 1); j�

)
,

where j� = sup{0 ≤ k ≤ Nn : Sy(k) = max1≤l≤Nn+1 Sx(l)}. We conclude that

P
(

max
1≤i≤Nn+1

∣∣ΛTn ,i(A) − pn(A)i
∣∣ > N3/4

n

)
≤ NnP

(∣∣λy,j�(A) − pn(A)j�
∣∣ > N3/4

n
) + P (j = Nn + 1) ,

which converges to 0 as n → ∞.

5.5 Tightness of the label process
Let us prove the tightness of the label process; jointly with Proposition 4, this will end the proof of
Theorem 2.

Proposition 7 For every n ≥ 1, sample (Tn, ln) uniformly at random in LT(n). Under
(H), the sequence

(
N−1/4

n Ln(Nnt); t ∈ [0, 1])n≥1

is tight in C ([0, 1], R).

In the remainder of this section, we shall use the notation C(q) for a positive constant which depends
only on a real number q and, implicitly, on the sequences n, and which will often differ from one line
to another.

We shall prove that, for some sequence of events En satisfying P(En) → 1 as n → ∞ (those
from Corollary 3), for every q > 4, for every β ∈ (0, q/4 − 1), for every n large enough, for every
i, j ∈ {0, . . . , Nn},

E
[|Ln(i) − Ln(j)|q

∣∣ En
] ≤ C(q) · Nq/4

n ·
∣∣∣∣
i − j
Nn

∣∣∣∣
1+β

. (19)

Set L(n)(t) = N−1/4
n Ln(Nnt) for n ∈ N and t ∈ [0, 1], then the previous display reads

E
[∣∣L(n)(s) − L(n)(t)

∣∣q ∣∣ En
] ≤ C(q) · |s − t|1+β,

whenever s, t ∈ [0, 1] are such that Nns and Nnt are both integers. Since L(n) is defined by linear
interpolation between such times, this bound then holds for every s, t ∈ [0, 1] (possibly with a different
constant C(q)). Since q can be chosen arbitrarily large, the standard Kolmogorov criterion then implies
the following bound for the Hölder norm of L(n): for every α ∈ (0, 1/4),

lim
K→∞

lim sup
n→∞

P
(

sup
0≤s �=t≤1

|L(n)(s) − L(n)(t)|
|s − t|α > K

∣∣∣∣ En

)
= 0;
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since P(En) → 1 as n → ∞, we obtain

lim
K→∞

lim sup
n→∞

P
�

sup
0≤s �=t≤1

|L(n)(s) − L(n)(t)|
|s − t|α > K

�
= 0,

and the sequence (L(n); n ≥ 1) is tight in C ([0, 1], R).
The proof of (19) relies on the coding of Tn by its Łukasiewicz path. The next lemma, whose proof

is left as an exercise, gathers some deterministic results that we shall need (we refer to eg, Le Gall
[25] for a thorough discussion of such results). In order to simplify the notation, we identify for the
remainder of this section the vertices of a one-type tree with their index in the lexicographic order: if
u and u� are the i-th and i�-th vertices of Tn, we write u ≤ K if i ≤ K , Wn(u) for Wn(i) and |u − u�| for
|i − i�|, the lexicographic distance between u and u�. Recall also that uj is the j-th child of a vertex u.

Lemma 6 Let T be a one-type plane tree and W be its Łukasiewicz path. Fix a vertex
u ∈ T, then

W(uku) = W(u), W(uj�) = inf
[uj,uj�]

W and j� − j = W(uj) − W(uj�)

for every 1 ≤ j ≤ j� ≤ ku.

In the course of the proof of (19), we shall need the following two ingredients. First, a consequence
of the so-called Marcinkiewicz–Zygmund inequality, see, for example, Gut [17, Theorem 8.1]: fix
q ≥ 2 and consider independent and centred random variables Y1, . . . , Ym which admit a finite q-th
moment, then there exists C(q) ∈ (0, ∞) such that

1
C(q)

· E

⎡
⎣

�
m�

i=1

|Yi|2
�q/2

⎤
⎦ ≤ E

������
m�

i=1

Yi

�����
q�

≤ C(q) · E

⎡
⎣

�
m�

i=1

|Yi|2
�q/2

⎤
⎦ .

Consider the right-most term, and raise it temporarily to the power 2/q in order to apply the triangle
inequality for the Lq/2-norm, the second inequality thus yields the following bound:

E

������
m�

i=1

Yi

�����
q�

≤ C(q) ·
�

m�
i=1

E
�|Yi|q

�2/q

�q/2

. (20)

Second, for every r ≥ 1, consider X (r) a uniform random bridge in B+
r , defined in (7); Le Gall and

Miermont [29, Lemma 1] have shown that for every q ≥ 2 and every i, j ∈ {0, . . . , r},

E
����X(r)

i − X (r)
j

���
q� ≤ C(q) · |i − j|q/2. (21)

Proof of Proposition 7 Recall that we identify the vertices of Tn with their index in the
lexicographic order. Fix q > 4, β ∈ (0, q/4 − 1), n large enough so that En defined in
Corollary 3 has probability larger than 1/2, and two integers 0 ≤ u < v ≤ Nn + 1 with
v − u ≤ �Nn/2�; we aim at showing

E
�|ln(u) − ln(v)|q

�� En
� ≤ C(q) · Nq/4

n ·
����
u − v

Nn

����
1+β

.
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Let u ∧ v, be the most recent common ancestor of u and v in Tn and further û and v̂ be the
children of u ∧ v which are respectively ancestor of u and v. We stress that u and v are
deterministic times, whereas u ∧ v, û, and v̂ are random and measurable with respect to
Tn. We write:

ln(u) − ln(v) =
⎛
⎝ �

w∈�û,u�
ln(w) − ln(pr(w))

⎞
⎠ + (ln(û) − ln(v̂)) +

⎛
⎝ �

w∈�v̂,v�
ln(pr(w)) − ln(w)

⎞
⎠ .

Recall the notation 1 ≤ χû ≤ χv̂ ≤ ku∧v for the relative position of û and v̂ among the
children of u ∧ v. By construction of the labels on Tn, the bound (21) reads in our context:

E
���ln(û) − ln(v̂)

��q �� Tn
� ≤ C(q) · (χv̂ − χû)

q/2.

Next, fix w ∈�û, u�, since ln(pr(w)) = ln(pr(w)kpr(w)), as previously, the bound (21)
gives:

E
�|ln(w) − ln(pr(w))|q �� Tn

� ≤ C(q) · (kpr(w) − χw)q/2.

Similarly, for every w ∈�v̂, v�, we have

E
�|ln(pr(w)) − ln(w)|q �� Tn

� ≤ C(q) · χq/2
w .

According to the inequality (20), we thus have

E
�|ln(u) − ln(v)|q

�� Tn
� ≤ C(q) ·

⎛
⎝ �

w∈�û,u�
(kpr(w) − χw) + (χv̂ − χû) +

�
w∈�v̂,v�

χw

⎞
⎠

q/2

≤ C(q) ·
⎛
⎝

⎛
⎝ �

w∈�û,u�
(kpr(w) − χw) + (χv̂ − χû)

⎞
⎠

q/2

+
⎛
⎝ �

w∈�v̂,v�
χw

⎞
⎠

q/2⎞
⎠ .

(22)

Let us first consider the first term in (22). Appealing to Lemma 6, we have

χv̂ − χû = Wn(û) − Wn(v̂),

and similarly, for every w ∈�û, u�,

kpr(w) − χw = Wn(w) − Wn(pr(w)kpr(w)) = Wn(wkw) − Wn(pr(w)kpr(w)),

so
�

w∈�û,u�
(kpr(w) − χw) + (χv̂ − χû) = Wn(u) − Wn(v̂) = Wn(u) − inf

[u,v]
Wn.

Proposition 5 then yields

E

⎡
⎣

⎛
⎝ �

w∈�û,u�
(kpr(w) − χw) + (χv̂ − χû)

⎞
⎠

q/2 ���� En

⎤
⎦ ≤ C(q) · |u − v|q/4 ≤ C(q) · Nq/4

n ·
����
u − v

Nn

����
1+β

.
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We next focus on the second term in (22). We would like to proceed symmetrically
but there is a technical issue: on the branch �û, u�, we strongly used the fact that ln(wkw) =
ln(w) and this does no hold on �v̂, v�: we do not have ln(w1) = ln(w) in general. Let T−

n
be the “mirror image” of Tn, that is, the tree obtained from Tn by flipping the order of the
children of every vertex; let us write w− ∈ T−

n for the mirror image of a vertex w ∈ Tn;
make the following observations:

• T−
n has the same law as Tn, so in particular, its Łukasiewicz path has the same law as

that of Tn;
• for every w ∈�v̂, v�, the quantity χw − 1 in Tn corresponds to the quantity kpr(w−) −χw−

in T−
n ;

• the lexicographical distance between the last descendant in T−
n of respectively v̂− and

v− is smaller than the lexicographical distance between v̂ and v in Tn (the elements of
�v̂, v� =�v̂−, v−� are missing).

With theses observations, the previous argument used to control the branch �û, u� shows
that

E

⎡
⎣

⎛
⎝ �

w∈�v̂,v�
(χw − 1)

⎞
⎠

q/2 ���� En

⎤
⎦ ≤ C(q) · |u − v|q/4 ≤ C(q) · Nq/4

n ·
����
u − v

Nn

����
1+β

.

Since χw ≤ 2(χw − 1) whenever χw ≥ 2, it only remains to show that

E
�
#{w ∈�v̂, v� : χw = 1}q/2

�� En
� ≤ C(q) · Nq/4

n ·
����
u − v

Nn

����
1+β

.

Let C and hn be as in Corollary 3. On the one hand, since hn is small compared to any
positive power of Nn, we have for n large enough,

E
�
#{w ∈�v̂, v� : χw = 1}q/21{#�v̂,v�≤hn}

� ≤ hq/2
n ≤ Nq/4

n ·
����
u − v

Nn

����
1+β

.

On the other hand, if #�v̂, v� > hn, then on the event En, we know that

#{w ∈�v̂, v� : χw = 1} ≤ C · #{w ∈�v̂, v� : χw ≥ 2} ≤ C
�

w∈�v̂,v�
(χw − 1).

We then conclude from the previous bound.

Remark 3 It is possible that the following stronger bound than (19) holds: for every
q > 4 and every 0 ≤ u < v ≤ Nn + 1,

E
�|Ln(u) − Ln(v)|q

� ≤ C(q) · |u − v|q/4. (23)
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Indeed, the only missing point in the previous proof is the last bound on the moments of
#{w ∈�v̂, v� : χw = 1 and kpr(w) ≥ 2}.5 Observe that

#{w ∈�v̂, v� : χw = 1 and kpr(w) ≥ 2} ≤ #
{

w ∈ [u, v[: Wn(w) < inf
]w,v]

Wn

}

(d)= #
{

w ∈]0, v − u] : Sn(w) > sup
[0,w[

Sn

}

≤ sup
0≤w≤v−u

Sn(w),

where Sn is a uniform random bridge in B(n), as defined in Section 5.4; it is obtained by
first taking the v-th cyclic shift of Wn and then going backward in time and space.

Under the stronger assumption that Δn is uniformly bounded (which is the case for
eg, uniform random 2κ-angulations), Proposition 5 shows that for every r > 0,

E
[(

sup
0≤w≤v−u

Sn(w)

)r]
≤ C(r) · |u − v|r/2,

uniformly for n ∈ N and 0 ≤ u < v ≤ Nn + 1 such that |u − v| ≤ �Nn/2�, which
yields (23).

On another model, Miermont [38, Proof of Proposition 8], obtained the bound

E
[(

#
{

w ∈]0, v − u] : S(w) = sup
[0,w]

S
})r]

≤ C(r) · |u − v|r/2,

where S is a centred random walk with finite variance. The argument used in the proof of
Lemma 4 enables us to extend it to such a walk conditioned to be at −1 at time Nn + 1.
This case corresponds to Boltzmann random maps (with generic critical weight sequence)
studied in Section 7, for which (23) therefore holds.

6 CONVERGENCE OF RANDOM MAPS

In this short section we deduce Theorem 1 from Theorem 2, following the argument of Le Gall [27,
Section 8.3] and [26, Section 3]. First, observe that every map in M(n) has n0 + 1 vertices so, if Mn

has the uniform distribution in M(n) and M�
n is a pointed map obtained by distinguishing a vertex of

Mn uniformly at random, then M�
n has the uniform distribution in M�(n). It is therefore sufficient to

prove Theorem 1 with Mn replaced by M�
n.

Let M�
n be a (deterministic) pointed and rooted planar map in M�(n) and denote by � its origin; let

(Tn, �n) be its associated two-type labeled tree via the BDG bijection and let (c◦
0, . . . , c◦

Nn) be the white
contour sequence of the latter. Recall that the vertices c◦

i are identified to the vertices of Mn different
from �. For every i, j ∈ {0, . . . , Nn}, we set

dn(i, j) = dgr(c◦
i , c◦

j ),

where dgr is the graph distance of Mn. We then extend dn to a continuous function on [0, Nn]2 by
“bilinear interpolation” on each square of the form [i, i + 1] × [j, j + 1] as in [27, Section 2.5]. Recall

5Note that we did not include the condition kpr(w) ≥ 2 in the previous proof but the increment of label is zero if kpr(w) = 1.
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the convention c◦
Nn+i = c◦

i for every 0 ≤ i ≤ Nn and the interpretation, at the very end of Section 2.3,
of the labels as distances from � in Mn: for every 0 ≤ i ≤ Nn,

dgr(�, c◦
i ) = L◦

n(i) − min
0≤j≤Nn

L◦
n(j) + 1. (24)

Then, using the triangle inequality at a point where a geodesic from c◦
i to � and a geodesic from c◦

j to
� merge, Le Gall [27, Equation 4] obtains the bound

dn(i, j) ≤ L◦
n(i) + L◦

n(j) − 2 max
{

min
i≤k≤j

L◦
n(k); min

j≤k≤Nn+i
L◦

n(k)

}
+ 2. (25)

See also Lemma 3.1 in [26] for a detailed proof in a slightly different context.
Define for every t ∈ [0, 1]:

C(n)(t) =
(

σ2
p

16p2
0

1
Nn

)1/2

Cn(2Nnt), and L◦
(n)(t) =

(
9

4σ2
p

1
Nn

)1/4

L◦
n(Nnt),

and for every s, t ∈ [0, 1]:

d(n)(s, t) =
(

9
4σ2

p

1
Nn

)1/4

dn(Nns, Nnt),

DL◦
(n)

(s, t) = L◦
(n)(s) + L◦

(n)(t) − 2 max
{
Ľ◦

(n)(s); Ľ◦
(n)(t)

}
,

where Ľ◦
(n) is defined in a similar way as Ž in Section 3.1.

Proposition 8 Let (Tn, �n) have the uniform distribution in LT◦,•(n) for every n ≥ 1.
Under (H), the convergence in distribution of continuous paths

(
C(n)(t), L◦

(n)(t), d(n)(s, t)
)

s,t∈[0,1]
(d)−→

n→∞
(et , Zt , D(s, t))s,t∈[0,1],

holds, where D is defined in Section 3.1.

Proof The convergence (6), jointly with Remark 1 yields the convergence in distribution

(
C(n)(t), L◦

(n)(t), DL◦
(n)

(s, t)
)

s,t∈[0,1]
(d)−→

n→∞
(et , Zt , DZ(s, t))s,t∈[0,1].

The bound (25) implies further the tightness of (d(n); n ≥ 1), see Proposition 3.2 in [26]
for a proof in a similar context. Therefore, from every sequence of integers converging
to ∞, we can extract a subsequence along which we have

(
C(n)(t), L◦

(n)(t), d(n)(s, t)
)

s,t∈[0,1]
(d)−→

n→∞
(et , Zt , D(s, t))s,t∈[0,1], (26)

where (D(s, t); 0 ≤ s, t ≤ 1) depends a priori on the subsequence. We claim that

D = D almost surely.
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From the bound (25), D is bounded above by DZ , also (see Proposition 3.3 in [26]),
one can check that D is a pseudo-metric on [0, 1] which satisfies D(s, t) = 0 as soon as
de(s, t) = 0. It thus follows from the maximality property discussed in section 3.1 that
D ≤ D almost surely. Our aim is to show the following: let X, Y be i.i.d. uniform random
variables on [0, 1] such that the pair (X, Y) is independent of everything else, then

D(X, Y)
(d)= D(s�, Y) = ZY − Zs� , (27)

where s� is the (a.s. unique [31]) point at which Z attains its minimum. The second equality
is a continuous analog of (24) which can be obtained from the latter by letting n → ∞
along the same subsequence as in (26). Le Gall [27, Corollary 7.3] has proved that (27)
holds true when D is replaced by D . In particular, if (27) holds, then D(X, Y) is distributed
as D(X, Y). Since we know that D ≤ D almost surely, this implies D(X, Y) = D(X, Y)

almost surely which, by a density argument, implies D = D almost surely.
Let us prove (27). We adapt the argument of Bettinelli and Miermont [11, Lemma 32].

Recall that the white contour sequence of Tn is denoted by (c◦
0, . . . , c◦

Nn) and let v1, . . . , vn0
be its white vertices listed in the order of their last visit in the contour sequence; for
example the root is vn0 . For 1 ≤ i ≤ n0, let g(i) ∈ {1, . . . , Nn} be the index such that c◦

g(i)
is the last visit of vi. Observe that (c◦

g(1), . . . , c◦
g(n0)) = (v1, . . . , vn0) is an enumeration of

the white vertices of Tn without redundancies. We then set g(0) = 0 and extend g linearly
to a continuous function on [0, n0]. Let us prove that

(
g(n0t)

Nn
; t ∈ [0, 1]

)
P−→

n→∞
(t; t ∈ [0, 1]). (28)

Let Λ(0) = 0 and for every 1 ≤ j ≤ Nn, let

Λ(j) = #
{
1 ≤ i ≤ n0 : vi ∈ {c◦

0, . . . , c◦
j } and vi /∈ {c◦

j+1, . . . , c◦
Nn}

}
,

denote the number of vertices fully explored at time j in the white contour exploration.
Then (28) is equivalent to

(
Λ(Nnt)

n0
; t ∈ [0, 1]

)
P−→

n→∞
(t; t ∈ [0, 1]).

Let Tn be the image of Tn by the JS bijection; it can be checked along the same line as
the proof of Lemma 1 that for every 1 ≤ j ≤ Nn, Λ(j) denotes the number ΛTn ,j(0) of
leaves among the first j vertices of Tn in lexicographical order. The above convergence
of Λ thus follows from Proposition 6.

Fix X, Y i.i.d. uniform random variables on [0, 1] such that the pair (X, Y) is inde-
pendent of everything else, and set x = c◦

g(�n0X�) and y = c◦
g(�n0Y�). Note that x and y are

uniform random white vertices of Tn, they can therefore be coupled with two independent
uniform random vertices x� and y� of M�

n in such a way that the conditional probability
given M�

n that (x, y) �= (x�, y�) is at most 2(n0 + 1)−1 → 0 as n → ∞; we implicitly
assume in the sequel that (x, y) = (x�, y�). Since � is also a uniform random vertex of M�

n,
we obtain that

dgr(x, y) (d)= dgr(�, y). (29)
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By definition,

dgr(x, y) = dn(g(�n0X�), g(�n0Y�)),

and, according to (24),

dgr(�, y) = L◦
n(g(�n0Y�)) − min

0≤j≤Nn
L◦

n(j) + 1.

We obtain (27) by letting n → ∞ in (29) along the same subsequence as in (26), appealing
also to (28).

The proof of Theorem 1 is then routine.

Proof of Theorem 1 We aim at showing the convergence of metric spaces

⎛
⎝M�

n,

�
9

4σ2
p

1
Nn

�1/4

dgr

⎞
⎠ (d)−→

n→∞
(M , D), (30)

for the Gromov–Hausdorff topology. Recall (see, eg, [14, Chapter 7.3]) that a correspon-
dence between two metric spaces (X, dX) and (Y , dY ) is a set R ⊂ X × Y such that for
every x ∈ X, there exists y ∈ Y such that (x, y) ∈ R and vice-versa. The distortion of R is
defined as

dis(R) = sup
���dX(x, x�) − dY (y, y�)

�� ; (x, y), (x�, y�) ∈ R
�

.

Finally, the Gromov–Hausdorff distance between (X, dX) and (Y , dY ) is given by ([14,
Theorem 7.3.25])

1
2

· inf
R

dis(R),

where the infimum is taken over all correspondences R between (X, dX) and (Y , dY ).
The proof is deterministic: we show that the convergence (30) holds whenever that in

Proposition 8 does. Indeed, let (M�
n \ {�}, dgr) be the metric space given by the vertices

of M�
n different from � and their graph distance in M�

n and observe that the Gromov–
Hausdorff distance between (M�

n, dgr) and (M�
n \ {�}, dgr) is bounded by one. Recall

that the vertices of M�
n different from � are in bijection with the white vertices of its

associated two-type tree Tn, which are given (with redundancies) by the white contour
sequence (c◦

0, . . . , c◦
Nn). Let Π be the canonical projection Te → M = Te/ ≈, then the

set

Rn = ��
c◦

�Nn t�, Π(πe(t))
�

; t ∈ [0, 1]� .

is a correspondence between (M�
n \ {�}, ( 9

4σ2p

1
Nn

)1/4dgr) and (M , D) and its distortion is
given by

sup
s,t∈[0,1]

��d(n)(�Nns�/Nn, �Nnt�/Nn) − D(s, t)
�� ,

which tends to 0 whenever the convergence in Proposition 8 holds. This concludes the
proof.
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7 BOLTZMANN RANDOM MAPS

In this last section, we state and prove the results alluded in Section 1.3 on Boltzmann random maps.
Let us make a preliminary remark: we shall divide by real numbers which depend on an integer n,
and consider conditional probabilities with respect to events which depend on n; we shall therefore, if
necessary, implicitly restrict ourselves to those values of n for which such quantities are well-defined
and statements such as “as n → ∞” should be understood along the appropriate sequence of integers.
Let us fix a sequence of non-negative real numbers q = (qi; i ≥ 0) which, in order to avoid trivialities,
satisfies qi > 0 for at least one i ≥ 2.

7.1 Rooted and pointed Boltzmann maps
Let M� be the set of all rooted and pointed bipartite maps, that we shall view as pairs (M, �), where
M ∈ M is a rooted bipartite map, and � is a vertex of M. We adapt the distributions described in
Section 1.3 to such maps by setting

Wq,�((M, �)) = Wq(M) =
∏

f ∈Faces(M)

qdeg(f )/2, (M, �) ∈ M�,

where Faces(M) is the set of faces of M and deg(f ) is the degree of such a face f . We set Z�
q =

Wq,�(M�).

Definition 1 The sequence q is called admissible when Z�
q is finite.6

If q is admissible, we set

Pq,�(·) = 1
Z�

q
Wq,�(·).

For every integer n ≥ 2, let M�
E=n, M�

V=n and M�
F=n be the subsets of M� of those maps with respectively

n−1 edges, n+1 vertices (these shifts by one will simplify the statements) and n faces. More generally,
for every A ⊂ N, let M�

F,A=n be the subset of M� of those maps with n faces whose degree belongs to
2A (and possibly other faces, but with a degree in 2N \ 2A). For every S = {E, V , F} ∪ ⋃

A⊂N{F, A}
and every n ≥ 2, we define

Pq,�
S=n((M, �)) = Pq,�((M, �) | (M, �) ∈ M�

S=n), (M, �) ∈ M�
S=n,

the law of a rooted and pointed Boltzmann map conditioned to have size n.
Given the sequence q, set

q0 = 1 and qk =
(

2k − 1
k − 1

)
qk for k ≥ 1, (31)

and define the power series

gq(x) =
∑
k≥0

xkqk , x ≥ 0. (32)

6In Section 1.3, we considered unpointed maps and denoted the total mass by Zq. Clearly, if Z�
q is finite, then so is Zq. It can

be shown that the converse implication holds, see, for example, [9], so the notion of admissibility is the same for pointed and
unpointed maps.
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Denote by Rq its radius of convergence, note that gq is convex, strictly increasing and continuous on
[0, Rq] and gq(0) = 1. In particular, it has at most two fixed points, necessarily in (1, Rq]; in fact, we
have the following exclusive four cases:

(i) There are no fixed points.
(ii) There are two fixed points 1 < x1 < x2 ≤ Rq, moreover g�

q(x1) < 1 and g�
q(x2) > 1.

(iii) There is a unique fixed point 1 < x ≤ Rq, with g�
q(x) < 1.

(iv) There is a unique fixed point 1 < x ≤ Rq, with g�
q(x) = 1.

Marckert and Miermont [33] have defined another power series fq, such that gq(x) = 1 + xfq(x)
for every x ≥ 0. Proposition 1 in [33] reads as follows with our notation.

Proposition 9 (Marckert and Miermont [33]) The sequence q is admissible if and only
if gq has at least one fixed point. In this case, Z�

q is the fixed point satisfying g�
q(Z�

q) ≤ 1.

The proof in [33] is based on the BDG bijection, we shall present a short adaption in Section
7.3 using the composition of the BDG and the JS bijections. Following [33] let us introduce more
terminology.

Definition 2 An admissible sequence q is called critical when Z�
q is the unique fixed

point of gq and satisfies moreover g�
q(Z�

q) = 1. It is called generic critical when it is
admissible, critical, and g��

q(Z�
q) < ∞, and regular critical when moreover Z�

q < Rq.

Note that an admissible sequence q induces a probability measure on Z+ with mean smaller than
or equal to one:

pq(k) = (Z�
q)

k−1
(

2k − 1
k − 1

)
qk , k ≥ 0. (33)

Indeed,

∑
k≥0

pq(k) = gq(Z�
q)

Z�
q

= 1, and
∑
k≥0

kpq(k) = g�
q(Z

�
q) ≤ 1.

This distribution has mean 1 if and only if q is critical, and in this case, its variance is

Σ2
q =

(∑
k≥0

k2pq(k)

)
− 1 =

(
d
dx

xg�
q(x)

)∣∣∣∣
x=Z�q

− 1 = Z�
qg��

q(Z
�
q), (34)

which is finite if and only if q is generic critical. In terms of the function fq from [33], we have
Σ2

q = (2 + (Z�
q)

3f ��
q (Z�

q))/Z�
q . The argument of [33, Proposition 7] show that if q is regular critical, then

pq admits small exponential moments.

Theorem 3 Suppose q is generic critical, define pq by (33) and Σ2
q by (34) and for

every subset A ⊂ N, define

Cq
E = 1, Cq

V = pq(0) = 1
Z�

q
, Cq

F = 1 − pq(0) = 1 − 1
Z�

q
, Cq

F,A = pq(A).
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Fix S ∈ {E, V , F} ∪ �
A⊂N{F, A} and for every n ≥ 2, sample Mn from Pq

S=n, then the
convergence in distribution

⎛
⎝Mn,

�
9
4

Cq
S

Σ2
q

1
n

�1/4

dgr

⎞
⎠ (d)−→

n→∞
(M , D),

holds in the sense of Gromov–Hausdorff.

Note that the Boltzmann laws in this statement are not the pointed versions. We shall prove first
that it holds under the pointed version Pq,�

S=n, relying on the composition of the BDG and JS bijections
to check that (H) is fulfilled with the probability pq given by (33). Then we will show that Pq,�

S=n and
Pq

S=n are close as n → ∞; the argument of the latter will closely follow that of Bettinelli and Miermont
[11, Section 7.2], see also Abraham [1, Section 6], and Bettinelli, Jacob, and Miermont [10, Section 3].

Remark 4 Le Gall [27, Theorem 9.1] obtained this result in the case S = V , when
q is supposed to be regular critical, not only generic critical. Bettinelli and Miermont
[11, Theorem 5] also obtained similar convergences in the three cases S = E, V , F for
Boltzmann maps with a boundary, associated with regular critical weights. Theorem 3
completes (and improves since we only assume q to be generic critical) their Remark 2.

Note that ME=n is finite for every n ≥ 2 so the Boltzmann distribution Pq
E=n makes sense even if

Zq = ∞. The proof of Theorem 3 shows that we do not need q to be admissible in this case.

Theorem 4 Suppose there exists x > 0 (necessarily unique) such that

gq(x) < ∞, xg�
q(x) = gq(x), and xg��

q(x) < ∞.

Then if Mn is sampled from Pq
E=n for every n ≥ 2, the convergence in distribution

⎛
⎝Mn,

�
9
4

gq(x)
x2g��

q(x)
1
n

�1/4

dgr

⎞
⎠ (d)−→

n→∞
(M , D),

holds in the sense of Gromov–Hausdorff.

If q is generic critical, then the assumptions are fulfilled by x = Z�
q: we have gq(Z�

q) = Z�
q so

xg�
q(x) = gq(x) is equivalent to g�

q(Z�
q) = 1 and then

gq(x)
x2g��

q(x)
= 1

Z�
qg��

q(Z�
q)

= 1
Σ2

q
= Cq

E

Σ2
q

,

so Theorem 4 recovers Theorem 3.
As an application of Theorem 4, consider the case qk = 1 for every k ≥ 1, then Pq

E=n is the uniform
distribution in ME=n. In this case, gq has a radius of convergence equal to 1/4 and is given by

gq(x) = 1 +
�
k≥1

xk
�

2k − 1
k − 1

�
= 1 + √

1 − 4x
2
√

1 − 4x
, 0 < x < 1/4.
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Furthermore,

xg�
q(x) = gq(x) if and only if x = 3

16
, and then

gq(3/16)

(3/16)2g��
q(3/16)

= 9
2

,

so Theorem 4 yields Corollary 2.
The proofs of Theorems 3 and 4 use the notion of simply generated trees that we next recall.

7.2 Simply generated trees
Let us define a measure on the set of finite one-type tree T by

Θq(T) =
∏
u∈T

w(ku), T ∈ T.

Let Υq = Θq(T), if the latter is finite, we define a probability measure on T by

SGq
(·) = 1

Υq
Θq(·).

A random tree sampled according to SGq is called a simply generated tree. Such distributions have
been introduced by Meir and Moon [37] and studied in great detail by Janson [19] on the set of trees
with a given number of vertices. A particular case is when the weight sequence q is a probability
measure on Z+ with mean less than or equal to one: in this case, Υq = 1 and SGq = Θq is the law
of a subcritical Galton–Watson tree with offspring distribution q; we denote it by GWq. When the
expectation of q is exactly equal to one, we say that q (as well as any random tree sampled from GWq)
is critical.

Note that we may define simply generated trees with n vertices even if Υq is infinite by rescaling
the measure Θq restricted to this finite set by its total mass.

Lemma 7 Let us denote by #T the number of vertices of a tree T ∈ T.

(i) Fix c > 0 and set q̃k = ck−1qk for every k ≥ 0. Then Υq̃ < ∞ if and only if Υq < ∞
and in this case, the laws SGq̃ and SGq coincide.

(ii) Fix a, b > 0 and set q̂k = abkqk for every k ≥ 0. Then the conditional laws SGq̂
( · |

#T = n) and SGq
( · | #T = n) coincide for all n ≥ 1.

Proof Note that for every tree T ∈ T, one has
∑

u∈T ku = #T −1 and so
∑

u∈T (ku −1) =
−1; it follows that

Θq̃(T) =
∏
u∈T

cku−1qku = c−1Θq(T),

so Υq̃ = c−1Υq and the first claim follows. Similarly,

Θq̂(T) =
∏
u∈T

abku qku = a#T b#T−1Θq(T),

so Θq̂({T ∈ T : #T = n}) = anbn−1Θq({T ∈ T : #T = n}) and the second claim
follows.
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We shall use Lemma 7 with sequences q̃ or q̂ which are probability measures with mean 1 so,
in the first case, SGq̃ = GWq̃ is the law of a critical Galton–Watson tree, and in the second case,
SGq̂

( · | #T = n) = GWq̂( · | #T = n) is the law of such a tree conditioned to have n vertices.
We close this section with two results on size-conditioned critical Galton–Watson; the proofs

are deferred to Section 7.4. We first claim that the empirical degree sequence of a Galton–Watson
tree conditioned to be large satisfies (H). For a plane tree T and an integer i ≥ 0, let us denote by
nT (i) = #{u ∈ T : ku = i} the number of vertices of T with i children. For any subset A ⊂ Z+, set
nT (A) = ∑

i∈A ni(T); note that nT (Z+) is the total number of vertices of T , nT (0) is its number of leaves
and nT (N) its number of internal vertices. Consider the empirical offspring distribution of T and its
variance, given by

pT (i) = nT (i)
nT (Z+)

for i ≥ 0 and σ2
T =

∑
i≥0

i2pT (i) −
(

nT (Z+) − 1
nT (Z+)

)2

,

and finally set ΔT = max{i ≥ 0 : nT (i) > 0}.

Proposition 10 Let μ be a critical distribution in Z+ with variance σ2 ∈ (0, ∞) and
fix A ⊂ Z+; under GWμ( · | nT (A) = n), the convergence

(
pT , σ2

T , nT (Z+)−1/2ΔT
) P−→

n→∞
(μ, σ2, 0),

holds in probability.

This result was obtained by Broutin and Marckert [13, Lemma 11] in the case A = Z+. Their proof
extends to the general case using arguments due to Kortchemski [22].

Finally, we claim that the inverse of the number of leaves, normalized to have expectation 1,
converges to 1 in L1.

Lemma 8 Let μ be a critical distribution in Z+ with variance σ2 ∈ (0, ∞). For every
A ⊂ Z+, we have

lim
n→∞

GWμ

[∣∣∣∣∣
1

nT (0)

1
GWμ[ 1

nT (0)
| nT (A) = n] − 1

∣∣∣∣∣
∣∣∣∣ nT (A) = n

]
= 0.

7.3 Convergence of Boltzmann random maps
We first prove the convergence of rooted and pointed Boltzmann maps, using the BDG and the JS
bijections, and next compare the pointed and non pointed Boltzmann laws to deduce Theorems 3
and 4.

Proposition 11 Theorems 3 and 4 hold under their respective assumptions when the
measures Pq

S=n are replaced by their pointed version Pq,�
S=n.

The main idea is to observe that for every n ≥ 2 and S ∈ {E, V , F} ∪ ⋃
A⊂N{F, A}, the composition

of the BDG and the JS bijections maps the set M�
S=n onto the subset of T of those trees T satisfying

nT (BS) = n, where for every A ⊂ N,

BE = Z+, BV = {0}, BF = N and BF,A = A. (35)
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We shall use Lemma 7 with sequences q̃ or q̂ which are probability measures with mean 1 so,
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1

nT (0)

1
GWμ[ 1

nT (0)
| nT (A) = n] − 1

∣∣∣∣∣
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Proof Fix a rooted and pointed map (M, �) ∈ M� and let (T , l) be its associated labeled
one-type tree after the BDG and then the JS bijections. Recall that the faces of M are in
bijection with the internal vertices of T , whereas the vertices of M different from � are in
bijection with the leaves of T ; in particular, with the notation of the previous subsection,
for every i ≥ 1, the number of faces of M of degree 2i is given by nT (i), and its number
of vertices minus one by nT (0). Thereby,

W q,�((M, �)) =
∏

f ∈Faces(M)

qdeg(f )/2 =
∏

u∈T :ku≥1

qku .

Recall also from (8) the number of possible labelings of a given plane tree. The measure
W q,� on M� thus induces a measure on T, where each T ∈ T is given the weight

∏
u∈T :ku≥1

(
2ku − 1
ku − 1

)
qku = Θq(T),

where q is given by (31). This shows that if (M, �) has the law Pq,� and (T , l) its associated
labeled one-type tree after the BDG and then the JS bijections, then T has the law SGq.
Similarly, for every n ≥ 2 and S ∈ {E, V , F} ∪ ⋃

A⊂N{F, A}, if (M, �) has the law Pq,�
S=n,

then T has the law SGq
( · | nT (BS) = n), where BS is given by (35). Furthermore, in

both cases, conditional on the tree T , the labeling l is uniformly distributed amongst all
possibilities.

Let us now prove that Theorem 4 holds for the pointed maps sampled from Pq,�
E=n.

Suppose that x > 0 is such that

gq(x) < ∞, xg�
q(x) = gq(x), and xg��

q(x) < ∞.

Define a probability measure on Z+ similar to (33) where Z�
q is replaced by x:

μq(k) = xkqk

gq(x)
, k ≥ 0. (36)

Note that μq has expectation

∑
k≥0

kμq(k) = xg�
q(x)

gq(x)
= 1,

and variance

∑
k≥0

k2μq(k) − 1 = xg�
q(x) + x2g��

q(x)
gq(x)

− 1 = x2g��
q(x)

gq(x)
∈ (0, ∞).

According to Lemma 7(ii), the tree T has the law GWμq( · | nT (Z+) = n), Proposition
10 and Skorohod’s representation Theorem ensure then that, on some probability space,
(H) is fulfilled almost surely with p = μq and we conclude from Theorem 1.
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The proof of the fact that Theorem 3 holds for the pointed maps sampled from Pq,�
S=n is

similar. If q is generic critical, then Z�
q satisfies the above assumptions on x and furthermore

gq(Z�
q) = Z�

q so μq is the probability pq given by (33):

μq(k) = pq(k) = (Z�
q)

k−1qk , k ≥ 0.

According to Lemma 7(i), the tree T has the law GWpq( · | nT (BS) = n). Again,
Proposition 10 ensures then that (H) is fulfilled with p = pq and the claim follows.

We have seen all the ingredients to prove Proposition 9. The proof is inspired from [33].

Proof of Proposition 9 Let q be given by (31). According to the previous proof, we have

Z�
q =

∑
(M,�)∈M�

Wq,�((M, �)) =
∑
T∈T

Θq(T) = Υq,

Suppose that this quantity is finite, we next decompose the second sum according to the
degree of the root of T . If the latter is k, then T is made of k trees, say T1, . . . , Tk , attached
to a common root; this leads to the following equation:

∑
T∈T

Θq(T) =
∑
k≥0

qk

∑
T1,...,Tk∈T

k∏
i=1

Θq(Ti) =
∑
k≥0

qk

(∑
T∈T

Θq(T)

)k

,

in other words Z�
q = gq(Z�

q). Let us prove furthermore that g�
q(Z�

q) ≤ 1. Since Z�
q = gq(Z�

q),
the sequence pq defined by pq(k) = (Z�

q)
k−1qk for every k ≥ 0 is a probability and g�

q(Z�
q)

is its mean. According to Lemma 7(i), the law SGq coincides with SGpq so

∑
T∈T

SGpq(T) = 1
Υq

∑
T∈T

Θq(T) = 1.

We conclude that SGpq = GWpq is the law of a sub-critical Galton–Watson tree with
offspring distribution pq, which has therefore mean g�

q(Z�
q) ≤ 1.

Conversely, suppose that gq has at least one fixed point and let us prove that Z�
q is

finite. Recall that one of the fixed points, say, x > 0, must satisfy g�
q(x) ≤ 1; we set

μq(k) = xk−1qk for every k ≥ 0, the previous calculations show that μq is a probability
measure with mean g�

q(x) ≤ 1. According to (the proof of) Lemma 7(i), we have

1
x

Z�
q = 1

x

∑
(M,�)∈M�

Wq,�((M, �)) = 1
x

∑
T∈T

Θq(T) =
∑
T∈T

Θμq(T) = 1.

We conclude that Z�
q = x is indeed finite.

Finally, we show that the pointed and non pointed Boltzmann laws are close to each other, following
arguments from [1, 10, 11]. Theorems 3 and 4 follow from Propositions 11 and 12.
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The proof of the fact that Theorem 3 holds for the pointed maps sampled from Pq,�
S=n is

similar. If q is generic critical, then Z�
q satisfies the above assumptions on x and furthermore

gq(Z�
q) = Z�

q so μq is the probability pq given by (33):

μq(k) = pq(k) = (Z�
q)

k−1qk , k ≥ 0.

According to Lemma 7(i), the tree T has the law GWpq( · | nT (BS) = n). Again,
Proposition 10 ensures then that (H) is fulfilled with p = pq and the claim follows.

We have seen all the ingredients to prove Proposition 9. The proof is inspired from [33].

Proof of Proposition 9 Let q be given by (31). According to the previous proof, we have

Z�
q =

∑
(M,�)∈M�

Wq,�((M, �)) =
∑
T∈T

Θq(T) = Υq,

Suppose that this quantity is finite, we next decompose the second sum according to the
degree of the root of T . If the latter is k, then T is made of k trees, say T1, . . . , Tk , attached
to a common root; this leads to the following equation:

∑
T∈T

Θq(T) =
∑
k≥0

qk

∑
T1,...,Tk∈T

k∏
i=1

Θq(Ti) =
∑
k≥0

qk

(∑
T∈T

Θq(T)

)k

,

in other words Z�
q = gq(Z�

q). Let us prove furthermore that g�
q(Z�

q) ≤ 1. Since Z�
q = gq(Z�

q),
the sequence pq defined by pq(k) = (Z�

q)
k−1qk for every k ≥ 0 is a probability and g�

q(Z�
q)

is its mean. According to Lemma 7(i), the law SGq coincides with SGpq so

∑
T∈T

SGpq(T) = 1
Υq

∑
T∈T

Θq(T) = 1.

We conclude that SGpq = GWpq is the law of a sub-critical Galton–Watson tree with
offspring distribution pq, which has therefore mean g�

q(Z�
q) ≤ 1.

Conversely, suppose that gq has at least one fixed point and let us prove that Z�
q is

finite. Recall that one of the fixed points, say, x > 0, must satisfy g�
q(x) ≤ 1; we set

μq(k) = xk−1qk for every k ≥ 0, the previous calculations show that μq is a probability
measure with mean g�

q(x) ≤ 1. According to (the proof of) Lemma 7(i), we have

1
x

Z�
q = 1

x

∑
(M,�)∈M�

Wq,�((M, �)) = 1
x

∑
T∈T

Θq(T) =
∑
T∈T

Θμq(T) = 1.

We conclude that Z�
q = x is indeed finite.

Finally, we show that the pointed and non pointed Boltzmann laws are close to each other, following
arguments from [1, 10, 11]. Theorems 3 and 4 follow from Propositions 11 and 12.
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Proposition 12 Fix S ∈ {E, V , F} ∪ ⋃
A⊂N{F, A} and let q satisfy the assumptions of

Theorem 3 or of Theorem 4 if S = E. Let φ : M� → M : (M, �) �→ M and let φ∗Pq,�
S=n be

the push-forward measure induced on M by Pq,�
S=n, then

∥∥Pq
S=n − φ∗Pq,�

S=n

∥∥
TV −→

n→∞
0,

where � · �TV refers to the total variation norm.

Proof For each pointed map (M, �) ∈ M�, let V(M) be the number of vertices of M.
If T is the one-type tree associated with (M, �), then V(M) = nT (0) − 1. Notice that
Pq,�

S=n is absolutely continuous with respect to Pq
S=n: for every measurable and bounded

function f : M → R, we have

Eq
S=n

[
f (M)

] = Eq,�
S=n

[
V(M)−1]−1 Eq,�

S=n

[
V(M)−1f ◦ φ((M, �))

]
.

Let pq be given by (33) or (36) in the case S = E and let BS be given by (35). We have

∥∥Pq
S=n − φ∗Pq,�

S=n

∥∥
TV = 1

2
sup

−1≤f ≤1

∣∣Eq
S=n

[
f (M)

] − Eq,�
S=n

[
f ◦ φ((M, �))

]∣∣

≤ 1
2

sup
−1≤f ≤1

Eq,�
S=n

[∣∣∣
(

Eq,�
S=n

[
V(M)−1]−1 V(M)−1 − 1

)
f ◦ φ((M, �))

∣∣∣
]

≤ Eq,�
S=n

[∣∣∣Eq,�
S=n

[
V(M)−1]−1 V(M)−1 − 1

∣∣∣
]

= GWpq
[∣∣GWpq [(nT (0) − 1)−1 | nT (BS) = n]−1(nT (0) − 1)−1 − 1

∣∣ ∣∣ nT (BS) = n
]

.

Lemma 8 states that the last quantity above tends to zero as n → ∞, which concludes
the proof.

7.4 On Galton–Watson trees conditioned to be large
It remains to prove Proposition 10 and Lemma 8. The proof of the former result relies on the coding of
a tree by its Łukasiewicz path which, in the case of Galton–Watson trees is an excursion of a certain
random walk. Our proofs use many results from [22] (see in particular sections 6 and 7 there), written
explicitly for A = {0} but which hold true in general, mutatis mutandis, as explained in Section 8 there.

Proof of Proposition 10 Fix ε > 0 and consider the event

E(ε) =
{

d

((
nT (·)

nT (Z+)
,
∑
i≥0

(i − 1)2 nT (i)
nT (Z+)

,
ΔT

nT (Z+)1/2

)
,
(
μ, σ2, 0

))
> ε

}
,

where d is a metric on the product space of probability measures on Z+ and R2, compatible
with the product topology. We aim at showing

GWμ(E(ε) | nT (A) = n) −→
n→∞

0.
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Let us denote by (Xk; k ≥ 1) a sequence of i.i.d. random variables with distribution
(μ(i + 1); i ≥ −1) and Kn(i) = #{1 ≤ k ≤ n : Xk = i − 1} for every n ≥ 1 and i ≥ 0.
Consider the event

F(n, ε) =
{

d

((
Kn(·)

n
,
∑
i≥0

(i − 1)2 Kn(i)
n

,
max{i ≥ 0 : Kn(i) > 0}

n1/2

)
,
(
μ, σ2, 0

))
> ε

}
,

Broutin and Marckert [13] have shown that

P(F(n, ε)) −→
n→∞

0.

As in Section 5.4, given a path x = (x1, . . . , xn) ∈ Zn such that x1 +· · ·+xn = −1, we
denote by Sx(k) = x1 + · · · + xk for every 1 ≤ k ≤ n and by x∗ = (x∗

1 , . . . , x∗
n) the unique

cyclic shift of x satisfying furthermore Sx∗(k) ≥ 0 for every 1 ≤ k ≤ n − 1. Let ζr(A) =
inf{k ≥ 1 : Kk(A) = �r�} for every r ≥ 1. Kortchemski [22, Proposition 6.5] shows that
for every integer n ≥ 1, the path (SX∗(k); 0 ≤ k ≤ ζn(A)) under P( · | SX(ζn(A)) = −1)

has the law of the Łukasiewicz path of a tree T under GWμ( · | nT (A) = n). Since F(n, ε)
is invariant under cyclic shift, it follows that

GWμ(E(ε) | nT (A) = n) = P(F(ζn(A), ε) | SX(ζn(A)) = −1).

Using a time-reversibility property of (X1, . . . , Xζn(A)) under P( · | SX(ζn(A)) = −1), see
[22, Proposition 6.8], it suffices to show that

P
(
F(ζn/2(A), ε)

∣∣ SX(ζn(A)) = −1
) −→

n→∞
0.

As in the proof of [22, Theorem 7.1], for any α > 0, the event F(ζn/2(A), ε) is included in
the union of the following three events:

(i) F(ζn/2(A), ε) ∩ {|SX(ζn/2(A))| ≤ α
√

σ2n/(2μ(A))} ∩ {|ζn/2(A) − n
μ(A)

| ≤ n3/4},
(ii) {|SX(ζn/2(A))| > α

√
σ2n/(2μ(A))},

(iii) {|ζn/2(A) − n
μ(A)

| > n3/4}.

By [22, Lemmas 6.10 & 6.11] (argument similar to the one we use in the proof of Lemma
4, based on a local limit theorem), there exists a constant C > 0 independent of α such
that for every n large enough, the conditional probability P( · | SX(ζn(A)) = −1) of the
first event is bounded above by

C · P
(

F(ζn/2(A), ε) and
∣∣∣∣ζn/2(A) − n

μ(A)

∣∣∣∣ ≤ n3/4
)

.

Next, according to [22, Equation 44],

lim
α→∞

lim
n→∞

P
(∣∣SX(ζn/2(A))

∣∣ > α
√

σ2n/(2μ(A))
∣∣ SX(ζn(A)) = −1

)
= 0,
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Proposition 12 Fix S ∈ {E, V , F} ∪ ⋃
A⊂N{F, A} and let q satisfy the assumptions of

Theorem 3 or of Theorem 4 if S = E. Let φ : M� → M : (M, �) �→ M and let φ∗Pq,�
S=n be

the push-forward measure induced on M by Pq,�
S=n, then

∥∥Pq
S=n − φ∗Pq,�

S=n

∥∥
TV −→

n→∞
0,

where � · �TV refers to the total variation norm.

Proof For each pointed map (M, �) ∈ M�, let V(M) be the number of vertices of M.
If T is the one-type tree associated with (M, �), then V(M) = nT (0) − 1. Notice that
Pq,�

S=n is absolutely continuous with respect to Pq
S=n: for every measurable and bounded

function f : M → R, we have

Eq
S=n

[
f (M)

] = Eq,�
S=n

[
V(M)−1]−1 Eq,�

S=n

[
V(M)−1f ◦ φ((M, �))

]
.

Let pq be given by (33) or (36) in the case S = E and let BS be given by (35). We have

∥∥Pq
S=n − φ∗Pq,�

S=n

∥∥
TV = 1

2
sup

−1≤f ≤1

∣∣Eq
S=n

[
f (M)

] − Eq,�
S=n

[
f ◦ φ((M, �))

]∣∣

≤ 1
2

sup
−1≤f ≤1

Eq,�
S=n

[∣∣∣
(

Eq,�
S=n

[
V(M)−1]−1 V(M)−1 − 1

)
f ◦ φ((M, �))

∣∣∣
]

≤ Eq,�
S=n

[∣∣∣Eq,�
S=n

[
V(M)−1]−1 V(M)−1 − 1

∣∣∣
]

= GWpq
[∣∣GWpq [(nT (0) − 1)−1 | nT (BS) = n]−1(nT (0) − 1)−1 − 1

∣∣ ∣∣ nT (BS) = n
]

.

Lemma 8 states that the last quantity above tends to zero as n → ∞, which concludes
the proof.

7.4 On Galton–Watson trees conditioned to be large
It remains to prove Proposition 10 and Lemma 8. The proof of the former result relies on the coding of
a tree by its Łukasiewicz path which, in the case of Galton–Watson trees is an excursion of a certain
random walk. Our proofs use many results from [22] (see in particular sections 6 and 7 there), written
explicitly for A = {0} but which hold true in general, mutatis mutandis, as explained in Section 8 there.

Proof of Proposition 10 Fix ε > 0 and consider the event

E(ε) =
{

d

((
nT (·)

nT (Z+)
,
∑
i≥0

(i − 1)2 nT (i)
nT (Z+)

,
ΔT

nT (Z+)1/2

)
,
(
μ, σ2, 0

))
> ε

}
,

where d is a metric on the product space of probability measures on Z+ and R2, compatible
with the product topology. We aim at showing

GWμ(E(ε) | nT (A) = n) −→
n→∞

0.
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Let us denote by (Xk; k ≥ 1) a sequence of i.i.d. random variables with distribution
(μ(i + 1); i ≥ −1) and Kn(i) = #{1 ≤ k ≤ n : Xk = i − 1} for every n ≥ 1 and i ≥ 0.
Consider the event

F(n, ε) =
{

d

((
Kn(·)

n
,
∑
i≥0

(i − 1)2 Kn(i)
n

,
max{i ≥ 0 : Kn(i) > 0}

n1/2

)
,
(
μ, σ2, 0

))
> ε

}
,

Broutin and Marckert [13] have shown that

P(F(n, ε)) −→
n→∞

0.

As in Section 5.4, given a path x = (x1, . . . , xn) ∈ Zn such that x1 +· · ·+xn = −1, we
denote by Sx(k) = x1 + · · · + xk for every 1 ≤ k ≤ n and by x∗ = (x∗

1 , . . . , x∗
n) the unique

cyclic shift of x satisfying furthermore Sx∗(k) ≥ 0 for every 1 ≤ k ≤ n − 1. Let ζr(A) =
inf{k ≥ 1 : Kk(A) = �r�} for every r ≥ 1. Kortchemski [22, Proposition 6.5] shows that
for every integer n ≥ 1, the path (SX∗(k); 0 ≤ k ≤ ζn(A)) under P( · | SX(ζn(A)) = −1)

has the law of the Łukasiewicz path of a tree T under GWμ( · | nT (A) = n). Since F(n, ε)
is invariant under cyclic shift, it follows that

GWμ(E(ε) | nT (A) = n) = P(F(ζn(A), ε) | SX(ζn(A)) = −1).

Using a time-reversibility property of (X1, . . . , Xζn(A)) under P( · | SX(ζn(A)) = −1), see
[22, Proposition 6.8], it suffices to show that

P
(
F(ζn/2(A), ε)

∣∣ SX(ζn(A)) = −1
) −→

n→∞
0.

As in the proof of [22, Theorem 7.1], for any α > 0, the event F(ζn/2(A), ε) is included in
the union of the following three events:

(i) F(ζn/2(A), ε) ∩ {|SX(ζn/2(A))| ≤ α
√

σ2n/(2μ(A))} ∩ {|ζn/2(A) − n
μ(A)

| ≤ n3/4},
(ii) {|SX(ζn/2(A))| > α

√
σ2n/(2μ(A))},

(iii) {|ζn/2(A) − n
μ(A)

| > n3/4}.

By [22, Lemmas 6.10 & 6.11] (argument similar to the one we use in the proof of Lemma
4, based on a local limit theorem), there exists a constant C > 0 independent of α such
that for every n large enough, the conditional probability P( · | SX(ζn(A)) = −1) of the
first event is bounded above by

C · P
(

F(ζn/2(A), ε) and
∣∣∣∣ζn/2(A) − n

μ(A)

∣∣∣∣ ≤ n3/4
)

.

Next, according to [22, Equation 44],

lim
α→∞

lim
n→∞

P
(∣∣SX(ζn/2(A))

∣∣ > α
√

σ2n/(2μ(A))
∣∣ SX(ζn(A)) = −1

)
= 0,
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and, by [22, Lemma 6.2(i)],

lim
n→∞

P
(∣∣∣∣ζn/2(A) − n

μ(A)

∣∣∣∣ > n3/4
∣∣∣∣ SX(ζn(A)) = −1

)
= 0.

We conclude that there exists a constant C > 0 such that

lim sup
n→∞

P
(
F(ζn/2(A), ε)

∣∣ SX(ζn(A)) = −1
)

≤ C lim sup
n→∞

P
(

F(ζn/2(A), ε) and
∣∣∣∣ζn/2(A) − n

μ(A)

∣∣∣∣ ≤ n3/4
)

.

On the event |ζn/2(A) − n
μ(A)

| ≤ n3/4, we have for every i ≥ 0,

Kn/μ(A)−n3/4(i)
n/μ(A) + n3/4 ≤ Kζn/2(A)(i)

ζn/2(A)
≤ Kn/μ(A)+n3/4(i)

n/μ(A) − n3/4 ,

and the claim from the fact that P(F(n, ε)) → 0 as n → ∞.

We next turn to the proof of Lemma 8. We shall need the following concentration result. For a
sequence (xn; n ≥ 1) of non-negative real numbers and δ > 0, we write xn = oeδ(n) if there exist
c1, c2 > 0 such that xn ≤ c1 exp(−c2nδ) for every n ≥ 1.

Lemma 9 Let μ be a critical distribution in Z+ with variance σ2 ∈ (0, ∞) and fix
A ⊂ Z+; there exists δ > 0 such that

GWμ

(∣∣∣∣
nT (0)

n
− μ(0)

μ(A)

∣∣∣∣ > ε

∣∣∣∣ nT (A) = n
)

= oeδ(n).

Proof We bound

GWμ

(∣∣∣∣
nT (0)

n
− μ(0)

μ(A)

∣∣∣∣ > ε

∣∣∣∣ nT (A) = n
)

≤
GWμ

(∣∣∣ nT (0)μ(A)

nT (A)μ(0)
− 1

∣∣∣ > μ(A)

μ(0)
ε

∣∣∣∣ nT (Z+) ≥ n
)

GWμ(nT (A) = n)
.

According to [22, Theorem 8.1], there exists an explicit constant C > 0 which depends
only on μ and A (see [22, Theorem 3.1]) such that GWμ(nT (A) = n) ∼ C · n−3/2 as
n → ∞. Moreover, from [22, Corollary 2.6],

GWμ

(∣∣∣∣
nT (0)

μ(0)nT (Z+)
− 1

∣∣∣∣ > n−1/4
∣∣∣∣ nT (Z+) ≥ n

)
= oe1/2(n).

Indeed, taking t = 1 in [22, Corollary 2.6], we read nT (0) = ΛT (ζ(T)). This result holds
also when 0 is replaced by A; it follows that

GWμ

(∣∣∣∣
nT (0)μ(A)

nT (A)μ(0)
− 1

∣∣∣∣ >
μ(A)

μ(0)
ε

∣∣∣∣ nT (Z+) ≥ n
)

= oe1/2(n),

and the proof is complete.
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Proof of Lemma 8 Fix ε ∈ (0, 1) and observe that, since nT (0)−1 ≤ 1,

GWμ

[∣∣∣∣
μ(0)n

μ(A)nT (0)
− 1

∣∣∣∣
∣∣∣∣ nT (A) = n

]

≤ ε +
(

μ(0)n
μ(A)

+ 1
)

GWμ

(∣∣∣∣
μ(0)n

μ(A)nT (0)
− 1

∣∣∣∣ > ε

∣∣∣∣ nT (A) = n
)

.

Next, the probability on the right-hand side is bounded above by

GWμ

(
nT (0)

n
<

1
2

μ(0)

μ(A)

∣∣∣∣ nT (A) = n
)

+ GWμ

(∣∣∣∣
μ(0)

μ(A)
− nT (0)

n

∣∣∣∣ >
ε

2
μ(0)

μ(A)

∣∣∣∣ nT (A) = n
)

,

which is oeδ(n) for some δ > 0 according to Lemma 9. This yields

lim
n→∞

GWμ

[∣∣∣∣
μ(0)n

μ(A)nT (0)
− 1

∣∣∣∣
∣∣∣∣ nT (A) = n

]
= 0,

and so lim
n→∞

μ(0)n
μ(A)

GWμ

[
1

nT (0)

∣∣∣∣ nT (A) = n
]

= 1.

The claim now follows from these two limits.
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and, by [22, Lemma 6.2(i)],

lim
n→∞

P
(∣∣∣∣ζn/2(A) − n

μ(A)

∣∣∣∣ > n3/4
∣∣∣∣ SX(ζn(A)) = −1

)
= 0.

We conclude that there exists a constant C > 0 such that

lim sup
n→∞

P
(
F(ζn/2(A), ε)

∣∣ SX(ζn(A)) = −1
)

≤ C lim sup
n→∞

P
(

F(ζn/2(A), ε) and
∣∣∣∣ζn/2(A) − n

μ(A)

∣∣∣∣ ≤ n3/4
)

.

On the event |ζn/2(A) − n
μ(A)

| ≤ n3/4, we have for every i ≥ 0,

Kn/μ(A)−n3/4(i)
n/μ(A) + n3/4 ≤ Kζn/2(A)(i)

ζn/2(A)
≤ Kn/μ(A)+n3/4(i)

n/μ(A) − n3/4 ,

and the claim from the fact that P(F(n, ε)) → 0 as n → ∞.

We next turn to the proof of Lemma 8. We shall need the following concentration result. For a
sequence (xn; n ≥ 1) of non-negative real numbers and δ > 0, we write xn = oeδ(n) if there exist
c1, c2 > 0 such that xn ≤ c1 exp(−c2nδ) for every n ≥ 1.

Lemma 9 Let μ be a critical distribution in Z+ with variance σ2 ∈ (0, ∞) and fix
A ⊂ Z+; there exists δ > 0 such that

GWμ

(∣∣∣∣
nT (0)

n
− μ(0)

μ(A)

∣∣∣∣ > ε

∣∣∣∣ nT (A) = n
)

= oeδ(n).

Proof We bound

GWμ

(∣∣∣∣
nT (0)

n
− μ(0)

μ(A)

∣∣∣∣ > ε

∣∣∣∣ nT (A) = n
)

≤
GWμ

(∣∣∣ nT (0)μ(A)

nT (A)μ(0)
− 1

∣∣∣ > μ(A)

μ(0)
ε

∣∣∣∣ nT (Z+) ≥ n
)

GWμ(nT (A) = n)
.

According to [22, Theorem 8.1], there exists an explicit constant C > 0 which depends
only on μ and A (see [22, Theorem 3.1]) such that GWμ(nT (A) = n) ∼ C · n−3/2 as
n → ∞. Moreover, from [22, Corollary 2.6],

GWμ

(∣∣∣∣
nT (0)

μ(0)nT (Z+)
− 1

∣∣∣∣ > n−1/4
∣∣∣∣ nT (Z+) ≥ n

)
= oe1/2(n).

Indeed, taking t = 1 in [22, Corollary 2.6], we read nT (0) = ΛT (ζ(T)). This result holds
also when 0 is replaced by A; it follows that

GWμ

(∣∣∣∣
nT (0)μ(A)

nT (A)μ(0)
− 1

∣∣∣∣ >
μ(A)

μ(0)
ε

∣∣∣∣ nT (Z+) ≥ n
)

= oe1/2(n),

and the proof is complete.
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Proof of Lemma 8 Fix ε ∈ (0, 1) and observe that, since nT (0)−1 ≤ 1,

GWμ

[∣∣∣∣
μ(0)n

μ(A)nT (0)
− 1

∣∣∣∣
∣∣∣∣ nT (A) = n

]

≤ ε +
(

μ(0)n
μ(A)

+ 1
)

GWμ

(∣∣∣∣
μ(0)n

μ(A)nT (0)
− 1

∣∣∣∣ > ε

∣∣∣∣ nT (A) = n
)

.

Next, the probability on the right-hand side is bounded above by

GWμ

(
nT (0)

n
<

1
2

μ(0)

μ(A)

∣∣∣∣ nT (A) = n
)

+ GWμ

(∣∣∣∣
μ(0)

μ(A)
− nT (0)

n

∣∣∣∣ >
ε

2
μ(0)

μ(A)

∣∣∣∣ nT (A) = n
)

,

which is oeδ(n) for some δ > 0 according to Lemma 9. This yields

lim
n→∞

GWμ

[∣∣∣∣
μ(0)n

μ(A)nT (0)
− 1

∣∣∣∣
∣∣∣∣ nT (A) = n

]
= 0,

and so lim
n→∞

μ(0)n
μ(A)

GWμ

[
1

nT (0)

∣∣∣∣ nT (A) = n
]

= 1.

The claim now follows from these two limits.
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APPENDIX A: PROOF OF THE SPINAL DECOMPOSITIONS

In this section, we prove Lemma 2 and its extension Lemma 3.

A.1 The one-point decomposition
Proof of Lemma 2 First, concerning the first good event, consider the “mirror image”
T−

n of Tn, that is, the tree obtained from Tn by flipping the order of the children of every
vertex. Denote by W−

n the Łukasiewicz path of T−
n . Observe that T−

n and Tn have the
same law therefore W−

n and Wn as well. Furthermore, from Lemma 6, we have for all
i ∈ {0, . . . , Nn},

LR(A(u(i))) ≤ Wn(i) + W−
n (i−) + ku(i),

where i− is the index in T−
n of the image of the i-th vertex of Tn. The convergence of Wn

and Hn in (4) then yields

lim
x→∞

lim sup
n≥1

P
(

max
u∈Tn

|u| ≥ xN1/2
n

)
= lim

x→∞
lim sup

n≥1
P

(
max
u∈Tn

LR(A(u)) ≥ xN1/2
n

)
= 0.

Regarding the second good event, let U be uniformly distributed in [0, 1] and independent
of e, then (4) implies similarly that for every x > 0, we have

lim sup
n→∞

P
(
N−1/2

n |un| ≤ 1/x
) ≤ P

(
2eU/σp ≤ 1/x

)
,

which then converges to 0 as x → ∞.
Let us next turn to the comparison between A(un) conditioned on being in Good(n, x)

and a multinomial sequence. Recall that we denote by χu the relative position of a vertex
u among its siblings. Define next for every vertex u the content of the branch �∅, u� as

Cont(u) = ((
kpr(v), χv

)
; v ∈�∅, u�) , (A37)

where the elements v ∈�∅, u� are sorted in increasing order of their height. For any
sequence m ∈ ZN

+, denote by Γ(m) the set of possible vectors Cont(u) when A(u) = m
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APPENDIX A: PROOF OF THE SPINAL DECOMPOSITIONS

In this section, we prove Lemma 2 and its extension Lemma 3.

A.1 The one-point decomposition
Proof of Lemma 2 First, concerning the first good event, consider the “mirror image”
T−

n of Tn, that is, the tree obtained from Tn by flipping the order of the children of every
vertex. Denote by W−

n the Łukasiewicz path of T−
n . Observe that T−

n and Tn have the
same law therefore W−

n and Wn as well. Furthermore, from Lemma 6, we have for all
i ∈ {0, . . . , Nn},

LR(A(u(i))) ≤ Wn(i) + W−
n (i−) + ku(i),

where i− is the index in T−
n of the image of the i-th vertex of Tn. The convergence of Wn

and Hn in (4) then yields

lim
x→∞

lim sup
n≥1

P
(

max
u∈Tn

|u| ≥ xN1/2
n

)
= lim

x→∞
lim sup

n≥1
P

(
max
u∈Tn

LR(A(u)) ≥ xN1/2
n

)
= 0.

Regarding the second good event, let U be uniformly distributed in [0, 1] and independent
of e, then (4) implies similarly that for every x > 0, we have

lim sup
n→∞

P
(
N−1/2

n |un| ≤ 1/x
) ≤ P

(
2eU/σp ≤ 1/x

)
,

which then converges to 0 as x → ∞.
Let us next turn to the comparison between A(un) conditioned on being in Good(n, x)

and a multinomial sequence. Recall that we denote by χu the relative position of a vertex
u among its siblings. Define next for every vertex u the content of the branch �∅, u� as

Cont(u) = ((
kpr(v), χv

)
; v ∈�∅, u�) , (A37)

where the elements v ∈�∅, u� are sorted in increasing order of their height. For any
sequence m ∈ ZN

+, denote by Γ(m) the set of possible vectors Cont(u) when A(u) = m
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and note that

#Γ(m) =
( |m|

(mi; i ≥ 1)

) ∏
i≥1

imi .

The removal of the branch �∅, u� from T produces a plane forest of LR(A(u)) trees and
there is a one-to-one correspondence between the pair (T , u) on the one hand and this
forest and Cont(u) on the other hand. For any sequence q = (qi; i ≥ 0) of non-negative
integers with finite sum, let F(q) be the set of plane forests having exactly qi vertices
with i children for every i ≥ 0; such a forest possesses r = ∑

i≥0(1 − i)qi roots and it is
well-known that

#F(q) = r
|q|

( |q|
(qi; i ≥ 0)

)
.

Sample Tn uniformly at random in T(n) = F(n) and un uniformly at random in Tn, the
previous bijection readily implies that for any sequence m satisfying m0 = 0 and mi ≤ ni

for every i ≥ 1 and for any vector C ∈ Γ(m), we have

P
(
Cont(un) = C

) = #F(n − m)

(Nn + 1)#F(n)
, and so P (A(un) = m) = #Γ(m) · #F(n − m)

(Nn + 1)#F(n)
.

Consequently, if we set h = |m|, we have

P (A(un) = m) =
(

h
(mi; i ≥ 1)

) ∏
i≥1

imi ·
LR(m)

Nn+1−h

( Nn+1−h
(ni−mi ;i≥0)

)

(Nn + 1) 1
Nn+1

( Nn+1
(ni ;i≥0)

)

= LR(m)

Nn + 1 − h
· h!∏

i≥1 mi!
∏
i≥1

(
ini

Nn

)mi

·
∏
i≥1

ni!
nmi

i (ni − mi)! · (Nn + 1 − h)!Nh
n

(Nn + 1)! .

Note that

P
(
Ξ(h)

n = m
) = h!∏

i≥1 mi!
∏
i≥1

(
ini

Nn

)mi

.

Next, observe that ni! ≤ nmi
i (ni − mi)! for every i ≥ 1; finally, using the inequality

(1 − x)−1 ≤ exp(2x) for |x| ≤ 1/2, we have as soon as h ≤ Nn/2,

(Nn + 1 − h)!Nh
n

(Nn + 1)! ≤
h−1∏
i=0

1
1 − i/(Nn + 1)

≤ eh2/Nn .

Putting things together, we obtain that if h ≤ Nn/2, then

P (A(un) = m) ≤ LR(m)

Nn + 1 − h
· eh2/Nn · P

(
Ξ(h)

n = m
)

.

If m ∈ Good(n, x), then LR(m) and h are both bounded above by xN1/2
n , so the proof is

complete.
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A.2 The multi-point decomposition
We next extend the previous decomposition according to several i.i.d. uniform random vertices.

Proof of Lemma 3 First, the fact that the probability of Bin+
k tends to 1 can be seen as a

consequence of (4) and the fact that such a property holds almost surely for the Brownian
tree. The rest of the event is similar to the previous proof and we omit the details to
focus on the bound on the law of A(un,1, . . . , un,k). Precisely, we shall prove that for every
sequences m(1), . . . , m(2k−1) ∈ Good(n, x), if hj = |m(j)| for each 1 ≤ j ≤ 2k − 1 and
h = h1 + · · · + h2k−1, then

P
(

A(un,1, . . . , un,k) = (m(1), . . . , m(2k−1))

∣∣∣∣ Bin+
k

)

≤ 2

(
σ2

p

2

)k−1
(k − 1)Δn + ∑2k−1

j=1 LR(m(j))

Nk−1
n (Nn − h − k + 2)

exp
(

h2 + 2h(k − 2)

Nn

) 2k−1∏
j=1

P
(
Ξ

(hj)
n = m(j)

)
(1 + o(1)).

Since Δn, each hj and each LR(m(j)) is at most of order N1/2
n , the claim follows.

We treat in detail the case k = 2 and comment on the general case at the end. Fix r ≥ 2
and three sequences of non-negative integers m(1), m(2), m(3) with m(1)

0 = m(2)

0 = m(3)

0 = 0
and set |m(j)

i | = hj for each j ∈ {1, 2, 3}. For every i ≥ 0, set

mi = m(1)
i + m(2)

i + m(3)
i and mi = mi + 1{i=r}.

Given Tn, we say that a pair of vertices (u, v) is “good” if the reduced tree Tn(u, v) satisfies
Bin2. Observe that on the event {maxa∈Tn |a| ≤ N3/4

n }, there are more than N2
n − o(N2

n) ≥
N2

n/2 good pairs. If un and vn are independent uniform random vertices of Tn, then the
conditional probability given {maxa∈Tn |a| ≤ N3/4

n } that this pair is good tends to 1, and
then on this event, (un, vn) has the uniform distribution in the set of good pairs. In the
remainder of this proof, we thus assume that (un, vn) is a good pair sampled uniformly at
random. Let wn be the most recent common ancestor of un and vn. Let ûn be the child of
wn which is an ancestor of un and define similarly v̂n so this distribution. Let wn be the
most recent common ancestor of un and vn. Let ûn be the child of wn which is an ancestor
of un and define similarly v̂n so

Fn(un, vn) = (�∅, wn�, �ûn, un�, �v̂n, vn�).

Let Cont(un, vn) be the triplet of contents of these branches, defined in a similar way as
in (A37). Let Γ(m(1), m(2), m(3)) be the set of possible such triplets when A(un, vn) =
(m(1), m(2), m(3)); as previously,

#Γ(m(1), m(2), m(3)) =
3∏

j=1

( hj

(m(j)
i ; i ≥ 1)

) ∏
i≥1

im(j)
i

= nr · Nh1+h2+h3
n∏

i≥1 nmi
i

·
3∏

j=1

( hj

(m(j)
i ; i ≥ 1)

) ∏
i≥1

(
ini

Nn

)m(j)
i

.

Observe that LR(m) = 1 + ∑
i≥1(i − 1)mi = 2 + (r − 2) + ∑

i≥1(i − 1)mi denotes
the number of trees in the forest obtained from Tn by removing the reduced tree Tn(un, vn)
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and note that

#Γ(m) =
( |m|

(mi; i ≥ 1)

) ∏
i≥1

imi .

The removal of the branch �∅, u� from T produces a plane forest of LR(A(u)) trees and
there is a one-to-one correspondence between the pair (T , u) on the one hand and this
forest and Cont(u) on the other hand. For any sequence q = (qi; i ≥ 0) of non-negative
integers with finite sum, let F(q) be the set of plane forests having exactly qi vertices
with i children for every i ≥ 0; such a forest possesses r = ∑

i≥0(1 − i)qi roots and it is
well-known that

#F(q) = r
|q|

( |q|
(qi; i ≥ 0)

)
.

Sample Tn uniformly at random in T(n) = F(n) and un uniformly at random in Tn, the
previous bijection readily implies that for any sequence m satisfying m0 = 0 and mi ≤ ni

for every i ≥ 1 and for any vector C ∈ Γ(m), we have

P
(
Cont(un) = C

) = #F(n − m)

(Nn + 1)#F(n)
, and so P (A(un) = m) = #Γ(m) · #F(n − m)

(Nn + 1)#F(n)
.

Consequently, if we set h = |m|, we have

P (A(un) = m) =
(

h
(mi; i ≥ 1)

) ∏
i≥1

imi ·
LR(m)

Nn+1−h

( Nn+1−h
(ni−mi ;i≥0)

)

(Nn + 1) 1
Nn+1

( Nn+1
(ni ;i≥0)

)

= LR(m)

Nn + 1 − h
· h!∏

i≥1 mi!
∏
i≥1

(
ini

Nn

)mi

·
∏
i≥1

ni!
nmi

i (ni − mi)! · (Nn + 1 − h)!Nh
n

(Nn + 1)! .

Note that

P
(
Ξ(h)

n = m
) = h!∏

i≥1 mi!
∏
i≥1

(
ini

Nn

)mi

.

Next, observe that ni! ≤ nmi
i (ni − mi)! for every i ≥ 1; finally, using the inequality

(1 − x)−1 ≤ exp(2x) for |x| ≤ 1/2, we have as soon as h ≤ Nn/2,

(Nn + 1 − h)!Nh
n

(Nn + 1)! ≤
h−1∏
i=0

1
1 − i/(Nn + 1)

≤ eh2/Nn .

Putting things together, we obtain that if h ≤ Nn/2, then

P (A(un) = m) ≤ LR(m)

Nn + 1 − h
· eh2/Nn · P

(
Ξ(h)

n = m
)

.

If m ∈ Good(n, x), then LR(m) and h are both bounded above by xN1/2
n , so the proof is

complete.
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A.2 The multi-point decomposition
We next extend the previous decomposition according to several i.i.d. uniform random vertices.

Proof of Lemma 3 First, the fact that the probability of Bin+
k tends to 1 can be seen as a

consequence of (4) and the fact that such a property holds almost surely for the Brownian
tree. The rest of the event is similar to the previous proof and we omit the details to
focus on the bound on the law of A(un,1, . . . , un,k). Precisely, we shall prove that for every
sequences m(1), . . . , m(2k−1) ∈ Good(n, x), if hj = |m(j)| for each 1 ≤ j ≤ 2k − 1 and
h = h1 + · · · + h2k−1, then

P
(

A(un,1, . . . , un,k) = (m(1), . . . , m(2k−1))

∣∣∣∣ Bin+
k

)

≤ 2

(
σ2

p

2

)k−1
(k − 1)Δn + ∑2k−1

j=1 LR(m(j))

Nk−1
n (Nn − h − k + 2)

exp
(

h2 + 2h(k − 2)

Nn

) 2k−1∏
j=1

P
(
Ξ

(hj)
n = m(j)

)
(1 + o(1)).

Since Δn, each hj and each LR(m(j)) is at most of order N1/2
n , the claim follows.

We treat in detail the case k = 2 and comment on the general case at the end. Fix r ≥ 2
and three sequences of non-negative integers m(1), m(2), m(3) with m(1)

0 = m(2)

0 = m(3)

0 = 0
and set |m(j)

i | = hj for each j ∈ {1, 2, 3}. For every i ≥ 0, set

mi = m(1)
i + m(2)

i + m(3)
i and mi = mi + 1{i=r}.

Given Tn, we say that a pair of vertices (u, v) is “good” if the reduced tree Tn(u, v) satisfies
Bin2. Observe that on the event {maxa∈Tn |a| ≤ N3/4

n }, there are more than N2
n − o(N2

n) ≥
N2

n/2 good pairs. If un and vn are independent uniform random vertices of Tn, then the
conditional probability given {maxa∈Tn |a| ≤ N3/4

n } that this pair is good tends to 1, and
then on this event, (un, vn) has the uniform distribution in the set of good pairs. In the
remainder of this proof, we thus assume that (un, vn) is a good pair sampled uniformly at
random. Let wn be the most recent common ancestor of un and vn. Let ûn be the child of
wn which is an ancestor of un and define similarly v̂n so this distribution. Let wn be the
most recent common ancestor of un and vn. Let ûn be the child of wn which is an ancestor
of un and define similarly v̂n so

Fn(un, vn) = (�∅, wn�, �ûn, un�, �v̂n, vn�).

Let Cont(un, vn) be the triplet of contents of these branches, defined in a similar way as
in (A37). Let Γ(m(1), m(2), m(3)) be the set of possible such triplets when A(un, vn) =
(m(1), m(2), m(3)); as previously,

#Γ(m(1), m(2), m(3)) =
3∏

j=1

( hj

(m(j)
i ; i ≥ 1)

) ∏
i≥1

im(j)
i

= nr · Nh1+h2+h3
n∏

i≥1 nmi
i

·
3∏

j=1

( hj

(m(j)
i ; i ≥ 1)

) ∏
i≥1

(
ini

Nn

)m(j)
i

.

Observe that LR(m) = 1 + ∑
i≥1(i − 1)mi = 2 + (r − 2) + ∑

i≥1(i − 1)mi denotes
the number of trees in the forest obtained from Tn by removing the reduced tree Tn(un, vn)
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when A(un, vn) = (m(1), m(2), m(3)) and kwn = r: there are i − 1 components for each of
the mi elements of �∅, wn�∪�ûn, un�∪�v̂n, vn� with i children, as well as r − 2 components
corresponding to the children of wn different from ûn and v̂n, and the two components above
un and vn. As previously, the triplet (Tn, un, vn) is characterized by the forest obtained by
removing the reduced tree Tn(un, vn) and the content of the latter, which is Cont(un, vn)

plus the information (kwn , χûn , χv̂n) about the branch-point. We therefore have for every
C ∈ Γ(m(1), m(2), m(3)) and every B ∈ {(r, i, j); 1 ≤ i < j ≤ r},

P
(
Cont(un, vn) = C and (kwn , χûn , χv̂n) = B

∣∣ Bin+
2
) ≤ 2 · #F(n − m)

N2
n · #F(n)

=
2 LR(m)

|n−m|
( |n−m|
(ni−mi ;i≥1)

)

N2
n

1
Nn+1

( Nn+1
(ni ;i≥1)

)

= 2
Nn

LR(m)

Nn|n − m|
(|n − m|)!

Nn!
∏
i≥1

ni!
(ni − mi)! .

Since |n| = Nn + 1 and |m| = h1 + h2 + h3 + 1 = h + 1, it follows that

P
(
A(un, vn) = (m(1), m(2), m(3)) and kwn = r

∣∣ Bin+
2
)

≤ r(r − 1)

2
· #Γ(m(1), m(2), m(3)) · 2

Nn

LR(m)

Nn|n − m|
(|n − m|)!

Nn!
∏
i≥1

ni!
(ni − mi)!

= r(r − 1)nr

Nn
· LR(m)

Nn(Nn − h)
· (Nn − h)!Nh

n

Nn! ·
∏
i≥1

ni!
nmi

i (ni − mi)!
·

3∏
j=1

( hj

(m(j)
i ; i ≥ 1)

) ∏
i≥1

(
ini

Nn

)m(j)
i

.

First, under (H),
∑
r≥2

r(r − 1)nr

Nn
−→
n→∞

σ2
p.

Also, note that we must have r ≤ Δn and so

LR(m) = r +
∑
i≥1

(i − 1)mi = (r − 3) +
3∑

j=1

LR(m(j)) ≤ Δn +
3∑

j=1

LR(m(j)).

Then, as previously, we have

3∏
j=1

( hj

(m(j)
i ; i ≥ 1)

) ∏
i≥1

(
ini

Nn

)m(j)
i

=
3∏

j=1

P
(
Ξ

(hj)
n = m(j)

)
, and

∏
i≥1

ni!
nmi

i (ni − mi)!
≤ 1,

as well as, as soon as h ≤ Nn/2,

(Nn − h)!Nh
n

Nn! =
h−1∏
i=0

1
1 − i/Nn

≤ exp
(
h2/Nn

)
.

This concludes the case k = 2.
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In the general case, the same argument applies. First, on the event {maxa∈Tn |a| ≤
N3/4

n }, for every n large enough, the number of k-tuples of vertices such that the associ-
ated reduced tree satisfies Bink is larger than Nk

n(1−o(1)) ≥ Nk
n/2. Next, if un,1, . . . , un,k is

such a k-tuple sampled uniformly at random, then we may still decompose the tree accord-
ing to the reduced tree Tn(un,1, . . . , un,k) to obtain an explicit expression of the joint law of
A(un,1, . . . , un,k) and the number of children of all the branch-points of Tn(un,1, . . . , un,k).
Specifically, denote by vn,1, . . . , vn,k−1 these branch-points, fix m(1), . . . , m(2k−1) and
r1, . . . , rk−1 ≤ Δn, set hj = |m(j)| for 1 ≤ j ≤ 2k − 1 and h = h1 + · · · + h2k−1, as
well as mi = ∑2k−1

j=1 m(j)
i + ∑k−1

j=1 1{i=rj} for i ≥ 1, so |m| = h + k − 1. Then, we have I

P
(

A(un,1, . . . , un,k) = (m(1), . . . , m(2k−1)) and kvn,j = rj for every 1 ≤ j ≤ k − 1
∣∣ Bin+

k

)

≤ 2
k−1∏
j=1

rj(rj − 1)nrj

2Nn
· LR(m)

Nn(Nn + 1 − (h + k − 1))
· (Nn + 1 − (h + k − 1))!Nh

n

Nn!

×
∏
i≥1

ni!
nmi

i (ni − mi)!
·

2k−1∏
j=1

( hj

(m(j)
i ; i ≥ 1)

) ∏
i≥1

(
ini

Nn

)m(j)
i

.

Nota that

∑
r1,...,rk−1≥2

k−1∏
j=1

rj(rj − 1)nrj

2Nn
=

(∑
r≥2

r(r − 1)nr

2Nn

)k−1

−→
n→∞

(
σ2

p

2

)k−1

,

as well as, for h ≤ Nn/2,

(Nn + 1 − (h + k − 1))!Nh
n

Nn! =
k−3∏
i=0

1
Nn − i

·
h−1∏
i=0

1
1 − (i + k − 2)/Nn

≤ 1 + o(1)

Nk−2
n

· exp
(

h2 + 2h(k − 2)

Nn

)
.

The rest of the proof is adapted verbatim.

APPENDIX B: ON THE MAXIMAL GAP IN A RANDOM WALK
BRIDGE

Our aim in this section is to prove Lemma 4. Recall that for r ≥ 1, a discrete bridge of length r is a
vector (B0, . . . , Br) satisfying B0 = Br = 0 and Bk+1 − Bk ∈ Z for every 0 ≤ k ≤ r − 1. A random
bridge is said to be exchangeable if the law of its increments (B1, B2 − B1, . . . , Br − Br−1) is invariant
under permutation.

Lemma 10 Fix r ≥ 1 and let B = (B0, . . . , Br) be a discrete bridge. For every x ≥ 0
fixed, if

max
0≤k≤r

Bk − min
0≤k≤r

Bk ≥ 3x,
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when A(un, vn) = (m(1), m(2), m(3)) and kwn = r: there are i − 1 components for each of
the mi elements of �∅, wn�∪�ûn, un�∪�v̂n, vn� with i children, as well as r − 2 components
corresponding to the children of wn different from ûn and v̂n, and the two components above
un and vn. As previously, the triplet (Tn, un, vn) is characterized by the forest obtained by
removing the reduced tree Tn(un, vn) and the content of the latter, which is Cont(un, vn)

plus the information (kwn , χûn , χv̂n) about the branch-point. We therefore have for every
C ∈ Γ(m(1), m(2), m(3)) and every B ∈ {(r, i, j); 1 ≤ i < j ≤ r},

P
(
Cont(un, vn) = C and (kwn , χûn , χv̂n) = B

∣∣ Bin+
2
) ≤ 2 · #F(n − m)

N2
n · #F(n)

=
2 LR(m)

|n−m|
( |n−m|
(ni−mi ;i≥1)

)

N2
n

1
Nn+1

( Nn+1
(ni ;i≥1)

)

= 2
Nn

LR(m)

Nn|n − m|
(|n − m|)!

Nn!
∏
i≥1

ni!
(ni − mi)! .

Since |n| = Nn + 1 and |m| = h1 + h2 + h3 + 1 = h + 1, it follows that

P
(
A(un, vn) = (m(1), m(2), m(3)) and kwn = r

∣∣ Bin+
2
)

≤ r(r − 1)

2
· #Γ(m(1), m(2), m(3)) · 2

Nn

LR(m)

Nn|n − m|
(|n − m|)!

Nn!
∏
i≥1

ni!
(ni − mi)!

= r(r − 1)nr

Nn
· LR(m)

Nn(Nn − h)
· (Nn − h)!Nh

n

Nn! ·
∏
i≥1

ni!
nmi

i (ni − mi)!
·

3∏
j=1

( hj

(m(j)
i ; i ≥ 1)

) ∏
i≥1

(
ini

Nn

)m(j)
i

.

First, under (H),
∑
r≥2

r(r − 1)nr

Nn
−→
n→∞

σ2
p.

Also, note that we must have r ≤ Δn and so

LR(m) = r +
∑
i≥1

(i − 1)mi = (r − 3) +
3∑

j=1

LR(m(j)) ≤ Δn +
3∑

j=1

LR(m(j)).

Then, as previously, we have

3∏
j=1

( hj

(m(j)
i ; i ≥ 1)

) ∏
i≥1

(
ini

Nn

)m(j)
i

=
3∏

j=1

P
(
Ξ

(hj)
n = m(j)

)
, and

∏
i≥1

ni!
nmi

i (ni − mi)!
≤ 1,

as well as, as soon as h ≤ Nn/2,

(Nn − h)!Nh
n

Nn! =
h−1∏
i=0

1
1 − i/Nn

≤ exp
(
h2/Nn

)
.

This concludes the case k = 2.
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In the general case, the same argument applies. First, on the event {maxa∈Tn |a| ≤
N3/4

n }, for every n large enough, the number of k-tuples of vertices such that the associ-
ated reduced tree satisfies Bink is larger than Nk

n(1−o(1)) ≥ Nk
n/2. Next, if un,1, . . . , un,k is

such a k-tuple sampled uniformly at random, then we may still decompose the tree accord-
ing to the reduced tree Tn(un,1, . . . , un,k) to obtain an explicit expression of the joint law of
A(un,1, . . . , un,k) and the number of children of all the branch-points of Tn(un,1, . . . , un,k).
Specifically, denote by vn,1, . . . , vn,k−1 these branch-points, fix m(1), . . . , m(2k−1) and
r1, . . . , rk−1 ≤ Δn, set hj = |m(j)| for 1 ≤ j ≤ 2k − 1 and h = h1 + · · · + h2k−1, as
well as mi = ∑2k−1

j=1 m(j)
i + ∑k−1

j=1 1{i=rj} for i ≥ 1, so |m| = h + k − 1. Then, we have I

P
(

A(un,1, . . . , un,k) = (m(1), . . . , m(2k−1)) and kvn,j = rj for every 1 ≤ j ≤ k − 1
∣∣ Bin+

k

)

≤ 2
k−1∏
j=1

rj(rj − 1)nrj

2Nn
· LR(m)

Nn(Nn + 1 − (h + k − 1))
· (Nn + 1 − (h + k − 1))!Nh

n

Nn!

×
∏
i≥1

ni!
nmi

i (ni − mi)!
·

2k−1∏
j=1

( hj

(m(j)
i ; i ≥ 1)

) ∏
i≥1

(
ini

Nn

)m(j)
i

.

Nota that

∑
r1,...,rk−1≥2

k−1∏
j=1

rj(rj − 1)nrj

2Nn
=

(∑
r≥2

r(r − 1)nr

2Nn

)k−1

−→
n→∞

(
σ2

p

2

)k−1

,

as well as, for h ≤ Nn/2,

(Nn + 1 − (h + k − 1))!Nh
n

Nn! =
k−3∏
i=0

1
Nn − i

·
h−1∏
i=0

1
1 − (i + k − 2)/Nn

≤ 1 + o(1)

Nk−2
n

· exp
(

h2 + 2h(k − 2)

Nn

)
.

The rest of the proof is adapted verbatim.

APPENDIX B: ON THE MAXIMAL GAP IN A RANDOM WALK
BRIDGE

Our aim in this section is to prove Lemma 4. Recall that for r ≥ 1, a discrete bridge of length r is a
vector (B0, . . . , Br) satisfying B0 = Br = 0 and Bk+1 − Bk ∈ Z for every 0 ≤ k ≤ r − 1. A random
bridge is said to be exchangeable if the law of its increments (B1, B2 − B1, . . . , Br − Br−1) is invariant
under permutation.

Lemma 10 Fix r ≥ 1 and let B = (B0, . . . , Br) be a discrete bridge. For every x ≥ 0
fixed, if

max
0≤k≤r

Bk − min
0≤k≤r

Bk ≥ 3x,
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then at least one of the following quantities must be smaller than or equal to −x:

min
0≤k≤�r/2�

Bk , min
0≤k≤�r/2�

(
B�r/2� − B�r/2�−k

)
,

min
0≤k≤�r/2�

(
B�r/2�+k − B�r/2�

)
, min

0≤k≤�r/2�
(Br − Br−k) .

Consequently, if B is a random exchangeable bridge, then for every x ≥ 0, we have

P
(

max
0≤k≤r

Bk − min
0≤k≤r

Bk ≥ 3x
)

≤ 4 · P
(

min
0≤k≤�r/2�

Bk ≤ −x
)

.

Proof Let us write r/2 instead of �r/2� and set

M1 = max
0≤k≤r/2

Bk , m1 = min
0≤k≤r/2

Bk , M2 = max
r/2≤k≤r

Bk , m2 = min
r/2≤k≤r

Bk .

Suppose that the four minima in the statement are (strictly) larger than −x, then, since
Br = 0,

m1 > −x, Br/2 − M1 > −x, m2 − Br/2 > −x, −M2 > −x.

It follows that

M1 − m1 < (Br/2 + x) + x < m2 + 3x ≤ 3x,

M1 − m2 < (Br/2 + x) − (Br/2 − x) = 2x,

M2 − m1 < 2x,

M2 − m2 < x − (Br/2 − x) ≤ 2x − m1 < 3x,

We conclude that max0≤k≤r Bk − min0≤k≤r Bk = sup{M1, M2} − inf{m1, m2} < 3x.
The last claim follows after observing that if B is exchangeable, then the three

processes

(
Br/2 − Br/2−k; 0 ≤ k ≤ r/2

)
,

(
Br/2+k − Br/2; 0 ≤ k ≤ r/2

)
, (Br − Br−k; 0 ≤ k ≤ r/2)

are distributed as (Bk; 0 ≤ k ≤ r/2).

Proof of Lemma 4 First note that on the event {Sr = 0}, max0≤k≤r Sk−min0≤k≤r Sk cannot
exceed br. Moreover, on the event {Sr = 0}, the path (S0, . . . , Sr) is an exchangeable bridge
so, according to Lemma 10, it suffices to show that there exists two constants c, C > 0
which only depend on b and σ such that for every r ≥ 1 and 0 ≤ x ≤ br,

P
(

min
0≤k≤�r/2�

Sk ≤ −x
∣∣∣∣ Sr = 0

)
≤ Ce−cx2/r .

For every k ≥ 1 and every x ∈ Z, let us set θk(x) = P (Sk = −x). According to the local
limit theorem, for every k ≥ 1 and x ∈ Z,

√
kθk(x) = g(x/

√
k) + εk(x),
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where g(x) = (2πσ2)−1/2e−x2/(2σ2) and limk→∞ supx∈Z |εk(x)| = 0. It follows that

C := sup
r≥1,x∈Z

θr−�r/2�(x)
θr(0)

= sup
r≥1,x∈Z

√
r

r − �r/2�
g(−x/

√
r − �r/2�) + εr−�r/2�(x)

g(0) + εr(0)
< ∞.

Using the Markov property at time �r/2�, we have thereby

P
(

min
0≤k≤�r/2�

Sk ≤ −x
∣∣∣∣ Sr = 0

)
= P

(
min0≤k≤�r/2� Sk ≤ −x and Sr = 0

)

P (Sr = 0)

= E
[

1{min0≤k≤�r/2� Sk≤−x}
θr−�r/2�(S�r/2�)

θr(0)

]

≤ C · P
(

min
0≤k≤�r/2�

Sk ≤ −x
)

.

Finally, since −S is a random walk with step distribution bounded above by b, centred and
with variance σ2, we have the following concentration inequality (see, eg, Mc Diarmid
[36], Theorem 2.7 and the remark at the end of Section 2 there): for every n ≥ 1 and
every x ≥ 0,

P
(

max
0≤k≤n

−Sk ≥ x
)

≤ exp
(

− x2

2σ2n + 2bx/3

)
.

We conclude that for every r ≥ 1 and every 0 ≤ x ≤ br, we have

P
(

min
0≤k≤�r/2�

Sk ≤ −x
∣∣∣∣ Sr = 0

)
≤ C exp

(
− x2

2σ2�r/2� + 2bx/3

)
≤ C exp

(
− x2

(2σ2 + 2b2/3)r

)
,

and the proof is complete.
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then at least one of the following quantities must be smaller than or equal to −x:

min
0≤k≤�r/2�

Bk , min
0≤k≤�r/2�

(
B�r/2� − B�r/2�−k

)
,

min
0≤k≤�r/2�

(
B�r/2�+k − B�r/2�

)
, min

0≤k≤�r/2�
(Br − Br−k) .

Consequently, if B is a random exchangeable bridge, then for every x ≥ 0, we have

P
(

max
0≤k≤r

Bk − min
0≤k≤r

Bk ≥ 3x
)

≤ 4 · P
(

min
0≤k≤�r/2�

Bk ≤ −x
)

.

Proof Let us write r/2 instead of �r/2� and set

M1 = max
0≤k≤r/2

Bk , m1 = min
0≤k≤r/2

Bk , M2 = max
r/2≤k≤r

Bk , m2 = min
r/2≤k≤r

Bk .

Suppose that the four minima in the statement are (strictly) larger than −x, then, since
Br = 0,

m1 > −x, Br/2 − M1 > −x, m2 − Br/2 > −x, −M2 > −x.

It follows that

M1 − m1 < (Br/2 + x) + x < m2 + 3x ≤ 3x,

M1 − m2 < (Br/2 + x) − (Br/2 − x) = 2x,

M2 − m1 < 2x,

M2 − m2 < x − (Br/2 − x) ≤ 2x − m1 < 3x,

We conclude that max0≤k≤r Bk − min0≤k≤r Bk = sup{M1, M2} − inf{m1, m2} < 3x.
The last claim follows after observing that if B is exchangeable, then the three

processes

(
Br/2 − Br/2−k; 0 ≤ k ≤ r/2

)
,

(
Br/2+k − Br/2; 0 ≤ k ≤ r/2

)
, (Br − Br−k; 0 ≤ k ≤ r/2)

are distributed as (Bk; 0 ≤ k ≤ r/2).

Proof of Lemma 4 First note that on the event {Sr = 0}, max0≤k≤r Sk−min0≤k≤r Sk cannot
exceed br. Moreover, on the event {Sr = 0}, the path (S0, . . . , Sr) is an exchangeable bridge
so, according to Lemma 10, it suffices to show that there exists two constants c, C > 0
which only depend on b and σ such that for every r ≥ 1 and 0 ≤ x ≤ br,

P
(

min
0≤k≤�r/2�

Sk ≤ −x
∣∣∣∣ Sr = 0

)
≤ Ce−cx2/r .

For every k ≥ 1 and every x ∈ Z, let us set θk(x) = P (Sk = −x). According to the local
limit theorem, for every k ≥ 1 and x ∈ Z,

√
kθk(x) = g(x/

√
k) + εk(x),
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where g(x) = (2πσ2)−1/2e−x2/(2σ2) and limk→∞ supx∈Z |εk(x)| = 0. It follows that

C := sup
r≥1,x∈Z

θr−�r/2�(x)
θr(0)

= sup
r≥1,x∈Z

√
r

r − �r/2�
g(−x/

√
r − �r/2�) + εr−�r/2�(x)

g(0) + εr(0)
< ∞.

Using the Markov property at time �r/2�, we have thereby

P
(

min
0≤k≤�r/2�

Sk ≤ −x
∣∣∣∣ Sr = 0

)
= P

(
min0≤k≤�r/2� Sk ≤ −x and Sr = 0

)

P (Sr = 0)

= E
[

1{min0≤k≤�r/2� Sk≤−x}
θr−�r/2�(S�r/2�)

θr(0)

]

≤ C · P
(

min
0≤k≤�r/2�

Sk ≤ −x
)

.

Finally, since −S is a random walk with step distribution bounded above by b, centred and
with variance σ2, we have the following concentration inequality (see, eg, Mc Diarmid
[36], Theorem 2.7 and the remark at the end of Section 2 there): for every n ≥ 1 and
every x ≥ 0,

P
(

max
0≤k≤n

−Sk ≥ x
)

≤ exp
(

− x2

2σ2n + 2bx/3

)
.

We conclude that for every r ≥ 1 and every 0 ≤ x ≤ br, we have

P
(

min
0≤k≤�r/2�

Sk ≤ −x
∣∣∣∣ Sr = 0

)
≤ C exp

(
− x2

2σ2�r/2� + 2bx/3

)
≤ C exp

(
− x2

(2σ2 + 2b2/3)r

)
,

and the proof is complete.
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