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MARKOVIAN EXPLORATIONS OF RANDOM PLANAR MAPS
ARE ROUNDISH

by Nicolas Curien & Cyril Marzouk

Abstract. — Infinite discrete stable Boltzmann maps are “heavy-tailed” generalisa-
tions of the well-known uniform infinite planar quadrangulation. Very efficient tools
to study these objects are Markovian step-by-step explorations of the graph called
peeling processes. Such a process depends on an algorithm that at each step selects
the next edge where the exploration continues. We prove here that, whatever the
algorithm, a peeling process always reveals about the same portion of the map, thus
growing roughly like metric balls. Applied to well-designed algorithms, this enables
us to easily compare distances in the map and in its dual, as well as to control the
so-called pioneer points of the simple random walk, both on the map and on its dual.

Résumé (Sur les explorations markoviennes des cartes planaires aléatoires). — Les
cartes de Boltzmann infinies stables sont des généralisations à queue lourde de la qua-
drangulation et triangulation infinies uniformes du plan. L’un des outils pour l’étude
de ces objets est le processus d’épluchage qui est une méthode d’exploration pas-à-pas
de ces graphes aléatoires. Ces explorations dépendent d’un algorithme qui sélectionne
au fur et à mesure les arêtes à éplucher. Nous montrons ici, qu’indépendamment de
l’algorithme, le processus révèle peu ou prou la même portion de la carte aléatoire.
Cela permet en particulier de contrôler les distances duales et primales dans la carte,
de même que les points pionniers de la marche aléatoire.
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710 N. CURIEN & C. MARZOUK

1. Introduction

The peeling process. Since the introduction of the UIPT (uniform infinite planar
triangulation) by Angel and Schramm [3], the study of the large-scale properties
of infinite planar maps has been an intensive field of research. One of the main
tools to study these random graphs is the so-called peeling process, which is
a Markovian way to explore these random discrete surfaces step by step and
connects them with random walks. It has been used fruitfully in the case of the
UIPT (or its quadrangular cousin, the UIPQ) to study, e.g. its geometry [1, 16],
the behaviour of the simple random walk [4], its conformal structure [14] or fine
properties of percolation [1, 2]. The idea of Markovian exploration of random
triangulations can be traced back to Watabiki in the physics literature, and it
was first formalised by Angel [1]. Later, Budd [9] introduced a different and
more robust version of it, which we will use below.

The main advantage of the peeling process is the flexibility with the choice
of the exploration, which depends on an algorithm; the results cited above
were obtained using different peeling algorithms. However, certain properties
of the peeling process are universal in the sense that they do not depend upon
the algorithm, for example the law of the underlying random walk driving the
perimeter process or the fact that any peeling process eventually discovers the
complete underlying lattice [16, Corollary 6]. In this work we will show, in a
rather strong sense, that all Markovian explorations of the UIPT/UIPQ are
bound to discover roughly the same portion of the map at time n. In fact, our
result applies more generally to infinite (bipartite) “discrete stable” Boltzmann
maps, whose definition we now recall.
The infinite Boltzmann map and the filled-in peeling process. As usual, all pla-
nar maps in this work are rooted, i.e. equipped with a distinguished oriented
edge, and as it is customary, we will only consider bipartite planar maps (all
faces have an even degree). Given a non-zero sequence q = (qk)k≥1 of non-
negative numbers we define the Boltzmann measure w on the set of all bipartite
planar maps by the formula

w(m) :=
∏

f∈Faces(m)

qdeg(f)/2.

We shall assume that q is a critical weight sequence of type a ∈ ( 3
2 ,

5
2 ]. This

means that the equation z = 1 +
∑
i≥1
(2i−1
i−1
)
qiz

i has a unique solution Zq > 1
and that the probability measure

µ(0) = Z−1
q and µ(k) = Zk−1

q

(
2k − 1
k − 1

)
qk.

has mean 1, and either it has finite variance in the case a = 5
2 , or it is in the

strict domain of attraction of an (a − 1/2)-stable distribution, i.e. µ([k,∞)) ∼
ck−a+1/2 for some constant c > 0 as k → ∞, see [10, 21, 8] and [20] for details.
One can then define (using the assumption of criticality only) a random infinite
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MARKOVIAN EXPLORATIONS OF RANDOM PLANAR MAPS ARE ROUNDISH 711

bipartite map M∞ of the plane as the local weak limit of random maps sampled
according to w(·) and conditioned to be large, see [7, 24]. We will consider so-
called filled explorations ofM∞, which are sequences of dub-maps with one hole

e0 ⊂ · · · ⊂ en ⊂ · · · ⊂M∞,

obtained by starting with the root edge e0 ofM∞ and iteratively peeling an edge
on the boundary of en at each step. If the peeling of an edge creates more than
one hole, thenwe immediately fill in the finite part (recall thatM∞ is one-ended),
see Section 2.1 and [15] for details. As recalled above, these explorations depend
on an algorithm, hereafter denoted by A, to choose the next edge to peel A(en)
on the boundary of the explored part. This algorithm can be deterministic, or
it may depend on another source of randomness, as long as it is independent of
the unexplored region M∞ \ en, and we denote by (eAn )n≥0 the filled-in peeling
exploration ofM∞ to highlight the dependence on the algorithm A.

The ball of radius r in M∞, denoted by Ball(M∞, r), is obtained by keeping
the faces of M∞ that have at least one vertex at graph distance smaller than r
from the origin ρ of (the root edge of) the map; its hull Ball(M∞, r) is obtained
by filling in all the finite regions of the complement of Ball(M∞, r) in M∞. Our
main result is then the following, which explains the title:

Theorem 1.1. — Fix a critical weight sequence q of type a ∈ ( 3
2 ,

5
2 ]. For any

ε > 0, there exist 0 < cε < Cε < ∞, such that for any algorithm A, we have
for every n large enough

P
(

Ball
(
M∞, cεn

1
2(a−1)

)
⊂ eAn ⊂ Ball

(
M∞, Cεn

1
2(a−1)

))
≥ 1− ε.

Our main result thus shows, in a sense, that Markovian explorations of M∞
are bound to discover roughly the same region of M∞ by time n with high
probability. In particular, this implies that any Markovian exploration will
eventually discover the full map, a fact already proved in [15, Corollary 27]. In
the other direction, the paper [18] studies the decay of the (small) probability
that a given edge remains exposed on the boundary of en for large n’s.

Remark 1.2. — There is little doubt that our results also hold in the case of non-
bipartite maps, but we restrict to the case of bipartite maps for technical conve-
nience. In the particular case of the UIPT (of type I), our geometric estimates on
maps (Proposition 2.2) can be derived from [12], and Propositions 2.3 and 2.4 on
maps with a boundary may be obtained using similar techniques, with [23].

Let us now derive corollaries of our main theorem by specifying it to well-
chosen peeling algorithms.
Dual graph distance. There is an algorithm Ldual that explores the hull of the
balls for the dual metric on M∞ (i.e. the graph distance on the dual graph
M†∞), whose details can be found in Section 3. Since faces of a map correspond

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



712 N. CURIEN & C. MARZOUK

to vertices of its dual, in order to compare these two lattices, let us view
Ball(M†∞, r) as the dub-set of vertices of M∞, which are incident to a face at
dual graph distance from the root face (the one to the right of the root edge)
less than r, then let Ball(M†∞, r) be the set of all these vertices to which we
add all the finite regions of the complement.

When a ∈ (2, 5
2 ], the so-called “dilute phase”, balls in the dual graph grow

polynomially in the radius [10]; combined with the above result, this yields the
following rough comparison between primal and dual distances in M∞: the
hull of the ball of radius r in M†∞ is close to the hull of the ball of radius
r1/(2a−4) in M∞. For the so-called “dense phase” a ∈ ( 3

2 , 2), the balls in the
dual graph grow exponentially in the radius [10], whilst in the intermediate
regime a = 2, they have an “intermediate growth”, exponential in the square
root of the radius [11], so now the hull of the dual ball of radius r is close to
the hull of a primal ball with radius of order er when a < 2 and e

√
r for a = 2.

Corollary 1.3. — Fix a critical weight sequence q of type a ∈ ( 3
2 ,

5
2 ]; there

exists ca > 0, such that the following holds: for every ε > 0, there exist 0 <
cε < Cε <∞, such that for every r large enough, we have

Ball(M∞, cεr
1

2a−4 )⊂Ball(M†∞, r)⊂Ball(M∞, Cεr
1

2a−4 ) when a∈ (2; 5/2],

Ball(M∞, eπ
√
r/2(1−ε))⊂Ball(M†∞, r)⊂Ball(M∞, eπ

√
r/2(1+ε)) when a= 2,

Ball(M∞, eca(1−ε)r)⊂Ball(M†∞, r)⊂Ball(M∞, eca(1+ε)r) when a∈ (3/2; 2),

with a probability of at least 1− ε.

Observe that 2a − 4 = 1 when a = 5/2; in the case of triangulations, it is
known more precisely that the distances on the primal and dual are, in fact,
asymptotically proportional [17].
Pioneer points for the simple random walk. In another direction, we study the
behaviour of the simple random walk on M∞ and M†∞ using algorithms Sprimal
and Sdual, respectively, which both explore the map M∞ along the correspond-
ing walk. These algorithms enable us to keep track of the so-called pioneer
points of the walk, which are roughly speaking steps performed by the walk,
which lead to the discovery of a new vertex, which is not disconnected from
infinity when removing the past trajectory (see Section 3.2 for details). Our
theorem shows that the respective walk performs about

r2a−2 pioneer steps within Ball(M∞, r) (primal),
ga(r) pioneer steps within Ball(M†∞, r) (dual),

with high probability, where ga(r) = r
a−1
a−2 1{a>2} + e

√
r1{a=2} + er1{a<2}. We

refer to Corollaries 3.1 and 3.2 for more precise statements.
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MARKOVIAN EXPLORATIONS OF RANDOM PLANAR MAPS ARE ROUNDISH 713

For the walk on the primal map M∞, we are able to replace the hull
Ball(M∞, r) by the ball itself, which, in the dilute regime a > 2, establishes a sub-
diffusivity phenomenon in the sense that with high probability, the n-th step of
the walk is at a distance of at most n1/(2a−2) from its starting point. This idea
to use the pioneer points to derive a dub-diffusive behaviour was exploited in [4]
on the UIPQ and, in some sense, considers the worst case, where each step of the
random walk is a pioneer point. It is likely that this is far from what really occurs
and controlling this would improve the exponent (see [18] for an argument based
on reversibility, which improves the exponent in the case of the UIPT/Q) a tiny
bit. Let usmention that in a forthcoming paper [19], we use a completely different
method to prove that the walk on the primal map is actually always sub-diffusive
with an exponent of at most 1/3, for all a ∈ ( 3

2 ,
5
2 ].

One could apply our main result to many other peeling algorithms, such
as uniform peeling (or metric exploration for the Eden model), peeling along
percolation interfaces or peeling associated with internal DLA. We refrain from
doing so to keep the paper short.

Throughout this work, for two positive random processes (Xn)n≥0 and
(Yn)n≥0, we write Xn . Yn, and Xn & Yn, when

lim
C→∞

lim sup
n→∞

P (Xn > CYn) = 0, resp. lim
C→∞

lim sup
n→∞

P
(
Xn < C−1Yn

)
= 0.

We also write Xn ≈ Yn, when both Xn . Yn and Xn & Yn hold. This notion
of comparison is different from the one used in [4], where these symbols have
the following different meaning: there, Xn . Yn means that there exists κ > 0,
such that Xn/(Yn logκ n) converges almost surely to 0. This notion is neither
weaker nor stronger than the present one (it is a trade-off between a strong
convergence and logarithmic factors instead of constants). We believe that all
our results also hold in this sense, but our current estimates do not imply it.
Acknowledgments. — We acknowledge support from the Fondation Mathéma-
tique Jacques Hadamard. This project has also received funding from the Eu-
ropean Research Council (ERC) under the European Union’s Horizon 2020 re-
search and innovation programme, grant agreement No. ERC-2016-STG 716083
“CombiTop” (C.M. is thankful to Guillaume Chapuy for having benefited from
this grant) and ERC Advanced Grant 740943 “GeoBrown”. Finally, we thank
the two anonymous referees for their comments.

2. The peeling process and geometric estimates

In this section, we briefly recall the filled-in peeling process of M∞ and refer
the reader to [15] for details. We also gather the geometric estimates needed
for the proof of our main result, which is then rather short and simple. The
proofs of these estimates, which are based on constructions with labelled trees,
are postponed to Section 4.4.
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714 N. CURIEN & C. MARZOUK

2.1. The filled-in peeling process. — Given an instance of M∞, a filled-in peel-
ing process is a sequence of growing sub-maps e0 ⊂ e1 ⊂ · · · ⊂ M∞, where e0
is the root edge of M∞, and en+1 is obtained by the peeling of one edge on the
boundary of en. More precisely, en is a planar (bipartite) map with a hole, i.e.
a distinguished face whose boundary is simple. We say that en is a sub-map
of M∞ in the sense that M∞ can be recovered by gluing a proper map with
(general) boundary inside the unique hole of en. To pass on from en to en+1
we first select an edge A(en) on the boundary of the hole of en, where A is our
peeling algorithm, which may depend on another source of randomness as long
as it is independent of M∞. Once A(en) is picked, we reveal its status inside
the map M∞, two cases may appear, as illustrated in Figure 2.1:

• Either the peel edge is incident to a new face in M∞ of degree 2k, then
en+1 is obtained from en by gluing this face on the peel edge without
performing any other identification. This event is called an event of
type Ck.
• Or the peel edge is incident to another face of en in the map M∞, in
which case we perform the identification of the two boundary edges
of en. When doing so, the hole of en of perimeter, say 2p, is split
into two holes of perimeter 2p1 and 2p2 with p1 + p2 = p − 1. Since

Figure 2.1. Illustration of the filled-in peeling process. In the
left-most figure we have explored a certain region en ⊂ M∞
corresponding to the faces in pink glued by the edges in gray.
Depending on the edge to peel at the next step, we may end
up either with an event of type C2 (top figures) or an event of
type G3,∗ (bottom figures).
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MARKOVIAN EXPLORATIONS OF RANDOM PLANAR MAPS ARE ROUNDISH 715

M∞ is almost surely one-ended, only one of these holes corresponds
to an infinite region in M∞. We then fill in the finite hole with the
corresponding map inside M∞ to obtain en+1. We speak of an event
of type G∗,p1 or Gp2,∗, depending whether the finite hole is to the left
or to the right of the peel edge.

During a filled-in peeling exploration (en)n≥0 of M∞ we denote by |∂en| the
half-perimeter of the boundary of the unique hole of en and by |en| the number
of inner vertices. The process (|∂en|, |en|)n≥0 is a Markov chain whose law is
independent of the peeling algorithm with explicit probability transitions [9].
In particular, we recall that (|∂en|)n≥0 is a Doob h-transform of a random walk
with i.i.d. increments of law ν for the function h↑(p) = 2p · 2−2p(2p

p

)
for p ≥ 0

and where ν satisfies

ν(−k) ∼ pq · k−a and ν([k,∞)) = pq

a− 1 cos(aπ)k1−a,

where the constant pq > 0 depends on our weight sequence. Precise scaling
limits for the process (|∂en|, |en|)n≥0 are known ([10, Theorem 3.6] in the case
a 6= 21 and [11, Theorem 1] in the case a = 2), and, in particular, it follows
that

Proposition 2.1 (Peeling growth). — Let (en)n≥0 be a filled-in peeling process
of M∞. Then we have

|∂en| ≈ n
1
a−1 and |en| ≈ n

a−1/2
a−1 .

2.2. Geometric estimates. — We now recall state a few geometric estimates
that we will use during the proof of our main result. Although some of them
may be obtained using the peeling process, we find it more convenient to prove
them using Schaeffer-type construction of M∞ [7, 24]. We postpone the proof
of these estimates to Section 4.4. Recall that |m| denotes the number of vertices
of a map m and ρ is the origin vertex of M∞.

Proposition 2.2 (Volume growth and tentacles). — We have

|Ball(M∞, r)| ≈ r2a−1, |Ball(M∞, r)| ≈ r2a−1, and
max{dgr(ρ, u);u ∈ Ball(M∞, r)} ≈ r.

This proposition will be deduced from the results of Le Gall and Mier-
mont [21], who studied scaling limits of our finite Boltzmann maps conditioned
to be large. The next estimates deal with maps with a boundary. For p ≥ 1, we
denote by M(p) a q-Boltzmann map with a (general) boundary of perimeter

1. The case a = 5/2 is not considered there, but the arguments extend readily.
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716 N. CURIEN & C. MARZOUK

2p, which is a random bipartite planar map, with a root face of degree 2p, and
whose law is given by

P(M(p) = m) ∝
∏

f inner face
qdeg(f)/2.

This law is important, since in a filled-in exploration, during an event of type
Gp,∗ or G∗,p, the finite hole of perimeter 2p is filled in with a copy of M(p)

independently of the past exploration. It can be shown that in the finite map
M(p) with boundary length 2p, the volume grows like p2a−1, whilst the diameter
grows like p1/2. The next result considers the volume growth of the balls in
such a map with a boundary.

Proposition 2.3. — There exists c > 0 and λ > 0, such that for all r large
enough and all p ≥ 2r2, we have

P
(
|Ball(M(p), r)| > λr2a−1

)
> c.

We can also define M(p)
∞ as the infinite q-Boltzmann map with the boundary

of perimeter 2p as a local limit of finite maps conditioned to be large, see,
e.g. [15]. If m is a map with a boundary, we define the aperture of m as

aper(m) = max{dgr(x, y) : x, y two vertices on the boundary of m}.

Proposition 2.4. — We have
aper(M(p)

∞ ) ≈ p1/2.

2.3. Proof of the main result. — We may now prove Theorem 1.1 relying on the
preceding estimates and on properties of the peeling process. Fix any peeling
process (en)n≥0 of M∞, and for every n ≥ 0, let us denote by D−n and D+

n the
smallest and the largest distance in the whole map to the origin ρ of a vertex
on the boundary ∂en. We stress that D−n is measurable with respect to en, and
it equals the smallest distance in the sub-map en to the origin ρ of a vertex on
∂en, whereas D+

n is not measurable with respect to en and is smaller than or
equal to the largest distance in the sub-map en to the origin ρ of a vertex on
∂en. Clearly,
(1) Ball(M∞, D−n − 1) ⊂ en ⊂ Ball(M∞, D+

n + 1).
Theorem 1.1 thus follows, if we prove that

D−n & n
1

2(a−1) and D+
n . n

1
2(a−1) .

We shall prove these two bounds separately. The second bound D+
n . n

1
2(a−1)

is the easy one, it will follow from the same proof technique as that of [4], which
is also recalled in [18, Proposition 3.1] and is primarily based on the aperture
estimate of Proposition 2.4. The first bound D−n & n

1
2(a−1) will follow from

more precise volume consideration. The main idea is that, if D−n is small, then
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MARKOVIAN EXPLORATIONS OF RANDOM PLANAR MAPS ARE ROUNDISH 717

a lot of “large” peeling steps will accumulate too much volume near the origin
of M∞.

Upper bound D+
n . n

1
2(a−1) via aperture. We follow the same lines as [18, Propo-

sition 3.1] in our more general context of infinite “discrete stable” maps of type
a ∈ ( 3

2 ,
5
2 ]. Since |en| ≈ n

a−1/2
a−1 by Proposition 2.1 and |Ball(M∞, r)| ≈ r2a−1

by Proposition 2.2, from (1) we deduce the first bounds

D−n . n
1

2(a−1) and D+
n & n

1
2(a−1) .

Notice also the easy bound D+
n − D−n ≤ aper(M∞ \ en); now recall that the

spatial Markov property of the peeling exploration asserts that conditionally on
|∂en|, the unexplored region M∞ \ en is independent of en and has the law of
M

(p)
∞ with p = |∂en|. Since |∂en| ≈ n

1
a−1 by Proposition 2.1, we conclude using

Proposition 2.4 that

D+
n −D−n . |∂en|1/2 ≈ n

1
2(a−1) .

Combined with the previous bound, we get D+
n ≈ n

1
2(a−1) as desired.

Lower bound D−n & n
1

2(a−1) via accumulation of volume near the origin. As
announced, the lower bound will follow from volume consideration. More pre-
cisely, we shall consider |Ball(en, 2r)| the number of vertices in the ball of radius
2r in the sub-map en centred at the origin ρ of the map M∞ and study its vari-
ation ∆|Ball(en, 2r)| = |Ball(en+1, 2r)|−|Ball(en, 2r)|. Below we write (Fn)n≥0
for the filtration generated by the peeling process, recalling that D−n and |∂en|
are measurable with respect to Fn.

Lemma 2.5. — There exist two constants K,λ > 0, such that for all r and n
large enough, we have

P
(
∆|Ball(en, 2r)| > λr2a−1 ∣∣ Fn, D−n ≤ r) ≥ K · |∂en|−(a−1)1|∂en|≥4r2 .

Proof. — Let us condition on Fn and on the events D−n ≤ r and |∂en| ≥ 4r2.
Suppose that in the next peeling step, we identify the peel edge with another
one on the boundary, separating from infinity a part of the boundary containing
(twice) −∆|∂en| − 1 ≥ |∂en|/2 edges. On such an event, by symmetry, there
is a chance of at least 1/2 that the boundary swallowed in the finite part
contains a vertex x−n , say, at distance D−n ≤ r from the origin. Then we fill in
this hole by inserting an independent finite Boltzmann map with half-perimeter
−∆|∂en|−1. Since such a map is invariant under re-rooting along the boundary,
we may assume that its root vertex is matched with x−n . See Figure 2.2.

In this scenario, ∆|Ball(en, 2r)| is larger than or equal to the volume of
the ball of radius r in the map with half-boundary −∆|∂en| − 1 that we just
added. According to Proposition 2.3, there exist c > 0 and λ > 0, such that for
any p ≥ 2r2, we have P(|Ball(M(p), r)| > λr2a−1) > c, for all r large enough.
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D−
n

D+n
en

D−
n

D+n
en

D−
n

D+n
en

D+n en

D−
n

en+1

2r

2r

≤ r

Figure 2.2. Illustration of the proof of Lemma 2.5. The edge
to peel is the red edge. The green region is Ball(en, 2r). On the
event where −∆|∂en| ≥ |∂en|/2, there is a chance of at least
1/2 that the swallowed part of the boundary contains a point
at minimal distance (inside en) from the origin. If D−n < r,
then we add (at least!) to Ball(en+1, 2r) the ball of radius r
in the map filling in the hole centered at this point (in dark
green in the figure above).

Therefore, for r large, as soon as |∂en| ≥ 4r2, on the event −∆|∂en| − 1 ≥
|∂en|/2 ≥ 2r2, the ball of radius r in the map we add to fill in the hole has
volume at least λr2a−1 with probability at least c. By the exact transition
probabilities of the Markov chain |∂en| and the facts that ν(−k) ∼ pqk

−a and
h↑(p) ∼ c′

√
p for some c′ > 0, the probability that such a peeling step occurs

is bounded below by

P (∆|∂en| ≤ −|∂en|/2 | Fn) ≥
3|∂en|/4∑
k=|∂en|/2

h↑(|∂en| − k)
h↑(|∂en|)

ν(−k) ≥ C · |∂en|−(a−1),

for some constant C > 0. Moreover, given that ∆|∂en| − 1 ≤ −|∂en|/2, the
probability that a given vertex x−n at distance D−n ≤ r from the origin sits on
the part of the boundary separated from infinity is at least 1/2. Gathering up
the pieces we deduce as desired that

P
(
∆|Ball(en, 2r)|>λr2a−1 ∣∣ Fn, D−n ≤ r, |∂en| ≥ 4r2) ≥ 1

2 × c×C · |∂en|
−(a−1)

for r, n large enough. �

Let us come back to the proof of the lower bound D−n & n
1

2(a−1) in order
to complete the proof of Theorem 1.1. Let us fix ε > 0; we aim at showing
that there exists δ > 0 ,such that for all n large enough, we have P(D−n ≤
δn

1
2(a−1) ) ≤ ε. Fix A large (the value of A will be fixed in a few lines by ε); we
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will first choose η small enough so that

(2) P

(
n∑
i=1

K

|∂ei|a−1 1|∂en|≥ηn1/(a−1) > A

)
≥ 1− ε/4,

where K is the constant appearing in Lemma 2.5. This is indeed possible, since
by [10, Theorem 3.6] in the case a 6= 2 and [11, Theorem 1] in the case a = 2:
for each η > 0 the sum in the above display converges in distribution towards∫ 1

0

dt
(Υ↑t )a−1

1Υ↑t>η
,

where Υ↑t is an (a − 1)-stable Lévy process conditioned to stay positive (the
details of this process can be found in the above references), for which we have∫ 1

0 (Υ↑t )1−adt = ∞ almost surely by an application of Jeulin’s lemma, see [15,
Corollary 27]. We now apply Lemma 2.5 with r ≡ rn = δn1/(2a−2), with δ
chosen small enough so that η ≥ 4δ2; for all n large enough it holds that

P
(
∆|Ball(ei, 2rn)| > λr2a−1

n

∣∣ Fn, D−i ≤ rn) ≥ K · |∂ei|−(a−1)1
|∂ei|≥ηn

1
a−1

,

for all i ∈ {1, . . . , n}. Let us denote by Xn,i the indicator of the event in
the conditional probability above. Notice that since D−i is non-decreasing, if
D−n ≤ rn, then D−i ≤ rn, for all 1 ≤ i ≤ n. By this remark, conditionally on
Dn ≤ rn and on the event studied in (2), the variable

∑n
i=1Xn,i is stochastically

lower bounded by a sum of independent Bernoulli random variables Zi, with
success parameter 0 < pi < ηa−1/i and so that

∑n
i=1 pi ≥ A, for n large

enough. An easy Chernoff bound then shows that

P

(
n∑
i=1

Zi >
A

8

)
≥ 1− ε/4.

When this scenario occurs, the ball of radius 2rn in M∞ contains a volume of
at least A/8 times λr2a−1

n , whence we deduce that

P
(
|Ball(M∞, 2rn)| ≥ A

8 λr
2a−1
n

)
≥ P

(
D−n ≤ δn1/(2(a−1))

)
− ε

4 −
ε

4 .

Now, one can further assume that A was chosen large enough, so that
P(|Ball(M∞, 2r)| ≥ A

8 λr
2a−1) ≤ ε

2 , for all r large enough by Proposition 2.2.
This finally proves that P(D−n ≤ δn1/(2(a−1))) ≤ ε, as desired. �

3. Applications

Let us apply Theorem 1.1 to three peeling procedures especially designed to
study the volume growth of the dual map, the behaviour of a simple random
walk on M∞ and the behaviour of a simple random walk on M†∞.
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3.1. Comparison with the dual map. —

Proof of Corollary 1.3. — We apply Theorem 1.1 to the peeling en with the
algorithm Ldual defined in [10, Section 2.3]. Very briefly, in this algorithm, we
start with the root face of M∞ (the one to the right of its root edge), and we
first peel all the edges of this face to reveal the hull of the dual ball of radius
1. Then we iteratively peel all the edges that, at this moment, are on the
boundary of the explored region to reveal the hull of the dual ball of radius 2,
etc. Note that at every step n, the faces incident to the boundary are either
at a dual distance Hn say, to the root face, or at dual distance Hn + 1. We
deduce from Theorem 1.1 that for every ε > 0, there exist 0 < cε < Cε < ∞,
such that for every n large enough, we have

(3) Ball
(
M∞, cεn

1
2(a−1)

)
⊂ Ball

(
M†∞, Hn

)
⊂ Ball

(
M∞, Cεn

1
2(a−1)

)
,

with probability at least 1− ε. Now, depending on the value a ∈ (3/2; 5/2] we
know the asymptotic behaviour of Hn: for a ∈ (2; 5/2], by [10, Theorem 4.2],
we have Hn ≈ n

a−2
a−1 , for a ∈ (3/2; 2), combining [10, Theorem 5.3] and [10,

Lemma 5.8], the ratio Hn/ logn converges in probability to some constant
Ca > 0, and finally for a = 2, according to [11, Proposition 4], the ratio
Hn/ log2 n converges in probability to (2π2)−1. For some 0 < c′ε < C ′ε < ∞,
we thus have with probability at least 1− ε when n is large enough,

c′εn
a−2
a−1 ≤ Hn ≤ C ′εn

a−2
a−1 when a ∈ (2; 5/2],

(1− ε)Ca logn ≤ Hn ≤ (1 + ε)Ca logn when a ∈ (3/2; 2),
1− ε
2π2 log2 n ≤ Hn ≤

1 + ε

2π2 log2 n when a = 2.

Corollary 1.3 then follows by combining these bounds with (3) and using mono-
tonicity properties. �

3.2. Pioneer points and sub-diffusivity. —
Walk on M∞. — Let X = (Xn)n≥0 be the simple random walk on M∞
started from the origin ρ, which should be viewed as a sequence ( ~En)n≥0 of
oriented edges, such that ~E0 is the root edge, and for every n ≥ 0, conditional
on the edge ~En, we choose one of the edges incident to the tip of ~En uniformly
at random; then ~En+1 is this new edge, oriented from the tip of ~En. Then
Xn is the origin of the edge ~En. We say that τ ≥ 0 is a pioneer time, if Xτ

lies on the boundary of the unique infinite component when we remove all the
faces incident to one of the Xi’s for i < τ ; then Xτ is called a pioneer point
(so X0 = ρ is a pioneer point). For every n ≥ 0, we let Pn be the n-th pioneer
point.
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Corollary 3.1. — Fix a critical weight sequence q of type a ∈ ( 3
2 ,

5
2 ]. We

have
sup

1≤k≤n
dgr(ρ,Pk) ≈ n

1
2(a−1) and sup

0≤k≤n
dgr(ρ,Xk) . n

1
2(a−1) .

Proof of Corollary 3.1. — We use the peeling algorithm Sprimal defined in [4,
Section 1.4], which follows the walk X: if Xn is not a pioneer point, it lies in the
interior of the sub-map that we have revealed so far, and we may directly move
to Xn+1. If otherwise Xn is a pioneer point, then it lies on the boundary of the
explored part, and we peel the edge on the boundary that lies immediately to
the left of Xn. We continue to do so until Xn does not belong to the boundary
of the explored part. The 1-neighborhood of Xn has then been completely
explored, and we may perform a random walk step.

Let us denote by (en)n≥0 the associated filled-in peeling process and write
θn for the number of pioneer points we encountered in the first n peeling steps.
Since we only peel when the walk is at a pioneer point, we have θn ≤ n + 1.
On the other hand, if Xn is on the boundary of the explored part of perimeter,
say 2p ≥ 4, there is a probability of at least ν(−1)h↑(p − 1)/h↑(p) that Xn

is swallowed by a peeling step of type G∗,0 and is no longer exposed on the
boundary of the explored part. If p = 1, the point Xn can be swallowed in two
peeling steps. Since infp≥2 ν(−1)h↑(p− 1)/h↑(p) > c > 0, we see that the time
it takes to discover the neighbourhood of a given pioneer point is stochastically
dominated by a geometric random variable. It easily follows that

θn ≈ n.
Using this and Theorem 1.1 it follows that the first n pioneers points of the walk,
and a fortiori the first n steps of the walk, take place within Ball(M∞, Cεn

1
2(a−1) )

with probability at least 1−ε. Using the third item of Proposition 2.2 it follows
that

sup
1≤k≤n

dgr(ρ,Pk) . n
1

2(a−1) and so sup
0≤k≤n

dgr(ρ,Xk) . n
1

2(a−1) .

For the lower bound sup1≤k≤n dgr(ρ,Pk) & n
1

2(a−1) notice that the n-th pioneer
point is necessarily outside en−1 and so by Theorem 1.1 it must be at distance
at least cεn

1
2(a−1) from the origin of the map with probability at least 1−ε. �

Walk on M†∞. — We can use the same strategy as in the last section to study
the random walk on M†∞. More precisely, let us denote by X† = (X†n)n≥0
the simple random walk on M†∞ started from the root face fr. As before, one
can design an algorithm Sdual that explores the map along the walk (see [15,
Section 8.2.2]). The latter is simpler than Sprimal. The walk starts from the
root face fr and wants to traverse one of the edges of this face, and we then peel
this edge and reveal the face on the other side before moving to X†1 . Then we
continue like this: at each step, either the walk wants to traverse an edge such
that the other side has not been revealed yet, in which case, we peel this edge,
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or the other side is known, and the walk can move directly. We call pioneer
edges the edges traversed by the walk that lead to the triggering of a peeling
step; for all k ≥ 0, let us denote by P†k the origin of the k-th pioneer edge.
Finally, we denote by d†gr the graph distance in M†∞.

Corollary 3.2. — Fix a critical weight sequence q of type a ∈ ( 3
2 ,

5
2 ]; there

exists ca > 0, such that the following holds: for every ε > 0, there exist 0 <
cε < Cε <∞, such that for every r large enough, we have

cεn
a−2
a−1 ≤ max

1≤k≤n
d†gr(fr,P†k) ≤ Cεn

a−2
a−1 when a ∈ (2, 5/2],

(1− ε)ca logn ≤ max
1≤k≤n

d†gr(fr,P†k) ≤ (1 + ε)ca logn when a ∈ (3/2, 2),

1− ε
2π2 log2 n ≤ max

1≤k≤n
d†gr(fr,P†k) ≤ 1 + ε

2π2 log2 n when a = 2.

with probability at least 1− ε.

Proof. — Let (en)n≥0 be the filled-in peeling process associated with Sdual.
Using the fact that the sub-maps (ek)0≤k≤n are nested, a moment’s thought
shows that

min
f∈∂en

d†gr(fr, f) ≤ d†gr(fr,P†n) ≤ max
1≤k≤n

d†gr(fr, P†k)

≤ max
1≤k≤n

max
f∈∂ek

d†gr(fr, f) = max
f∈∂en

d†gr(fr, f),

where by f ∈ ∂en we mean a face incident to the boundary ∂en. By Theo-
rem 1.1, the smallest and the largest primal graph distances to the root vertex
of the boundary ∂en are both of order n1/(2a−2), and we then conclude from
Corollary 1.3 that minf∈∂en d†gr(fr, f) and maxf∈∂en d†gr(fr, f) satisfy the lower
and upper bounds, respectively, of our claim. �

We point out that, as opposed to Corollary 3.1, this result does not imply
upper bounds for the quantities max1≤k≤n d

†
gr(fr, X

†
k) because we do not have

the last claim of Proposition 2.2 for the dual map. We do get that the walk
X† up to time n stays within a hull Ball(M†∞, rn) for some rn given by Corol-
lary 3.2, but this hull may have “tentacles” reaching a distance much larger
than rn (at least in the dense regime, but it should not be the case in the
dilute regime).

4. Maps as labelled trees and geometric estimates

In this section, we recall the other very efficient tool to study planar maps,
which is a construction from the labelled mobiles originally due to Bouttier, Di
Francesco, and Guitter. Let us first define these objects before recalling the
construction (we refer the reader to [6, Section 6] for details).
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4.1. Bouttier–Di Francesco–Guitter coding of bipartite maps. —
Finite maps. Let us set Z≥−1 = {−1, 0, 1, 2, . . .}, and for every k ≥ 1, consider
the following set of bridges:

B≥−1
k = {(b0, . . . , bk) : b0 = bk = 0 and bj − bj−1 ∈ Z≥−1 for 1 ≤ j ≤ k} .

Amobile is a finite rooted plane tree whose vertices at even (or odd) generations
are white (or black). We consider labelled mobiles in which every white vertex
u carries a label `(u) ∈ Z. We say that a finite-ordered forest of mobiles
(t1, . . . , tp) is well labelled if

(i) The sequence of labels of the roots of t1, . . . , tp, t1 belongs to B≥−1
p+1 .

(ii) For every black vertex u, if u0 denotes its white parent and u1, . . . , uk
its white children, ordered from left to right, then the sequence of
labels (`(u0), `(u1), . . . , `(uk), `(u0)) belongs to B≥−1

k+1 .

Imagine that the forest t1, . . . , tp is properly drawn on the plane inside a
cycle of length p, with the roots grafted in counterclockwise order on the cycle.
Let us define the white contour sequence (c◦n)n≥0 as the sequence of corners
formed by the white vertices, starting from c◦0, the corner between the root
of t1 and its first black child (if any, otherwise the corner formed by this root
only), and following the contour of the forest from left to right cyclically. Recall
that the white vertices are labelled, we associate with each white corner the
label of the corresponding vertex; we then say that a corner c◦j is the successor
of another corner c◦i , if c◦j is the first corner in the cyclic contour after c◦i , such
that `(c◦j ) = `(c◦i )− 1. For this definition to hold also when `(c◦i ) = `min is the
overall minimum of labels, we add an extra vertex u? labelled `min − 1.

We associate a pointed planar map — i.e. a map with a distinguished ver-
tex — with such a well-labelled forest of mobiles by drawing the links between
each corner and its successor in a non-crossing fashion and then erasing the
embedding of the cycle and the edges of the mobiles; we are then left with a
bipartite map on the set of white vertices of the forest and the distinguished
vertex u?, with a black vertex inside each inner face, and the degree of this
vertex in its mobile is half the degree of the face in the map. The external face
of the map is the face that “encloses” the cycle on which the mobiles have been
grafted. The root edge of the map is not prescribed by the forest and is taken
uniformly at random on the external face of degree 2p (oriented so that the
external face is on its right). The labelling of the above forest has a geometric
interpretation in terms of the map; the label of a vertex minus `min plus 1 is
the graph distance in the map to the distinguished vertex u?. See Figure 4.1
for an illustration.
Infinite maps. Let us next briefly extend the preceding construction to infi-
nite maps with boundary length 2p. We start as above with a forest of mo-
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Figure 4.1. Illustration of the construction of a pointed (at
the white unlabelled vertex) bipartite planar map with a
boundary of perimeter 8 (in red) from a forest of 4 mobiles.
Note that the boundary is simple here, which may not be the
case in general.

biles (t1, . . . , tp), where the ti’s for i ≥ 2 are as above, but t1 is now an infi-
nite mobile with one end, in the sense that it is locally finite, and there is a
unique self-avoiding infinite path, thereafter called the spine, so the tree can
be constructed from such a half-line of alternating white and black vertices
s◦0, s

•
0, s
◦
1, s
•
1, s
◦
2, s
•
2, . . . on which finite trees are grafted. This spine splits the

forest into two parts: the one on its left made of all the trees grafted to the left
of the spine, and the one on the right made of all the trees grafted to the right
of the spine and the other ti’s. Then we may define a white contour sequence
as a process indexed by Z; define (c◦n)n≥0 following the contour of t1 starting as
above from c◦0, the corner between the root of t1 and its first black child; on the
other hand, define (c◦−n)n≥1 following the contour of the forest but now from
right to left: c◦−1 is the corner between the root of tp and its last black child,
and we then visit all the white corners of the ti’s for i ≥ 2 before reaching t1
and following the part to the right of the spine.

As before, we consider labels on the white vertices and we say that the
forest is well labelled when the labels satisfy the same local rule as in the finite
case, and, furthermore, the set of labels on the spine is not bounded below.
We then construct a map as previously, by first imagining that the trees are
properly drawn inside a cycle of length p with a unique accumulation point
(corresponding to the infinite tree) and then linking every white corner to its
successor in a non-crossing fashion. Our assumption ensures that this is always
possible, so there is no need to add any extra vertex here (the distinguished
vertex is “sent to infinity”). The root edge is chosen uniformly at random on
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the external face as above. We refer to [24, Section 6.3] and [7, Section 2] for
this construction in the case p = 1.

4.2. The distribution of random labelled mobiles. — A way to generate ran-
dom bipartite pointed Boltzmann planar maps consists in constructing it as
previously, starting from a random forest. Let T be an alternating two-type
Bienaymé–Galton–Watson tree: it has white and black vertices at even and
odd generation, respectively, which reproduce independently according to the
following offspring distributions:

µ◦(k) = Z−1
q (1− Z−1

q )k and µ•(k) =
Zk+1

q
(2k+1

k

)
qk+1

Zq − 1 ,

for all k ≥ 0. Recall the law µ from the introduction; note that for k ≥ 1, the
ratio µ(k)/µ•(k − 1) is constant, so µ• or µ has finite variance or belongs to
the strict domain of attraction of an (a− 1/2)-stable distribution, if and only
if the other satisfies the same property. Furthermore, easy calculations show
that µ has mean 1, if and only if the product of the means of µ◦ and µ• equals
1, so the two-type tree is critical. A simple and useful observation is that the
tree induced by the white vertices, given by keeping only these white vertices
and linking each one to its white grandparent, is a Bienaymé–Galton–Watson
forest; we shall denote the offspring distribution by µ̃, which differs slightly
from µ but has the same “stable behaviour”, see [21, Section 3.2].

Let T1, . . . , Tp be i.i.d. copies of T and, conditionally on this forest, sample
labels uniformly at random amongst all possibilities that make the forest well
labelled; this just means that at every black vertex with, say, k − 1 offsprings,
the sequence of labels around it in clockwise order forms a uniformly random
bridge in B≥−1

k shifted by the value of the label of its parent, independently of
the rest, and similarly so for the roots. The law of that bridge is the same as
that of a random walk bridge of length k, with i.i.d. increments of law

(4) P (ξ = k) = 2−2−k for k ≥ −1.

Then [6, Proposition 22] shows that the pointed map constructed as above from
T1, . . . , Tp has the law of a q-Boltzmann pointed planar map with a boundary
with length 2p, which we denote by M

(p)
• , i.e. P(M(p)

• = (m, •)) ∝ w(m). This
is not quite the desired law M(p), but the latter can be obtained by a simple
bias: for every non-negative function f that depends on the map only (not on
its distinguished vertex •),

(5) E
[
f(M(p))

]
= 1

E[1/|M(p)
• |]
· E

[
f(M(p)

• ) · 1
|M(p)
• |

]
,

where |m| is the number of vertices of the map m.
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Similarly, if the random labelled forest (T1, . . . , Tp) has the same law as
above, except that T1 is infinite, and has the law of T∞, the two-type Bienaymé–
Galton–Watson trees conditioned to survive as above, then the associated map
has the law M

(p)
∞ (this follows from [6, Proposition 22] and the work [24]). The

law of T∞ may be constructed in the following way: all the vertices reproduce
independently; the ones outside the spine reproduce according to their respec-
tive offspring distribution, and the ones on the spine s◦i , s•i reproduce according
the size-biased versions of these laws; finally, the offspring of a vertex on the
spine that belongs to the spine is chosen uniformly at random.

4.3. Asymptotic estimates on labelled mobiles. — Let us consider a sequence
(Tn)n≥1 of i.i.d. well-labelled mobiles with the same distribution as T , which
we view as an ordered forest; the labels of the roots of the mobiles are zero, and
the rest of the labels of the mobiles are sampled uniformly at random as above.
Let S◦ = (S◦k)k≥0 and L◦ = (L◦k)k≥0 be, respectively, the white Łukasiewicz
walk and the label process associated with this forest, constructed as follows:
let us read the white vertices of the forest in depth-first search order, starting
at 0 from the root of the first tree, then put S◦0 = 0 and for every k ≥ 0,
let the difference S◦k+1 − S◦k record the number of grandchildren minus one of
the k-th white vertex (so S◦ is nothing but a centred random walk with step
distribution µ̃(· + 1)), and let L◦k denote the label of this k-th white vertex.
According to Le Gall and Miermont [21, Theorem 1], for a ∈ ( 3

2 ,
5
2 ), we have

the convergence in distribution in the Skorohod space

(6)
(
n−

1
a−1/2S◦bntc, n

− 1
2a−1L◦bntc

)
t≥0

(d)−−−−→
n→∞

(c0St,
√

2c0Zt)t≥0,

where c0 is some constant depending on µ̃, where S is an (a− 1/2)-stable Lévy
process with no negative jump, and the process Z is the continuous distance
process constructed in [21].

Let us say a few words about this process Z. In the discrete setting, the
label of a white vertex is the sum of the label increments along its ancestral
line, between each white ancestor, u say, and its grandparent, v say, and these
increments are given by the value B(k, j) of an independent uniformly random
bridge with jumps in Z≥−1 of length k at time j, where k is the degree of the
black vertex between u and v, and j is the position of u amongst its siblings.
The ancestors of the n-th white vertex are given by those times m ≤ n, such
that S◦m ≤ min[m+1,n] S

◦, and the values k and k − j associated with this
ancestor are encoded in the Łukasiewicz path: suppose for simplicity that v has
only one black child, then k and k−j are given, respectively, by S◦m+1−S◦m+1
and min[m+1,n] S

◦ − S◦m. At the continuum level, the construction of Z is
similar: conditional on S, for every t > 0, the value of Zt is given by the sum
of independent Brownian bridges of length given by the jumps Ss − Ss− and
evaluated at times given by inf [s,t] S − Ss−, only for those times s < t such
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that inf [s,t] S > Ss−. It is shown in [21] that such a process is well defined and
admits a continuous version.

In the case a = 5
2 , the convergence (6) still holds, where S is now a Brownian

motion, and Z is the so-called head of the Brownian snake driven by S, which
can be viewed as a Brownian motion indexed by the Brownian forest encoded
by S; the argument may be adapted from [22], which considers size-conditioned
trees with offspring distribution µ instead.

We next derive a version of (6) for the tree T∞ conditioned to survive.
Let us similarly define its Łukasiewicz path S∞ and its label process L∞ by
restricting to the white vertices on the left part of the tree. It is known that
S∞ has the law of the random walk S◦ conditioned to always stay non-negative
(see, e.g. [5]), which can be rigorously defined as the Doob h-transform using
the harmonic function h(n) = (n + 1)1{n≥0}. Similarly, the Lévy process S
can be conditioned to stay positive via such an h-transform, and we denote
this process by S↑, see the introduction in [13] and references therein. One can
finally adapt the construction of the process Z from S in [21] to this setting
and define a process Z↑ from S↑, when a < 5

2 ; when a = 5
2 , the process Z↑ is

simply the head of the Brownian snake driven by a three-dimensional Bessel
process (a Brownian motion conditioned to stay positive).

Proposition 4.1. — We have the convergence in distribution for the Sko-
rokhod topology(

n−
1

a−1/2S∞bntc, n
− 1

2a−1L∞bntc

)
t≥0

(d)−−−−→
n→∞

(c0S↑t ,
√

2c0Z↑t )t≥0,

Proof sketch.Since the path S∞ has the law of the random walk S◦ conditioned
to stay non-negative, the convergence of the former follows from that of the
latter in (6), see Caravenna and Chaumont [13]. Let us next focus on the con-
vergence of the finite-dimensional marginals of the label process. By appealing
to Skorokhod’s representation theorem, we may assume that the convergence
of the Łukasiewicz path holds almost surely. Recall the construction of the pro-
cess L∞ from random bridges associated with each black branch point. When
a < 5

2 , the proof goes exactly like that of Proposition 7 in [21]. It suffices to
only consider the large black branch points, since the contribution of all the
others is small; these large branch points, with length of order n1/(a−1/2), give
at the limit, after a diffusive scaling n1/(2a−1), independent Brownian bridges
and the sum of these bridges evaluated at the corresponding times, along the
ancestral line of a point is the definition of Z↑t . When a = 5

2 , we may similarly
adapt the argument from [22]; here the branch points are too small, and the
label increments between a white individual in the tree and its white grand-
parent behave almost like i.i.d. random variables with finite variance, which
at the limit gives a Brownian motion indexed by the infinite Brownian tree,
which again is the definition of Z↑t .
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Finally, tightness of L∞ follows by absolute continuity considerations with
respect to the infinite forest. Indeed, for any N ≥ 1 fixed, the law of the
pair (S∞k , L∞k )k≤N is absolutely continuous with respect to the similar pair
associated with a mobile conditioned to have more than 2N white vertices,
which has the law of the first mobile in the infinite forest with more than
2N white vertices. This is well known for the Łukasiewicz path and more
generally for conditioned random walk, and it extends to the label process
by construction, since the latter is obtained from the Łukasiewicz path and
independent random bridges. �

For every r ≥ 0, let σr denote the first instant i ≥ 0, such that the i-th
white vertex of T∞ is on its spine, and it is the first one on the spine with label
smaller than −r. The preceding proposition yields the following asymptotic
behaviour.

Corollary 4.2. — We have

σr ≈ r2a−1 and max
k≤σr

|L∞k | ≈ r.

Proof. — It is clear from the definition that the times of visit of a white vertex
on the spine correspond to those times i ≥ 0, such that S∞i = minj≥i S∞j . The
continuum analogue of σr is the first-passage time Σα below −α < 0 of the
process

√
2c0Z↑ restricted to those times t ≥ 0, such that S↑s ≥ S

↑
t , for all

s ≥ t, which is easily seen to be finite for all α > 0. We claim that(
r−(2a−1)σr, r

−1 max
k≤σr

|L∞k |
)

(d)−−−→
r→∞

(
Σ1, sup

0≤s≤Σ1

|
√

2c0Z↑s |
)
.

Indeed, in the case a = 5/2, the label process along the spine behaves like a
Brownian motion, which, almost surely, takes values smaller than −1 immedi-
ately after reaching −1, so the last display is implied by Proposition 4.1. In
particular, σr ≈ r2a−1 and maxk≤σr |L∞k | ≈ r, when a = 5/2. When a < 5/2,
the same phenomenon occurs, and, in fact, the limiting process of labels on
the spine is a 2(a − 3/2)-stable symmetric Lévy process, which jumps strictly
below −1 when entering (−∞,−1]. We conclude similarly. �

4.4. Proof of the geometric estimates on maps. — In this final section, we prove
the volume estimates from Section 2.2, which we used in the proof of Theo-
rem 1.1, appealing to the results from the preceding section on labelled forests.
Let us first start by considering M∞ and proving Proposition 2.2 on the balls
and their hulls, that is,

|Ball(M∞, r)| ≈ r2a−1, |Ball(M∞, r)| ≈ r2a−1, and
max{dgr(ρ, u);u ∈ Ball(M∞, r)} ≈ r.
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Proof of Proposition 2.2. — We suppose that M∞ is constructed from T∞ as
in the last section (this corresponds to the case p = 1), and let us suppose for
convenience that we rooted the map in such a way that the origin vertex is
the origin of the tree (otherwise it is at distance at most 1 from it). Recall
that T∞ has a spine and denote by Tr the tree T∞ obtained by chopping off
the descendant of the first white vertex on the spine whose label drops below
−r − 3. Using the well-known “cactus bound”, the proof of [4, Equation 19]
shows mutatis mutandis (considering only white vertices and corners) that the
following inclusion holds in terms of white vertices in M∞:

(7) Ball(M∞, r) ⊂ Tr.

Using the notation of Corollary 4.2, the number of white vertices on the “spine”
of Tr and to its left is given by σr+3, and the number of white vertices on the
spine and to the right has the same law by symmetry. By Corollary 4.2 the
number of white vertices of Tr is, therefore, of order r2a−1; note that we counted
the vertices on the spine twice, which is negligible.

Newt we claim that

(8) max{dgr(ρ, u);u ∈ Tr} ≤ 2 + 3 max
u∈Tr

|`(u)| ≈ r,

where the distance dgr is in the map M∞, and ρ is its origin vertex. Indeed, the
chain of successors starting from any white vertex in Tr must coalesce with the
chain starting from the root corner, and this produces a path between those
two vertices of length bounded above by 2 + 3 maxu∈Tr |`(u)|. This variable is
of order r by Corollary 4.2.

We can then prove the three points of the proposition. The third point
follows from (8) and (7) after noting that max{dgr(ρ, u);u ∈ Ball(M∞, r)} is
certainly at least r. Using (7) together with |Tr| ≈ r2a−1 then yields

Ball(M∞, r) . r2a−1.

Finally, note that in terms of vertex set in the map we have Tr ⊂ Ball(M∞, R),
where R = 3 + 3 maxu∈Tr |`(u)| ≈ r. This yields a lower bound r2a−1 .
|Ball(M∞, r)| on the volume of balls, whence on their hull, and completes the
proof of the proposition. �

We finally consider maps with a boundary.

Proof of Proposition 2.4. — Suppose that M
(p)
∞ is constructed from a forest

T1, T2, . . . , Tp as in the preceding section where Ti, i ≥ 2 are independent two-
type Galton–Watson trees, and T1 is the infinite one. Let ∆p be the largest label
in absolute value over all the vertices in the finite trees T2, . . . , Tp. Recalling
the law (4) of the labels of the root of the trees, it follows from (6) that

∆p ≈ p1/2.
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On the other hand, it is easy to see from the construction ofM(p)
∞ from the forest

that if x, y are any two vertices on the boundary of M(p)
∞ , then they correspond

to two vertices in the forest for which the iterated chain of successors coalesce
before 2∆p + 2 steps. Whence we deduce that

aper(M(p)
∞ ) . 4∆p + 4 ≈ p1/2.

The lower bound is obtained by saying that aper(M(p)
∞ ) is at least the largest

difference between labels of the root of the trees (they must belong to the
boundary) and so of order p1/2. �

We finally prove Proposition 2.3, which we recall for the reader’s convenience:
for any r large enough and any p ≥ 2r2,

P
(
|Ball(M(p), r)| > λr2a−1

)
> c,

where c > 0 and λ > 0 are some constants that do not depend on p and r.

Proof of Proposition 2.3. — Fix p ≥ 2r2. We will rely on the construction
of the pointed map M

(p)
• from a forest T1, . . . , Tp of i.i.d. two-type Galton–

Watson trees together with the relation (5) between M(p) and M
(p)
• . We shall

assume for simplicity that the origin of M(p)
• corresponds to the root of T1 in

the construction. We will denote by Eλ the following event:
(i) The largest label in absolute value amongst the roots of T1, . . . , Tr2 is

smaller than r/2;
(ii) The maximum over T1, . . . , Tr2 of the largest relative label in absolute

value inside each tree (so each root is reset to 0) is smaller than r/2,
and the total number of vertices in these r2 trees is larger than λr2a−1.

(iii) The total number of white vertices in T1, . . . , Tp is less than pa− 1
2 .

On the event Eλ we have from (iii) that |M(p)
• | ≤ pa−

1
2 . Also, combining (i)

and (ii) and using the usual bound on distances in the map we deduce that as
a vertex set of white vertices

⋃
1≤i≤r2 Ti ⊂ Ball(M(p)

• , 2r+ 2), and so the latter
has cardinality more than or equal to λr2a−1. Using (5) we can write

P
(

Ball(M(p), 2r + 2) > λr2a−1
)
≥ 1

E[1/|M(p)
• |]
· E

[
1{Eλ} ·

1
|M(p)
• |

]

≥ P(Eλ)
E[pa− 1

2 /|M(p)
• |]

.

By [10, Proposition 3.4] (and its easy extension to the case a = 5/2, see [9, Eq.
(51)]) we deduce that the denominator on the right-hand side is convergent and
is thus bounded as p→∞. All that remains to be seen is that one can find λ > 0
small enough so that Eλ occurs with probability at least c > 0, irrespectively
of p large. The first point is clearly satisfied with an asymptotically positive
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probability, since the labels of the root of the trees converge after diffusive
scaling towards a Brownian bridge, see [21, Eq. (18)]. As for points (ii) and (iii),
they are independent of point (i) and are clearly satisfied with an asymptotically
positive probability thanks to (6). Et voilà. �
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