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What is this? This document serves as a guide for the probability course in the �rst term of this master
program. It contains mostly the mathematical details, and it should not be thought of as complete lecture
notes with many examples and applications. Students are advised to use well-written books such as those
cited below to either cover some missing prerequisites, see a di�erent presentation from this one, or also to
go further. Some sections will also not be covered in class and are included for the curious reader, they are
denoted by a (⋆).

This document is still improving, all remarks, including typos, are very welcome.

Presentation & Prerequisites. The goal of this course is to introduce the theory of stochastic processes
in discrete time, namely sequences of random variables which are usually not independent, but rather
in which the law at a given time depends on the past. The two main theories which constitute central
objects in modern probability and statistics, both from a theoretical perspective as well as in applications,
are Markov chains and martingales. They form the main content of this course.

This course is meant to be an advanced course in probability. Familiarity with basic measure theory
and probability such as random variables, their law and expectation, independence, Lp spaces, the di�erent
notion of convergences, Law of Large Numbers & Central Limit Theorem will be assumed. These notions
are recalled in Chapter 1 and 2 and will not be covered in class: this course starts with Chapter 3. Some
knowledge on Markov chains on a �nite state-space is useful but not at all mandatory.

Lectures session by session (prevision)
Part I: Markov Chains

1) Introduction to Markov chains, transition matrices (Sections 3.1 & 3.2)

2) Random recursion and the strong Markov property (Sections 3.3 & 3.4)

3) Recurrence & transience (Sections 4.1 & 4.2)

4) Stationary measures (Sections 4.2 & 4.3)

5) Ergodic Theorem, aperiodicity (Sections 5.1 & 5.2)

6) Convergence to equilibrium (Section 5.2)

7) Monte–Carlo simulation (Section 5.3)

8) Midterm exam (up to session 6 included)

Part II: Martingales

9) Abstract conditional expectation, properties (Chapter 6)

10) Generalities on stochastic processes, �ltrations, stopping times, martingales, stopping thm (Chapter 7
& Section 8.1 & 8.2)

11) Almost sure convergence, closed martingales, L1 convergence (Section 9.1 & 9.2)

12) Maximal inequalities, Lp convergence, the L2 case (Sections 9.4 & 9.6)

13) Central Limit Theorems (Section 9.7)

14) Applications: Optimal Stopping (Section 8.5), Robins–Morro (Section 9.8)

15) Final exam (up to session 13 included)
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References. Here are some books that can be useful in relation with this course, some of them inspired
these notes. This is a personal list of references that I used as a student (especially the books by Durrett, by
Williams, and Baldi–Mazliak–Priouret for the exercises) or to prepare this course. Feel free to look outside
this list, the important point is to �nd one or more that you enjoy reading and �nd complementary to the
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• The following references cover the basics of measure theory and probability, as well as the conditional
expectation and martingale part of this course. They o�er a complete course with also many exercises
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– Rick Durrett. Probability: Theory and Examples. Available at https://services.math.
duke.edu/~rtd/PTE/pte.html.
Comprehensive book that covers the prerequisites, the material of this course, and much more; many

examples and exercises.

– Geo�rey Grimmett and David Stirzaker. Probability and Random Processes.
Excellent as well, starts from the basics of probability, complemented by an exercise book listed below.

– Allan Gut. Probability A Graduate Course.
More focus on the background of probability, the last chapter covers martingale theory.

– Jean Jacod and Philip Protter. Probability Essentials.
Same remark, shorter book.

– David Williams. Probability with Martingales.
Short and straight to the point, excellent reference but no Markov chains.

• The following references only contain a short recap of the de�nitions and main results (mostly
without proof), but are a great source of solved exercises.

– Paolo Baldi, Laurent Mazliak, and Pierre Priouret. Martingales and Markov Chains - Solved
Exercises and Elements of Theory. (also available in French)
Content adapted to this course, no more, no less.

– Geo�rey Grimmett and David Stirzaker. One Thousand Exercises in Probability.
Complementary book to that in the previous list, covers many topics.

• Finally, the last references are entirely dedicated to Markov chains and extend way beyond the scope
of this course.

– James Norris. Markov Chains.
Easy to read, very nice introduction to the topic; Chapter 2 and 3 relate to the course in the second term.

– Randal Douc, Eric Moulines, Pierre Priouret, and Philippe Soulier. Markov Chains.
More advanced than this course; for the interested students who wish to go further.

– David Levin, Yuval Peres, and Elizabeth Wilmer. Markov Chains and Mixing Times.
Rather disjoint from this course; for the interested students who wish to go further in another direction.
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Part I

Foundations of Probability
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Chapter 1

Basics of Measure Theory & Integration
(⋆)

The content of this chapter will not be discussed in class and is only here to recall some technical details on
measure theory and integration with respect to a measure, which constitutes the foundation of probability.

Contents
1.1 Measured spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Measurable functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Integration of nonnegative functions . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Integration of general functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5 Product measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

We �rst introduce the basic de�nitions of � -algebras and measures in Section 1.1, we present a technical
result that we shall use a few times in the next chapters, see Theorem 1.1.13. In Section 1.2 we de�ne
the notion of measurable functions, then we construct the Lebesgue integral of nonnegative functions in
Section 1.3, and of general functions in Section 1.4, where we derive key results that we use all the time
(monotone convergence, dominated convergence, Fatou’s lemma). Finally we discuss product measures in
Section 1.5, which are the foundation of independence in probability.

1.1 Measured spaces

Throughout this section we let S be a set.

De�nition 1.1.1. A � -algebra on S is a collection Σ of subsets of S such that

(i) S ∈ Σ,

(ii) A ∈ Σ ⟹ Ac ∈ Σ,

(iii) An ∈ Σ for all n ≥ 1 ⟹ ⋃n≥1 An ∈ Σ.

The pair (S,Σ) is called a measurable space; elements of Σ are said to be measurable.

Remark 1.1.2. We also have ∅ = Sc ∈ Σ and An ∈ Σ for all n ≥ 1 ⟹ ⋂n≥1 An = (⋃n≥1 Acn)c ∈ Σ.

Exercise 1.1.3. The intersection of any collection of �-algebras on S is a �-algebra.

De�nition 1.1.4. Let C be a collection of subsets of S, then we let

� (C) = ⋂{Σ∶ Σ is a �-algebra and Σ ⊃ C}

denote the smallest �-algebra that contains C. It is called the �-algebra generated by C.
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Remark 1.1.5. In general, if (Fn)n≥1 are �-algebras, then ⋃n Fn is not, so we instead consider

� (Fn, n ≥ 1) = �(⋃
n
Fn).

Exercise 1.1.6. The �-algebra generated by the singletons is

� ({{!}∶ ! ∈ S}) = {A ⊂ S ∶ A or Ac is at most countable}.

Example 1.1.7. • If S is at most countable, we usually consider the � -algebra of all subsets of S, which
is generated by the singletons.

• In a topological space (E,O), we usually consider the Borel �-algebra B(E) = � (O) generated by the
open sets. In ℝd , we have

B(ℝd ) = �(
{ d
∏
i=1
(ai , bi)∶ ai < bi for all 1 ≤ i ≤ d

}
).

Exercise 1.1.8. In ℝ, we have

B(ℝ) = � ({†a, b†∶ a < b}) = � ({†a,∞)∶ a ∈ ℝ}) = � ({(−∞, b†∶ b ∈ ℝ}),

for any choice † = ( or † = [ on the left and † =) or † =] on the right. A similar property holds in ℝd with
products of intervals.

Exercise 1.1.9. Let (Fn)n≥1 be �-algebras, then � (Fn, n ≥ 1) is also generated by the intersections of
elements in each Fn, namely:

� (Fn, n ≥ 1) = �( ⋃
I ⊂ℕ �nite

{
⋂
i∈I

Ai ;Ai ∈ Fi

}
).

De�nition 1.1.10. A measure � on (S,Σ) is a function �∶ Σ→ [0,∞] such that

(i) �(∅) = 0,

(ii) If An ∈ Σ for all n ≥ 1 are disjoint, then �(⋃n An) = ∑n �(An).

The triple (S,Σ, �) is called a measured space. The measure is said to be:

• � -�nite if there exists a countable collection (An)n of elements of Σ such that S = ⋃n An and �(An) < ∞
for all n,

• �nite if �(S) < ∞,

• a probability if �(S) = 1.

Remark 1.1.11. We will not encounter non-� -�nite measures, but they do exist (take e.g. the cardinal of a
set in ℝ). Also in other contexts, one sometimes considers signed measures, taking values in ℝ, or complex
measures, in ℂ.

Notation. For A ∈ Σ, we say that A holds �-a.e. (for ‘almost everywhere’) when �(Ac) = 0. If � is a
probability, this means �(A) = 1 and we say instead that A holds �-a.s. (for ‘almost surely’).

The following simple properties of measures are used all the time.

Lemma 1.1.12 (Key properties). Let (S,Σ, �) be a � -�nite measured space and let An ∈ Σ for all n ≥ 1.

(i) If (An)n is increasing in that An ⊂ An+1, then �(An) ↑ �(⋃n An).
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(ii) If (An)n is decreasing in that An ⊃ An+1, and if there exists k ≥ 1 such that �(Ak) < ∞, then �(An) ↓
�(⋂n An).

(iii) In any case, �(⋃n An) ≤ ∑n �(An).

A consequence of the last item is that

�(An) = 0 for any �xed n ⟹ �(⋃
n
An) = 0.

In particular if � is a probability, then taking the complement we get

�(An) = 1 for any �xed n ⟹ �(⋂
n
An) = 1.

This means that, in a countable collection, if each event occurs with probability one (we say that it occurs
almost surely), then they all occur almost surely simultaneously! Using arguments such as the density of
the rational numbers in ℝ and monotonicity or continuity arguments, this can sometimes (depending on
the context) be extended to uncountable collections of events, which makes it a very powerful tool.

1.1.1 The � − � lemma

A �-algebra can be complicated and very often, we aim at considering only simpler subsets. For example,
in Exercise 1.1.8, one prefers to work only with the intervals (a, b) or the intervals (−∞, x] instead of all the
Borel sets of ℝ. The question we need to answer is: Given a �-algebra Σ on a set S and a collection Cof
subsets all in Σ, when is it to su�cient to prove that a property holds for any element of C to ensure that it
holds for any element of Σ?

Theorem 1.1.13. Let C be a collection of subsets and let � and � be two measures on (S, � (C)) Suppose that
�(A) = �(A) for all A ∈ C and that for all A, B ∈ C, we have A ∩ B ∈ C. Assume that:

(i) either �(S) = �(S) < ∞,

(ii) or there exists an increasing sequence (An)n of subsets of C such that ⋃n An = S and �(An) = �(An) < ∞
for all n.

Then �(A) = �(A) for all A ∈ � (C).

In particular two probability measures that agree on such a collection C agree more generally on the
� -algebra that it generates. As an immediate application, in probabilistic words, we deduce that two random
variables with the same distribution function have the same law.

Corollary 1.1.14. Two probability measures on ℝ that agree on any interval (a, b), or on any interval (−∞, x]
must agree on B(ℝ).

Let us prove Theorem 1.1.13.

De�nition 1.1.15. A collection Cof subsets of S is called a �-system when:

(i) S ∈ C,

(ii) If A, B ∈ C and A ⊂ B, then B ⧵ A ∈ C,

(iii) If An ∈ C and An ⊂ An+1 for all n, then ⋃n An ∈ C.

A collection Cof subsets of S is called a �-system when it is stable under �nite intersections, namely for all
A, B ∈ C, we have A ∩ B ∈ C.
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Remark 1.1.16. A �-system is also sometimes called d-system instead; one also �nds the name of monotone
class, although the latter might also refer to something else depending on the author.

Lemma 1.1.17. A collection Cof subsets of S is a � -algebra if and only if it is both a �-system and a �-system.

Proof. Suppose that C is a �-algebra. Then indeed it is a �-system, it is even stable under countable
intersections. It also clearly satis�es the �rst and last property of a �-system; for the second one, if A, B ∈ C

with A ⊂ B, then B ⧵ A = B ∩ Ac ∈ C,
Suppose that C is both a �-system and a �-system. First for every A ∈ C, we have Ac = S ⧵A ∈ C. Next

let An ∈ C for all n, then for any n ≥ k ≥ 1, we have Ack ∈ C and so ⋂k≤n Ack ∈ C since it is a �-system.
Hence Bn = ⋃k≤n Ak = (⋂k≤n Ack)

c ∈ C. Now Bn ∈ C and Bn ⊂ Bn+1 for all n, so ⋃n An = ⋃n Bn ∈ C since it
is a �-system.

As for � -algebras the intersection of �-systems is always a �-system so one can de�ne for any collection
Cof subsets of S

Λ(C) = ⋂{Λ∶ Λ is a �-system and Λ ⊃ C}

the �-system generated by C.

Lemma 1.1.18 (� − � Lemma). If C is a �-system, then so is Λ(C). The latter is therefore a � -algebra, and
actually Λ(C) = � (C).

Proof. Let us prove that Λ(C) is a �-system. Fix A ∈ C (beware, not in Λ(C)) and de�ne

L = {B ∈ Λ(C)∶ A ∩ B ∈ Λ(C)}.

Since A ∈ Cwhich is a �-system, then C ⊂ L. Further,

(i) A ∩ S = A ∈ Λ(C), so S ∈ L,

(ii) If B, C ∈ L and B ⊂ C , then A ∩ (C ⧵ B) = (A ∩ C) ⧵ (A ∩ B) ∈ Λ(C),

(iii) If Bn ∈ L and Bn ⊂ Bn+1 for all n, then A ∩ (⋃n Bn) = ⋃n(A ∩ Bn) ∈ Λ(C).

Thus L is a �-system, and since it contains C, then it contains Λ(C), i.e. for every A ∈ C and every
B ∈ Λ(C) we have

A ∩ B ∈ Λ(C).

Then the exact same reasoning with now A ∈ Λ(C) instead shows that {B ∈ Λ(C)∶ A ∩ B ∈ Λ(C)} is also a
�-system which contains C and so Λ(C), i.e. for every A ∈ Λ(C) and every B ∈ Λ(C) we have

A ∩ B ∈ Λ(C),

that is, Λ(C) is a �-system.
Combined with the previous lemma, we infer that Λ(C) is a � -algebra. Since it contains C, then it also

contains the smallest such �-algebra, namely Λ(C) ⊂ � (C). Similarly, � (C) is a �-system which contains
C, so it also contains the smallest such �-system, namely � (C) ⊂ Λ(C) and this concludes the proof.

The proof of Theorem 1.1.13 follows easily.

Proof of Theorem 1.1.13. (i) Let Λ = {A ∈ � (C)∶ �(A) = �(A)}. One can check that it is a �-system that
contains C so it contains Λ(C) = � (C) by Lemma 1.1.18.

(ii) For every n ≥ 1 and every B ∈ � (C), let �n(B) = �(B ∩ An) and �n(B) = �(B ∩ An). According to the
�rst item for every B ∈ � (C), we have �n(B) = �n(B) for every n ≥ 1 and so by monotonicity,

�(B) = ↑ lim
n→∞

�n(B) = ↑ limn→∞
�n(B) = �(B),

which completes the proof.
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1.2 Measurable functions

De�nition 1.2.1. Given to measurable spaces (S,Σ) and (E, E), a function f ∶ S → E is measurable if for
every B ∈ E the set f −1(B) = {! ∈ S ∶ f (!) ∈ B} belongs to Σ.

We shall also denote by {f ∈ B} the subset f −1(B).

Remark 1.2.2. In our typical use, the space (E, E)will be �xed, typically (E, E) = (ℝd ,B(ℝd )), or a countable
set, as well as the set S = Ω (unspeci�ed), and we will consider several � -algebras on S so we shall insist on
which one and write f m Σ to mean that f is measurable for Σ.

Exercise 1.2.3. For any function f from a set S to another one E and for any collection of subsets (Ai)i∈I of
E, we have

f −1(Aci ) = (f −1(Aci ))
c

and f −1(⋃
i∈I

Ai) = ⋃
i∈I

f −1(Ai).

The next lemma shows that it su�ces to check the measurability on a collection of subsets that generates
the �-algebra E.

Lemma 1.2.4. Let Cbe a collection of subsets of E and let f ∶ S → E be such that f −1(B) ∈ Σ for any B ∈ C.
Then f −1(B) ∈ Σ for any B ∈ � (C).

Proof. Let E= {B ∈ � (C)∶ f −1(B) ∈ Σ}. Then it contains C by assumption and the exercise shows that it
is a �-algebra, thus it must contain � (C).

Example 1.2.5. An example of application of this lemma is when (E,O) is a topological space and E =
B(E) = � (O) is the Borel � -algebra. Then it su�ces to check that f −1(O) ∈ Σ for any open set O. In the case
E = ℝd , recall that

B(ℝd ) = �(
{ d
∏
i=1
(ai , bi)∶ ai < bi for all 1 ≤ i ≤ d

}
) = �(

{ d
∏
i=1
(−∞, xi]∶ xi ∈ ℝ

}
),

so it su�ces to look at one of these two types of sets.
As an important example, if E and F are both topological spaces equipped with their Borel �-algebra

B(E) and B(F ), then a continuous function from E → F is automatically measurable.

Exercise 1.2.6. Take (E, E) = (ℝ,B(ℝ)), then measurability of functions is preserved by summation,
products, multiplication by constants, composition, limit (lim sup and lim inf), supremum and in�mum,
also {s ∈ S ∶ (fn(s))n converges} ∈ Σ and {s ∈ S ∶ f is continuous at s} ∈ Σ if Σ is the Borel �-algebra on S.

Recall that we usually work with a �xed image space (E, E) and di�erent �-algebras on the starting
space S. A function may be measurable for some �-algebras on S and not for other ones.

De�nition 1.2.7. Let (fi)i∈I be a collection of functions from S → E. De�ne

� (fi ∶ i ∈ I ) = � ({f −1i (B)∶ i ∈ I , B ∈ E}),

the smallest �-algebra on S such that all functions fi are measurable.

The following important result (extensively used in the sequel) characterises measurable functions with
respect to the �-algebra generated by another function.

Lemma 1.2.8. Let f ∶ S → E be measurable. Then a function g ∶ S → ℝ is measurable for � (f ) if and only
if there exists a measurable function ℎ∶ E → ℝ such that g = ℎ◦f .
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Proof. First, if g = ℎ◦f with ℎ measurable, then for any B ∈ B(ℝ), we have ℎ−1(B) ∈ E and thus g−1(B) =
f −1(ℎ−1(B)) ∈ � (f ). Let us prove the direct implication. Let g ∶ S → ℝ be measurable for � (f ) and suppose
�rst that g only takes �nitely many values so it takes the form g = ∑K

k=1 ak 1Ak where K ≥ 1, ak ∈ ℝ, and
Ak ∈ � (f ) for every k. For each k, let Bk ∈ Ebe such that Ak = f −1(Bk), then 1Ak = 1Bk ◦f . De�ne then

ℎ ∶=
K
∑
k=1

ak 1Bk

which is indeed E→ B(ℝ)-measurable, and g = ℎ◦f . If g ≥ 0 can take in�nitely many values, then we can
write it as the limit of functions gn which only take �nitely many values, e.g. explicitly:

gn =
n2n−1
∑
i=0

i
2n
1i≤2ng<i+1 + n 1g≥n.

Since g is � (f )-measurable, then each set {i ≤ 2ng < i + 1} = g−1([2−ni, 2−n(i + 1)) ∈ � (f ) and {g ≥ n} =
g−1([n,∞)) ∈ � (f ) as well, so in turn each gn is � (f )-measurable. By the previous case, they take the form
gn = ℎn◦f with ℎn ∶ E → ℝ measurable. De�ne then for every x ∈ E

ℎ(x) = lim
n→∞

ℎn(x) if this limit exists and ℎ(x) = 0 otherwise,

which is measurable by the previous exercise. Since for every s ∈ S we have g(s) = limn gn(s) = limn ℎn(f (s)),
then the sequence ℎn converges at the point f (s) so �nally g(s) = ℎ(f (s)) and the proof is complete.

Note that the converse implication is clear by composition of measurable functions. The representation
given by the direct implication is very useful. This results extends to the �-algebra generated by �nitely
many functions f1,… , fn, in which case g takes the form ℎ(f1,… , fn).

1.3 Integration of nonnegative functions

Let us �x throughout this section a � -�nite measured space (S,Σ, �). All functions considered here on S are
real-valued and measurable. We make the convention that 0 × ∞ = 0.

De�nition 1.3.1. A nonnegative function f is called simple if it takes only �nitely many values, in which
case it can be written as f = ∑k

i=1 ai 1Ai for some ai ∈ ℝ+ and Ai ∈ Σ. We then de�ne for such a function f :

�(f ) =
k
∑
i=1

ai �(Ai) ∈ [0,∞].

Notation. We shall also write �(f ) as ∫ f d� or ∫S f (x)�(dx). Also forA ∈ Σ, we write ∫A f d� or ∫A f (x)�(dx)
for �(f 1A).

Remark 1.3.2. There are several choices of decompositions of a simple function in such a form but we can
always �x one by requiring that ai < ai+1.

Exercise 1.3.3. Prove that this de�nition of �(f ) does not depend on the decomposition of f . Prove also
that it has the usual properties of linearity and monotonicity, namely that for two simple functions f and g
and two positive real numbers a and b, we have

�(af + bg) = a�(f ) + b�(g) and f ≤ g ⟹ �(f ) ≤ �(g).

De�nition 1.3.4. For any nonnegative (measurable) function, we set

�(f ) = sup{�(g)∶ g simple and such that g ≤ f } ∈ [0,∞].

This preserves the monotonicity property. We also have the following result used all the time.
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Lemma 1.3.5. If f ≥ 0 and �(f ) = 0, then �(f > 0) = �({x ∈ S ∶ f (x) > 0}) = 0.

Proof. For every n ≥ 1, we have f ≥ n−1 1f ≥n−1 which is a simple function so

0 = �(f ) ≥ �(n−1 1f ≥n−1) = n−1�(f ≥ n−1).

Thus 0 = �(f ≥ n−1) ↑ �(f > 0) since the sequence of sets is increasing.

The building block of this integration theory is the following result.

Theorem 1.3.6 (Monotone convergence). Let (fn)n≥1 be nonnegative measurable functions such that fn ≤ fn+1
for all n ≥ 1. Then

�(↑ lim
n→∞

fn) = ↑ limn→∞
�(fn) ∈ [0,∞].

Proof. Let f = ↑ limn fn. By monotonicity, �(f ) ≥ �(fn) for all n and thus �(f ) ≥ ↑ limn �(fn). For the converse
inequality, let 0 ≤ g ≤ f be a simple function and let c ∈ [0, 1). Write g = ∑k

i=1 ai 1Ai , then by monotonicity,

�(fn) ≥ �(fn 1fn≥cg) ≥ c �(g 1fn≥cg) = c
k
∑
i=1

ai �(Ai ∩ {fn ≥ cg}).

Now observe that the sets {fn ≥ cg} are increasing and since c < 1, then ⋃n{fn ≥ cg} = S. Thus
Ai ∩ {fn ≥ cg} ↑ Ai and so

↑ lim
n→∞

�(fn) ≥ ↑ limn→∞
c

k
∑
i=1

ai �(Ai ∩ {fn ≥ cg}) = c
k
∑
i=1

ai �(Ai) = c �(g).

Now let c ↑ 1 to get ↑ limn→∞ �(fn) ≥ �(g) for all simple function g ≤ f and thus �nally ↑ limn→∞ �(fn) ≥
�(f ).

Using this theorem, we can construct explicitly for any given measurable nonnegative function f a
sequence of simple functions whose integral converges to that of f .

Corollary 1.3.7. Let f be measurable nonnegative and for every n ≥ 1 de�ne

fn =
n2n−1
∑
i=0

i
2n
1i≤2nf <i+1 + n 1f ≥n.

Then fn ↑ f so �(fn) ↑ �(f ).

This allows to transfer properties of the integral of simple functions to general nonnegative functions,
such as the linearity.

Exercise 1.3.8. Let f and g be two nonnegative measurable functions. Prove that

(i) For every a, b > 0, we have �(af + bg) = a�(f ) + b�(g).

(ii) �(f ) < ∞ ⟹ �(f = ∞) = 0.

(iii) �(f ) = 0 ⟺ �(f > 0) = 0.

(iv) �(f ≠ g) = 0 ⟹ �(f ) = �(g).

Remark 1.3.9. Thanks to the last point of the exercise, we can slightly relax the assumption of the
monotone convergence theorem by requiring that the monotonicity assumption only holds �-a.e. in the
sense that the set A = {s ∈ S ∶ fn(s) ≤ fn+1(s) for all n} has �(Ac) = 0. For de�niteness, we then set
↑ limn fn(s) = 0 for s ∈ Ac . Indeed, we can apply the theorem in its previous form to the functions fn 1A to
deduce that �(↑ limn fn 1A) = ↑ limn �(fn 1A) and note that for any n, we have �(fn) = �(fn 1A) and further
�(↑ limn fn 1A) = �(↑ limn fn). All the next results can be extended in this way.
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Lemma 1.3.10. Let f be a nonnegative measurable function and de�ne for every A ∈ Σ:

�(A) = �(f 1A).

Then � is a measure and f is called the density of � with respect to �. The function f is unique �-a.e.

Proof. For A = ∅, we have f 1∅ = 0 so �(∅) = 0. Let (An)n be disjoint measurable sets, and write fn = f 1An ,
then linearity and monotone convergence combined justify the following identity:

∫ ∑
n≥1

fn d� = ∫ ↑ lim
N→∞

∑
n≤N

fn d� = ↑ lim
N→∞ ∫ ∑

n≤N
fn d� = ↑ lim

N→∞
∑
n≤N

∫ fn d� = ∑
n≥1

∫ fn d�.

Note that ∫ fn d� = �(An) whereas ∫ ∑n≥1 fn d� = ∫ f 1⋃n An d� = �(A) so we have prove the �-additivity
and � is indeed a measure.

If g ≥ 0 is another function such that �(f 1A) = �(g 1A) for every A ∈ Σ, then for A = {f > g}, we have
by linearity 0 ≤ �((f − g)1f >g) = �(f 1f >g) − �(g 1f >g) = 0, hence (f − g)1f >g = 0 �-a.e. which means that
f ≤ g �-a.e. By exchanging f and g we also have that f ≥ g �-a.e. so f = g �-a.e.

Note that if �(A) = 0, then f 1A = 0 �-a.e. and so �(A) = 0; in such a case, we say that � is absolutely
continuous with respect to �. A more di�cult theorem provides the converse implication.

Theorem 1.3.11 (Radon–Nikodým). If � and � are � -�nite measures on (S,Σ) such that for any A ∈ Σ we
have �(A) = 0 as soon as �(A) = 0, then there exists a nonnegative function f such that �(A) = �(f 1A) for all
A ∈ Σ. The function f is unique �-a.e.

Uniqueness of the density is provided by the previous lemma. The argument we use is due to Anton
Schep.

Proof. Step 1: reduction to �nite measures. If � and � are �-�nite measures, then there exits a countable
collection (An)n of disjoint sets in Σ such that ⋃n An = S and �(An) < ∞ and �(An) < ∞ for every n.
De�ne then �nite measures by �n(B) = �(An ∩ B) and �n(B) = �(An ∩ B) for every B ∈ Σ. Notice �n(B) = 0,
i.e. �(An ∩ B) = 0, implies �(An ∩ B) = 0, i.e. �n(B) = 0. If the theorem holds for �nites measures, then for
every n, there exists fn such that for every B ∈ Σ, we have:

�(An ∩ B) = �(fn 1An∩B).

Let f = ∑n fn 1An ; since the sets An are disjoint and cover S, then for every s ∈ S exactly one indicator is
non zero in the de�nition of f (s). Then summing over n the previous display yields: �(B) = �(f 1B).

From now on, we assume that � and � are �nite measures. Replacing � by �(S)−1�(⋅), let us assume
further that �(S) = 1.

Step 2: a �rst bound. Consider the set H of all the measurable functions f ∶ S → [0,∞) which satisfy:

�(f 1A) ≤ �(A) for every A ∈ Σ.

Note that it contains the constant function 0 so H is not empty. Let then M = sup{�(f ), f ∈ H}. Taking
the set A above to be S, we have 0 ≤ �(f ) ≤ �(S) which we assume here is �nite. Hence 0 ≤ M < ∞ and
there exists a sequence of functions (fn)n all in H such that �(fn)→ M . We can take this sequence to be
nondecreasing by replacing it by f ′n = supk≤n fk . For this, notice that the maximum of two functions in H
remains in H . Indeed, if g, ℎ ∈ H , then for every A ∈ Σ, we have:

�(max(g, ℎ)1A) = �(g 1A∩{g≥ℎ}) + �(ℎ1A∩{g<ℎ}) ≤ �(A ∩ {g ≥ ℎ}) + �(A ∩ {g < ℎ}) = �(A).

This extends to �nitely many functions by induction so each f ′n ∈ H . Denote by f = ↑ limn f ′n their limit,
which is measurable and nonnegative. By monotone convergence �(f ) = ↑ limn �(f ′n ) = M . We claim that
f ∈ H . Indeed, by monotone convergence again, for every A ∈ Σ, we have

�(f 1A) = ↑ limn→∞
�(f ′n 1A) ≤ �(A).

13



Thus f ∈ H . The formula �̃(A) = �(A) − �(f 1A) for every A ∈ Σ then de�nes a �nite nonnegative measure,
and we want to prove that it is constant equal to 0.

Step 3: a contradiction. Suppose by contradiction that �̃(S) > 0. We claim that in this case there exists
A ∈ Σ such that

�(A) > 0 and �̃(A ∩ B) ≥ �̃(S)�(A ∩ B) for every B ∈ Σ. (1.1)

Let us conclude from here and prove this claim after. Let g = f + �̃(S)1A, we claim that it belongs to the set
H . Indeed for every B ∈ Σ, one has by the previous display for the �rst inequality and �(f 1A) ≤ �(A) for
the second one:

�(g 1B) = �(f 1B) + �̃(S)�(A ∩ B)

≤ �(f 1B) + �̃(A ∩ B)

= �(f 1B) + �(A ∩ B) − �(f 1A∩B)

= �(f 1Ac∩B) + �(A ∩ B)

≤ �(Ac ∩ B) + �(A ∩ B)

≤ �(B).

Hence g ∈ H , so in particular �(g) ≤ M . On the other hand, since �(A) > 0, then �(g) = �(f ) + �̃(S)�(A) >
�(f ) = M . This contradiction shows that A cannot exist, and thus �̃ is the 0 measure, namely �̃(A) =
�(A) − �(f 1A) = 0 for all A ∈ Σ as we wanted.

It remains to prove (1.1). Let � (A) = �̃(S)�(A) − �̃(A) for every A ∈ Σ to simplify notation. Recall that for
any A ∈ Σ, if �(A) = 0, then �(A) = 0 and then further �̃(A) = �(A) − �(f 1A) = 0, so � (A) = 0. If A = S does
not satisfy (1.1), this means that there exists B ∈ Σ such that � (B) > 0. Let then n1 ≥ 1 be the smallest integer
such that there exists B ∈ Σ with � (B) > 1/n1, let B1 be any such set, and let A1 = Bc1 be its complement.
Then again if A1 does not satisfy (1.1) then there exists B ∈ Σ such that � (A1 ∩B) > 0 and we let n2 ≥ 1 be the
smallest integer such that there exists B ∈ Σ with � (A1 ∩ B) > 1/n2, then we let B2 be any such a set B and
�nally A2 = A1 ∩ Bc2 = (B1 ∪ B2)c . By induction, for every k ≥ 1, if Ak = (⋃k

i=1 Bi)c does not satisfy (1.1) then
there exists B ∈ Σ such that � (Ak ∩B) > 0 and we let nk+1 be the smallest integer such that there exists B ∈ Σ
with � (Ak ∩ B) > 1/nk+1, then we let Bk be any such a set B, and �nally we let Ak+1 = Ak ∩ Bck+1 = (⋃

k+1
i=1 Bi)c .

If no Ak satis�es (1.1) then we claim that A = ⋂k Ak = (⋃i≥1 Bi)c does. Indeed, �rst we have (recall that � is
a probability):

0 = �̃(S)�(S) − �̃(S) = �̃(S)�(A) − �̃(A) + �̃(S)�(Ac) − �̃(Ac).

Notice that Ac = ⋃i≥1 Bi is a disjoint union, and by construction we have �̃(S)�(Bi) − �̃(Bi) ≥ 1/ni for every
i. Consequently

�̃(S)�(Ac) − �̃(Ac) = ∑
i
�̃(S)�(Bi) − �̃(Bi) ≥ ∑

i
1/ni .

Combining the two displays, we �rst infer that

∑
i
1/ni ≤ �̃(A) − �̃(S)�(A) ≤ �̃(S) < ∞.

In particular nk → ∞ as k → ∞. Next, for any B ∈ Σ, for every k ≥ 1, we have A ∩ B ⊂ Ak ∩ B so
� (A ∩ B) ≤ � (Ak ∩ B) ≤ 1/(nk+1 − 1) by de�nition of nk+1. Since the right-hand side tends to 0, then we
conclude that � (A ∩ B) ≤ 0, that is A satis�es (1.1). It only remains to check that �(A) > 0. Recall that if
�(A) = 0, then �̃(A) = 0 and so �̃(S)�(A) − �̃(A) = 0, which implies by the previous display that ∑i 1/ni ≤ 0,
which is a contradiction. This concludes the proof of (1.1).

A last key result is Fatou’s lemma. Given a sequence of functions fn, de�ne lim infn fn and lim supn fn
as the pointwise limits in [−∞,∞]:

lim inf
n→∞

fn = ↑ limn→∞
inf
p≥n

fp and lim sup
n→∞

fn = ↓ limn→∞
sup
p≥n

fp .
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Theorem 1.3.12 (Fatou). Let (fn)n≥1 be nonnegative measurable functions. Then in [0,∞],

�(lim inf
n→∞

fn) ≤ lim inf
n→∞

�(fn).

If in addition there exists ℎ such that fn ≤ ℎ for all n and �(ℎ) < ∞, then

�(lim sup
n→∞

fn) ≥ lim sup
n→∞

�(fn).

Proof. Put gn = infp≥n fp , which is a nondecreasing sequence and note that fp ≥ gn for all n ≥ p so by
monotone convergence,

�(↑ lim
n→∞

gn) = ↑ limn→∞
�(gn) ≤ ↑ limn→∞

inf
p≥n

�(fp).

The left-hand side equals �(lim infn fn), while the right-hand side equals lim infn �(fn). The second claim
follows by applying the �rst one to the nonnegative functions ℎ − fn.

1.4 Integration of general functions

De�nition 1.4.1. A measurable function f ∶ S → ℝ is said to be integrable when �(|f |) < ∞. Let us set

f + = max(f , 0) and f − = −min(f , 0) = max(−f , 0),

so that
f = f + − f − and |f | = f + + f −.

Then f is integrable if and only if both �(f +), �(f −) < ∞ and we de�ne

�(f ) = �(f +) − �(f −) ∈ ℝ,

which we also denote by ∫ f d� = ∫S f (x)�(dx).

The following results are easily derived from the de�nition.

Exercise 1.4.2. Let f and g be two integrable functions. Prove the following properties:

(i) |∫ f d�| ≤ ∫ |f | d�.

(ii) For every a, b ∈ ℝ, the function af + bg is integrable and ∫ (af + bg) d� = a ∫ f d� + b�(g).

(iii) If f ≤ g then ∫ f d� ≤ �(g).

(iv) If �({f ≠ g}) = 0 then ∫ f d� = �(g).

Remark 1.4.3. We shall also need to consider vector-valued functions, in ℝd for d ≥ 1. Such a function
f = (f1,… , fd ) is said to be integrable when its norm |f | (any equivalent norm in ℝd ) is integrable, or
equivalently when each coordinate is an integrable real-valued function and then we de�ne

∫ f d� = (∫ f1 d�,… , ∫ fd d�) ∈ ℝd .

The above properties extend, except the third one. In the particular case of complex-valued functions, we
have

∫ f d� = ∫ Re f d� + i ∫ Im f d� ∈ ℂ.

An important tool is the dominated convergence theorem.

15



Theorem 1.4.4 (Dominated convergence). Let (fn)n≥1 be measurable functions which converge pointwise to
a function f . Suppose that there exists a measurable function ℎ such that |fn | ≤ ℎ for all n and �(ℎ) < ∞. Then

�(|fn − f |) ⟶
n→∞

0

and consequently �(fn)→ �(f ).

Proof. First we can note that the function f is integrable since |f | ≤ ℎ. Moreover |fn − f | ≤ 2ℎ so by Fatou’s
lemma,

lim sup
n→∞

�(|fn − f |) ≤ �(lim sup
n→∞

|fn − f |) = �(0) = 0.

Moreover, we have
|�(fn) − �(f )| = |�(fn − f )| ≤ �(|fn − f |),

and the second claim follows.

Corollary 1.4.5 (Lp dominated convergence). Let p ≥ 1. Let (fn)n≥1 be measurable functions which converge
pointwise to a function f . Suppose that there exists a measurable function ℎ such that |fn | ≤ ℎ for all n and
�(ℎp) < ∞. Then

�(|fn − f |p) ⟶
n→∞

0.

Proof. The sequence of functions gn = |fn − f |p converges pointwise to 0 and satis�es |fn − f |p ≤ (|fn | + |f |)p ≤
(2ℎ)p , which is integrable, so the result follows from the previous theorem.

Lemma 1.4.6 (Sche�é). Let (fn)n≥1 be integrable functions which converge pointwise to an integrable function
f . Then

�(|fn − f |) ⟶
n→∞

0 if and only if �(|fn |) ⟶
n→∞

�(|f |).

Proof. For the direct implication, note that ||fn | − |f || ≤ |fn − f | so

|�(|fn |) − �(|f |)| ≤ �(||fn | − |f ||) ≤ �(|fn − f |).

For the converse one, assume �rst that all the functions are nonnegative, then min(fn, f ) → f and 0 ≤
min(fn, f ) ≤ f . Since f is integrable, then we infer from dominated convergence that �(min(fn, f ))→ �(f ).
Now observe that

fn + f = max(fn, f ) + min(fn, f ),

so after integration,
�(max(fn, f )) = �(fn) + �(f ) − �(min(fn, f )) ⟶

n→∞
�(f ).

Hence
�(|fn − f |) = �(max(fn, f )) − �(min(fn, f )) ⟶

n→∞
0.

For general functions, write fn = f +n − f −n and f = f + − f − and note that f ±n → f ± pointwise. Then the
assumption for the converse implication reads

�(f +n ) + �(f
−
n ) ⟶

n→∞
�(f +) + �(f −).

Fatou’s lemma implies that both lim infn �(f +n ) ≥ �(f +) and lim infn �(f −n ) ≥ �(f −), so we infer that

�(f +n ) ⟶
n→∞

�(f +) and �(f −n ) ⟶
n→∞

�(f −).

By the nonnegative case, this further implies that

�(|fn − f |) ≤ �(|f +n − f
+|) + �(|f −n − f

−|) ⟶
n→∞

0,

ans the proof is complete.
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In order to prove that a certain property holds for any integrable function, we often rely on the following
reasoning:

• We �rst prove that it holds for indicator functions.

• We extend the property by linearity to simple functions.

• We extend it by monotone convergence to nonnegative functions.

• We �nally extend it by monotone convergence to integrable functions by linearity after splitting the
positive and negative part.

Let us illustrate this with the image measure by a function (also called push-forward), which allows to
transfer measures from a measurable space to another.

De�nition 1.4.7 (Image measure). Let f ∶ (S,Σ)→ (E, E) be a measurable function and let � be a measure
on (S,Σ). Then the function de�ned for all B ∈ Eby

�f (B) = �(f −1(B)) = �(f ∈ B)

is a measure on (E, E) called the image measure of f .

Lemma 1.4.8 (Transfer). Let f ∶ (S,Σ) → (E, E) be a measurable function, � be a measure on (S,Σ), and
g ∶ (E, E) → (ℝ,B(ℝ)) be measurable. Then g is �f -integrable if and only if g◦f is �-integrable and in this
case it holds

�f (g) = ∫
E
g d�f = ∫

S
g◦f d� = �(g◦f ).

Proof. When g is the indicator of a set B ∈ B(ℝ), then the identity is the de�nition of �f . By linearity, the
identity extends to nonnegative simple functions and then to any nonnegative functions by monotone
convergence. Hence if g is any measurable function, then �f (|g|) = �(|g(f )|) so the left-hand side is �nite
if and only if the right-hand side is and then the identity extends by linearity again after the splitting
g = g+ + g−.

Recall from Lemma 1.3.10 that given a measurable and nonnegative function ℎ, we can de�ne a measure
� by �(A) = �(ℎ1A). The measure � is said to have a density ℎ with respect to �. Then the same proof as
above shows that another measurable function g is integrable for � if and only if gℎ is integrable for � and
in this case

�(g) = ∫ g d� = ∫ gℎ d� = �(gℎ).

Combined with Lemma 1.4.8, we obtain the following very useful criterion.

Proposition 1.4.9. Let � be a measure on (S,Σ) and f ∶ (S,Σ) → (R,B(ℝ)) be a measurable function. Let
� be a measure on (ℝ,B(ℝ)) and let ℎ∶ ℝ → ℝ+ be measurable as well. Then the measure �f has density ℎ
with respect to � if and only if for any nonnegative and measurable function g ∶ ℝ → ℝ+, we have

�f (g) = �(g◦f ) = �(gℎ).

In this case, for any measurable function g, we have that g is �f -integrable if and only if gℎ is �-integrable
and then the above identity extends.

Proof. Suppose the identity holds for any nonnegative and measurable function g ∶ ℝ → ℝ+, then taking
g = 1B for any B ∈ B(ℝ), we have �f (B) = �(ℎ1b), which is the de�nition of the fact that �f has density ℎ
with respect to �. For the converse implication, we can repeat the proof of Lemma 1.4.8. By de�nition, if
�f has density ℎ with respect to �, the identity holds for indicator functions, so it extends to nonnegative
simple functions by linearity and then to any nonnegative functions by monotone convergence.
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Let us mention that sometimes (as in the next subsection), we cannot apply this simple reasoning
because controlling the indicator function of any measurable set is already too complicated. Following the
discussion of Section 1.1.1, it is possible to extend this reasoning by only controlling the indicator functions
of a collection of subsets. The following result is based on Lemma 1.1.18, which explains the similarity in
the name.

Theorem 1.4.10 (Monotone class). Let Hbe a set of bounded functions from S to ℝ satisfying the following
conditions:

(i) It is a real vector space in that if f , g ∈ Hand a, b ∈ ℝ, then af + bg ∈ H.

(ii) It contains the constant function equal to 1.

(iii) If fn ≥ 0 belongs to H for all n and fn ↑ f where f is a bounded function, then f ∈ H.

Suppose there exists a �-system P such that for any A ∈ P, we have 1A ∈ H. Then every bounded and
� (P)-measurable function belongs to H.

Proof. Let M = {A ⊂ S ∶ 1A ∈ H}. By the three properties of Hwe see that M is �-system. Since we also
assume that it contains the �-system P, then by Lemma 1.1.18, we have � (P) ∈ M.

Let K > 0 and f be a � (P)-measurable function with 0 ≤ f ≤ K and for any n ≥ 1, de�ne

fn =
⌊K2n⌋

∑
i=0

i
2n
1i≤2nf <i+1.

Then fn is a simple function and fn ↑ f . Note that each set An,i = {i ≤ 2nf < i + 1} ∈ � (P) since f is
� (P)-measurable, so by the properties of H, we have fn ∈ Hand then f ∈ H.

Given any bounded and � (P)-measurable function f , we infer from this that both f +, f − ∈ Hand then
f ∈ H.

1.5 Product measures

De�nition 1.5.1. Let (Ei , Ei)i≤n be measurable spaces, then we can de�ne a �-algebra on ∏n
i=1 Ei by

n
⨂
i=1

Ei = �(
n

∏
i=1

Ai , Ai ∈ Ei for all i ≤ n).

Notation. For any two sets E and F , any pair (x, y) ∈ E × F , and any subset C ⊂ E × F , we let

Cx = {y ∈ F ∶ (x, y) ∈ C} and Cy = {x ∈ E ∶ (x, y) ∈ C}.

For a function f from (E, F ) we also set

fx ∶ y ∈ F ↦ f (x, y) and f y ∶ x ∈ E ↦ f (x, y).

Lemma 1.5.2. Fix three measurable spaces (E, E), (F ,F), and (G, G). The following holds.

(i) For every A ∈ E⊗Fwe have

Ax ∈ F for every x ∈ E and Ay ∈ E for every y ∈ F .

(ii) For any measurable function f ∶ (E × F , E⊗F)→ (G, G), we have

fx m F for every x ∈ E and f y m E for every y ∈ F .
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Proof. (i) Fix x ∈ E and for any A ∈ E⊗F, let Ax = {y ∈ F ∶ (x, y) ∈ A} and Ax = {A ∈ E⊗F∶ Ax ∈ F}.
One easily checks that Ax is a sub-�-algebra of E⊗ F. Moreover, for any pair (B, C) ∈ E⊗ F, if
A = B × C , then either x ∈ B and then Ax = C , or x ∉ B and then Ax = ∅. In any case B × C ∈ Ax for
any (B, C) ∈ E⊗Fso Ax = E⊗F.

(ii) Fix again x ∈ E, then for any D ∈ G, we have f −1(D) ∈ E⊗Fand thus

f −1x (D) = {y ∈ F ∶ f (x, y) ∈ D} = {y ∈ F ∶ (x, y) ∈ f −1(D)} = (f −1(D))x ∈ F

so fx is indeed F-measurable.

Theorem 1.5.3. Let �, � be two � -�nite measures on (E, E) and (F ,F) respectively. The following holds.

(i) There exists a unique measure, which we denote by � ⊗ � on (E × F , E⊗F) such that for any A ∈ Eand
B ∈ F, it holds

� ⊗ �(A × B) = �(A)�(B).

Moreover � ⊗ � is � -�nite. If both � and � are probability, then so is � ⊗ � .

(ii) For every C ∈ E⊗F the functions

x ↦ �(Cx ) and y ↦ �(Cy )

are measurable, with respect to Eand to Frespectively.

(iii) For every C ∈ E⊗F it holds

� ⊗ �(C) = ∫
E
�(Cx )�(dx) = ∫

F
�(Cy )�(dy).

The proof is based on Theorem 1.4.10 and will be omitted.

Remark 1.5.4. The assumptions that both measures are �-�nite is important. For example take � to be
the Lebesgue measure on ℝ and � the counting measure on ℝ, then for C = {(x, x), x ∈ ℝ}, we have
∫E �(Cx )�(dx) = ∞ but ∫F �(C

y )�(dy) = 0.

Theorem 1.5.5 (Fubini–Tonelli). Let �, � be two � -�nite measures on (E, E) and (F ,F) respectively and let
f ∶ E × F → [0,∞] be measurable. The following holds.

(i) The functions x ↦ ∫F f (x, y)�(dy) and y ↦ ∫E f (x, y)�(dx) are measurable with respect to E and to
Frespectively.

(ii) We have

∫
E×F

f (x, y)� ⊗ �(dx dy) = ∫
E(∫

F
f (x, y)�(dy))�(dx) = ∫

F(∫
E
f (x, y)�(dx))�(dy).

Proof. (i) For any A ∈ E⊗F, if f = 1A then x ↦ ∫F f (x, y)�(dy) = �(Ax ) is measurable by the previous
theorem. Measurability is preserved by linear combination and limits so we can extend it to simple
functions and then nonnegative functions by monotone convergence.

(ii) Again, the identity for indicator functions reduces to the previous theorem, and we conclude by
linearity and then monotone convergence.

Theorem 1.5.6 (Fubini–Lebesgue). Let �, � be two � -�nite measures on (E, E) and (F ,F) respectively and
let f ∶ E × F → ℝ be integrable (for � ⊗ �). The following holds.

(i) For �-a.e. x ∈ E, the function fx is �-integrable and for �-a.e. y ∈ F , the function f y is �-integrable.
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(ii) The functions x ↦ ∫F f (x, y)�(dy) and y ↦ ∫E f (x, y)�(dx) are well-de�ned and integrable.

(iii) We have

∫
E×F

f (x, y)� ⊗ �(dx dy) = ∫
E(∫

F
f (x, y)�(dy))�(dx) = ∫

F(∫
E
f (x, y)�(dx))�(dy).

Proof. (i) By the previous theorem, we have

∫
E(∫

F
|f (x, y)|�(dy))�(dx) = ∫

E×F
|f (x, y)|� ⊗ �(dx dy) < ∞.

Consequently ∫F |fx (y)|�(dy) < ∞ for �-a.e. x ∈ E.

(ii) It follows that for �-a.e. x ∈ E, the integral ∫F f (x, y)�(dy) is well-de�ned and moreover we have
∫E(|∫F f (x, y)�(dy)|)�(dx) ≤ ∫E(∫F |f (x, y)|�(dy))�(dx) < ∞.

(iii) We use the previous theorem and linearity, decomposing positive and negative parts.
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Chapter 2

Independent Random Variables (⋆)

The content of this chapter should for a large part be already known from a bachelor course in probability
and will not be covered in class. Some developments are often excluded in a �rst course and are included here
for interesting readers such as uniform integrability in Section 2.3.2, some generalities on weak convergence
in Section 2.5.1, the Skorokhod representation theorem in Section 2.5.2, and Lindeberg’s version of the
Central Limit Theorem in Section 2.7.1.
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We �rst translate in Section 2.1 the vocabulary from measure theory to probability, then we focus on
the notion of independence of � -algebras and of random variables and some key related results such as the
Borel–Cantelli lemma. In Section 2.2 we recall some very useful inequalities such as the Markov inequality
and Hölder’s inequality and we discuss Lp spaces, with some emphasis on L2 which will be used to develop
the theory of conditional expectation in Chapter 6. In Section 2.3 we discuss the notions of convergence
in probability, in Lp , and almost surely and their relations; this is pushed to the limit with the theory of
uniform integrability. Then in Section 2.4 we recall the �rst fondamental result in probability: the Law
of Large Numbers. In Section 2.5 we focus on the convergence in distribution with some general useful
results and an interesting development with the Skorokhod representation theorem. Then in Section 2.6 we
present the characteristic function of a random vector, how it characterises its law and the convergence in
distribution. Finally we focus in Section 2.7 on the Central Limit Theorem with �rst a version in dimension 1
for independent random variables but not necessarily with the same law, and then a version for i.i.d. vectors
in higher dimensions, relying the notion of Gaussian vectors.

2.1 Probability & Independence

Probability theory is developed using measure theory whose basics are recalled in Chapter 1. From now
on we �x a probability space (Ω,F,ℙ), where F is a �-algebra on a set Ω and ℙ is a probability measure.
Elements of Fare called events.
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2.1.1 Random variables and distribution functions

De�nition 2.1.1. Let us translate some vocabulary from measure theory.

• A measurable function X ∶ (Ω,F) → (E, E) is called a random variable (abbreviated r.v.). When
(E, E) = (ℝd ,B(ℝd )) for d ≥ 2, we speak of a random vector, and for d = 1, of a real random variable,
abbreviated r.r.v.

• The image measure ℙX (B) = ℙ(X ∈ B) for every B ∈ E as in De�nition 1.4.7 is called the law of X .
A random vector is said to have a density f when its law ℙX has a density f with respect to the
Lebesgue measure in ℝd in the sense of Lemma 1.3.10.

• Finally, when (E, E) = (ℝd ,B(ℝd )), we let E[X ] = ℙ(X ) denote the integral of X , which we call its
expectation, provided it exists (either when X ∈ [0,∞)d or when E[|X |] < ∞).

Let X be a r.v. in a general space E. Lemma 1.4.8 reads: for any measurable function g ∶ E → ℝ+, we
have:

E[g(X )] = ∫
Ω
g(X (!))ℙ(d!) = ∫

E
g(x)ℙX (dx).

Also Proposition 1.4.9 yields the following criterion: let X be a random vector in ℝd , then it has a density f
if and only if for any nonnegative and measurable function g ∶ ℝ → ℝ+, we have:

E[g(X )] = ∫
ℝd
g(x)f (x) dx.

In each case, the identity extends to integrable functions g.
A random vector may not have a density, but it always has a distribution function.

De�nition 2.1.2. For any random vector X = (X1,… , Xd ) in ℝd , we de�ne its distribution function by:

FX (x) = ℙ(X1 ≤ x1,… , Xd ≤ xd )

for any x = (x1,… , xd ) ∈ ℝd .

We usually consider distribution functions mainly in dimension d = 1, but the next result could be
generalised to any �nite dimension.

Theorem 2.1.3. For any r.r.v. X , its distribution function FX satis�es:

(i) It is nondecreasing: x ≤ y ⟹ FX (x) ≤ FX (y).

(ii) It is right-continuous: For any x ∈ ℝ and any sequence xn ↓ x , we have FX (xn) ↓ FX (x).

(iii) It has the limits FX (x)→ 1 as x → ∞ and FX (x)→ 0 as x → −∞.

Conversely, for any such function F , there exists a probability space (Ω,F,ℙ) and a r.r.v. X such that F = FX .
Finally, if Y is a r.r.v. with distribution function FX , then X and Y have the same law in the sense that for any
B ∈ B(ℝ) and any nonnegative and measurable function g, we have

ℙ(X ∈ B) = ℙ(Y ∈ B) and E[g(X )] = E[g(Y )].

Proof. The three properties are easily checked from the monotonicity of measures. The second part is
treated in the exercise sheet, where it is proved that if one de�nes for any u ∈ (0, 1),

G(u) = inf{x ∈ ℝ∶ F (x) > u} = sup{x ∈ ℝ∶ F (x) ≤ u},

and if U has the uniform distribution on (0, 1), then X = G(U ) has precisely distribution function F . The last
point comes from Theorem 1.1.13 since the probabilities ℙX and ℙY agree on the �-system {(−∞, x], x ∈ ℝ}
that generates B(ℝ). The identity for expectations follows as in the end of Section 1.4.

The second part of the theorem has important applications in numerical simulations for it allows to
generate from a uniform law (coded in any good language) any law for which G is explicit. We shall also
use it in some proofs.
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2.1.2 Independence

We say that G is a sub-�-algebra of F if it is a �-algebra and G⊂ F. Recall from Section 1.2 that if X is a
random variable with values in (E, E), then

� (X ) = {! ∈ Ω∶ X (!) ∈ B, B ∈ E}

is a sub−�-algebra of F, which is the smallest one that makes X measurable.

Exercise 2.1.4. Prove that for every set A, we have � (1A) = � (A).

De�nition 2.1.5. Let (Fn)n≥1 be sub-� -algebras of F. They are said to be independent when for every �nite
subset of indices I ⊂ ℕ and every Ai ∈ Fi for i ∈ I , we have:

ℙ(⋂
i∈I

Ai) = ∏
i∈I

ℙ(Ai).

Random variables (Xn)n≥1 are said to be independent when (� (Xn))n≥1 are and events (An)n≥1 are said to be
independent when (� (An))n≥1 are.

Remark 2.1.6. • For any event A, we have � (A) = {∅, A, Ac ,Ω}, so one can relate this de�nition with
the more familiar one of independence of events.

• In the de�nition, one can always take I of the form {1,… , N} for N ≥ 1. Indeed, for other subsets of
indices, just take Ai = Ω for the indices i that you do not want to appear.

• If (Xn)n≥1 are independent, then so are (fn(Xn))n≥1 for any measurable functions (fn)n≥1 since each
fn(Xn) is � (Xn)-measurable.

• If I ⊂ ℕ is in�nite, then letting In = I ∩ {1,… , n}, we have by monotonicity:

ℙ(⋂
i∈I

Ai) = ℙ(⋂
n≥1

⋂
i∈In

Ai) = ↓ limn→∞
ℙ(⋂

i∈In
Ai) = ↓ limn→∞

∏
i∈In

ℙ(Ai) = ∏
i∈I

ℙ(Ai).

The following reformulation of independence of r.v.’s is very useful. Recall the product measure from
Theorem 1.5.3.

Theorem 2.1.7. For every n ≥ 1, let Xn be a r.v. with value in a measurable space (En, En). Then the r.v.’s
(Xn)n≥1 are independent if and only if for every n ≥ 1, the law of (X1,… , Xn) on E1 ×⋯ × En is the product law:

ℙ(X1,…,Xn) = ℙX1 ⊗⋯ ⊗ ℙXn ,

which is equivalent to having

E[
n

∏
i=1

fi(Xi)] =
n

∏
i=1

E[fi(Xi)]

for all measurable functions fi ∶ Ei → ℝ+, i ≤ n.

Proof. For each i ≤ n, let Ai ∈ Ei . On the one hand,

ℙ(X1,…,Xn)(
n

∏
i=1

Ai) = ℙ((X1,… , Xn) ∈
n

∏
i=1

Ai) = ℙ(
n
⋂
i=1
{Xi ∈ Ai}).

On the other hand,

ℙX1 ⊗⋯ ⊗ ℙXn(
n

∏
i=1

Ai) =
n

∏
i=1

ℙXi (Ai) =
n

∏
i=1

ℙ(Xi ∈ Ai).
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Therefore (Xn)n≥1 are independent if and only if for every n ≥ 1, the laws ℙ(X1,…,Xn) and ℙX1 ⊗ ⋯ ⊗ ℙXn
coincide on the sets of the form ∏n

i=1 Ai , and thus on ⨂n
i=1 Ei which is generated by this �-system. The

second assertion follows from the �rst one by Fubini’s Theorem:

E[
n

∏
i=1

fi(Xi)] = ∫
E1×⋯×En

n
∏
i=1

fi(xi)
n

∏
i=1

ℙXi (dxi)

=
n

∏
i=1

∫
Ei
fi(xi)ℙXi (dxi)

=
n

∏
i=1

E[fi(Xi)].

Conversely, the second assertion immediately implies the �rst one by taking fi = 1Ai .

Remark 2.1.8. If the r.v.’s (Xn)n≥1 are independent, then by Fubini’s Theorem the identity

E[
n

∏
i=1

fi(Xi)] =
n

∏
i=1

E[fi(Xi)]

holds as soon as E[|fi(Xi)|] < ∞ for each i ≤ n. Note that the left-hand side is well-de�ned since in this case,
we have E[|∏n

i=1 fi(Xi)|] = ∏n
i=1 E[|fi(Xi)|] < ∞ by the previous theorem.

As often, independence needs not to be checked for all possible sets, but su�ciently many. Recall the
notion of a �-system from Section 1.1.1 and especially Theorem 1.1.13.

Lemma 2.1.9. Let (�n)n≥1 be �-systems each included in Fand containing Ω and such that for every �nite
subset of indices I ⊂ ℕ and every Ai ∈ �i , we have:

ℙ(⋂
i∈I

Ai) = ∏
i∈I

ℙ(Ai).

Then the sub-� -algebras (� (�n))n≥1 are independent.

Proof. Consider two �-systems. Fix an event A ∈ �1 and de�ne two measures � and � on Ω by:

�(B) = ℙ(A ∩ B) and �(B) = ℙ(A)ℙ(B),

for every B ∈ F. Then they have same �nite total mass ℙ(A) and they agree on �2 by assumption so they
agree on � (�2) by Theorem 1.1.13. We can therefore use the same reasoning with B ∈ � (�2) �xed instead of
A and obtain that

ℙ(A ∩ B) = ℙ(A)ℙ(B).

for any A ∈ � (�1) and B ∈ � (�2), i.e. that � (�1) and � (�2) are independent. The general case then follows by
induction: suppose that we have proved that (� (�n))n≤N are independent for some N ≥ 2. Then �x events
A1 ∈ �1,… , AN ∈ �N and de�ne two measures � and � by

�(B) = ℙ(B ∩
N
⋂
i=1

Ai) and �(B) = ℙ(B)
N
∏
i=1

ℙ(Ai).

They have the same total mass ℙ(⋂N
i=1 Ai) = ∏N

i=1 ℙ(Ai) and agree on �N+1 so they agree on � (�N+1). Then
we can �x B ∈ � (�N+1) an iteratively replace each Ai ∈ �i by Ai ∈ � (�i).

Corollary 2.1.10. Let (Xn)n≥1 be r.r.v.’s such that for any N ≥ 1 and any x1,… , xN ∈ ℝN we have

ℙ(X1 ≤ x1,… , XN , ≤ xN ) =
N
∏
n=1

ℙ(Xn ≤ xn).

Then they are independent.
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Proof. Apply the previous lemma with the �-system {(−∞, x], x ∈ ℝ} that generates B(ℝ).

Another consequence of Lemma 2.1.9 is that it allows to group �-algebras that are independent.

Corollary 2.1.11 (Grouping property). Let (Fn)n≥1 be independent � -algebras. Let (In)n≥1 be a partition of
ℕ and for every n ≥ 1, de�ne a � -algebra by

Gn = � (Fk , k ∈ In) = �(⋃
k∈In

Fk).

Then (Gn)n≥1 are independent.

Proof. Recall from Exercise 1.1.9 that each �-algebra Gn is also generated by the �-system:

�n = ⋃
I ⊂In �nite

{
⋂
i∈I

Bi ;Bi ∈ Fi

}
).

Fix indices n1 < ⋯ < nk and events An1 ∈ �n1 ,… , Ank ∈ �nk , namely each Anj take the form Anj = ⋂i∈I j Bi
for some �nite subset I j ⊂ Inj and Bi ∈ Fi . Using twice the independence of the Fk ’s, we have:

ℙ(
k
⋂
j=1

Anj) = ℙ(
k
⋂
j=1

⋂
i∈I j

Bi) =
k

∏
j=1

∏
i∈I j

ℙ(Bi) =
k

∏
j=1

ℙ(⋂
i∈I j

Bi) =
k

∏
j=1

ℙ(Anj ).

We conclude by applying Lemma 2.1.9 that the �-algebras Gn = � (�n) are indeed independent.

Example 2.1.12. Let (Xn)n≥1 be independent r.v.’s then

� (X2n, n ≥ 1) and � (X2n−1, n ≥ 1) are independent.

Also, for every n ≥ 1,

� (Xk , k ≤ n) and � (Xk , k ≥ n + 1) are independent.

2.1.3 0 − 1 laws

De�nition 2.1.13. Let us de�ne for events (An)n≥1:

lim sup
n→∞

An = ⋂
N≥1

⋃
n≥N

An = {! ∈ Ω∶ ! ∈ An for in�nitely many indices n},

and

lim inf
n→∞

An = ⋃
N≥1

⋂
n≥N

An = {! ∈ Ω∶ ! ∈ An for all but �nitely many indices n}.

Note that both lim supn An ∈ Fand lim infn An ∈ Fand that

(lim sup
n→∞

An)
c
= lim inf

n→∞
Acn.

We have a simple Fatou’s lemma for events.

Lemma 2.1.14 (Fatou). We have

ℙ(lim inf
n→∞

An) ≤ lim inf
n→∞

ℙ(An) and ℙ(lim sup
n→∞

An) ≥ lim sup
n→∞

ℙ(An).

Proof. For every N ≥ 1 we have ℙ(⋂n≥N An) ≤ infn≥N ℙ(An); the right-hand side increases to lim infn ℙ(An)
as N → ∞ while the left-hand side increases to ℙ(lim infn An) by Lemma 1.1.12 since the sequence
(⋂n≥N An)N is increasing. The second property follows similarly.
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The following simple result is also a powerful tool to prove that events occur with probability 0 (or 1 by
taking the complement).

Theorem 2.1.15 (Borel–Cantelli). Let (An)n≥1 be a sequence of events. Then

(i) If ∑n ℙ(An) < ∞, then ℙ(lim supn An) = 0.

(ii) If ∑n ℙ(An) = ∞ and the (An)n≥1 are independent, then ℙ(lim supn An) = 1.

Proof. (i) By Lemma 1.1.12, for everyN ≥ 1we haveℙ(⋃n≥N An) ≤ ∑n≥N ℙ(An). The right-hand side tends
to 0 as N → ∞ by our assumption while the left-hand side tends to ℙ(lim supn An) ≥ lim supn ℙ(An)
by Lemma 2.1.14.

(ii) By independence and the easy bound ex ≥ 1 − x for x ≥ 0, we infer that:

ℙ(
∞
⋂
n=N

Acn) =
∞
∏
n=N

(1 − ℙ(An)) ≤ exp(−
∞
∑
n=N

ℙ(An)).

The left-hand side converges to ℙ(lim infn Acn) as N → ∞ and the right-hand side to 0.

Therefore, as soon as ∑n ℙ(An) < ∞, we have ℙ(lim infn Acn) = 1, i.e. almost surely, An occurs for only
�nitely many indices n. On the other hand, if ∑n ℙ(An) = ∞, then for independent events, almost surely,
An occurs for in�nitely many indices n.

We shall provide a second proof of the following result later using martingale theory.

Theorem 2.1.16 (Kolmogorov’s 0-1 law). Let (Xn)n≥1 be independent r.v.’s and consider the � -algebras

Tn = � (Xk , k ≥ n + 1) and T= ⋂
n
Tn.

Then T is trivial in the sense that ℙ(A) ∈ {0, 1} for all events A ∈ T and that any T-measurable r.v. is
constant a.s.

The �-algebra T is called the tail �-algebra. It contains all events that do not depend on any �nite
subset of r.v.’s such as

{(Xn)n converges},
{
∑
n
Xn converges

}
,

{X1 +⋯ + Xn
n

converges
}
.

Therefore all these events have probability either 0 or 1; of course the theorem does not tell us which case
occurs! Also, r.v.’s such as

lim inf
n

Xn and lim inf
n

X1 +⋯ + Xn
n

and the limsup, are measurable with respect to Tso they are a.s. constant (possibly in�nite).

Proof. Let Fn = � (Xk , k ≤ n). We observed already that by the grouping property, Fn and Tn are independent
for any n ≥ 1. Thus T is independent from Fn for any n ≥ 1. We infer that for any events A ∈ T and
B ∈ ⋃n Fn, we have

ℙ(A ∩ B) = ℙ(A)ℙ(B).

Note that ⋃n Fn is a �-system and F = � (⋃n Fn) = � (Xk , k ≥ 1) so by Lemma 2.1.9, T and F are
independent: for any A ∈ Tand B ∈ F, we have

ℙ(A ∩ B) = ℙ(A)ℙ(B).

Finally, T⊂ Fso for any A ∈ T, we have

ℙ(A) = ℙ(A ∩ A) = ℙ(A)2,

thus ℙ(A) ∈ {0, 1}.
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2.1.4 Independent random variables exist!

Theorem 2.1.7 combined with Theorem 1.5.3 shows that for any �nitely many laws ℙ1,… ,ℙn, there exist
independent r.v.’s X1,… , Xn such that each Xi has law ℙi . The question is then to extend this to (countably)
in�nitely many laws. For laws on general measurable spaces, this extension may fail, but on ℝ (and more
generally on complete separable metric spaces), they do exist. The general result is called Kolmogorov’s
extension Theorem. We will content ourself with the result on ℝ (it could as well be ℝd ) for which we
provide a constructive proof.

Theorem 2.1.17. Given distribution functions (Fn)n≥1, there exists a sequence of independent r.r.v.’s (Xn)n≥1
such that FXn = Fn for all n ≥ 1.

The proof goes in three steps. Starting from a single r.v. with the uniform distribution on [0, 1], we �rst
construct a sequence of independent r.v.’s taking values 0 or 1 with probability 1/2. Then we use it to to
construct a sequence of independent r.v.’s all having the uniform distribution on [0, 1]. Finally, we prove
the general form using these uniform r.v.’s.

Proof in the case of coin tossing. Take Ω = [0, 1), F= B(Ω) the Borel �-algebra, and ℙ = Leb the Lebesgue
measure. Let us write any element ! ∈ Ω using its binary expansion:

! = ∑
n≥1

"n(!)2−n,

where each "n(!) is either 0 or 1, and can be de�ned explicitly by "n(!) = ⌊2n!⌋ − 2⌊2n−1!⌋. Fix p ≥ 1 and
i1,… , ip ∈ {0, 1} and note that we have "1(!) = i1, . . . , "p(!) = ip if and only if ! ∈ [∑p

n=1 in2−n,∑
p
n=1 in2−n +

2−p]. Therefore, we have

ℙ("1 = i1,… , "p = ip) = Leb([
p

∑
n=1

in2−n,
p

∑
n=1

in2−n + 2−p]) = 2
−p .

This proves that the r.v.’s ("n)n≥1 are independent and Bernoulli distributed with parameter 1/2. Indeed, for
any p ≥ 1, and ip ∈ {0, 1}, we have

ℙ("p = ip) = ∑
i1,…,ip−1∈{0,1}

ℙ("1 = i1,… , "p = ip) = 2p−1 ⋅ 2−p = 1/2,

and independence follows from the product form above.

Remark 2.1.18. By grouping the variables, the random vectors ("np+1,… , "n(p+1))n≥0 are independent for
any given p ≥ 1. Since each sequence i1,… , ip ∈ {0, 1} has a �xed probability 2−p > 0 to appear for each
such vector, then by the Borel–Cantelli lemma, with probability one, any �nite sequence of 0 and 1 appears
in�nitely many times in the binary expansion of a uniform random number! Of course, the same would
hold for any other numerical basis.

Proof in the case of the uniform distribution. Let us continue with Ω = [0, 1), F= B(Ω), and ℙ the Lebesgue
measure, and the previous sequence ("n)n≥1 of independent r.v.’s with the law ℙ("n = 1) = ℙ("n = 0) = 1/2.
Let '∶ ℕ2 → ℕ be an injective map and let �p,q = "'(p,q) for all (p, q) ∈ ℕ2. Then the r.v.’s (�p,q)(p,q)∈ℕ2

are independent and ℙ(�p,q = 1) = ℙ(�p,q = 0) = 1/2. By grouping them, the sequences ((�p,q)q≥1)p≥1 are
independent and thus if we set for each p ≥ 1,

Up = ∑
q≥1

�p,q2−q ∈ [0, 1),

then the r.v.’s (Up)p≥1 are independent and they all have the same law ℙ, i.e. the uniform distribution on
[0, 1).

Proof in the general case. Let (Fn)n≥1 be distribution functions and let us denote by Gn their pseudo-inverse
as in the proof of Theorem 2.1.3. Let (Un)n≥1 be independent r.v.’s with the uniform distribution on [0, 1).
Then the r.v.’s (Gn(Un))n≥1 are independent and they have distribution function Fn respectively.
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2.2 Lp spaces in probability

2.2.1 Important inequalities

Theorem 2.2.1 (Markov’s inequality). Let X be a nonnegative r.r.v. then for every a > 0, we have

ℙ(X ≥ a) ≤
E[X ]
a

.

Proof. Simply note that 1X≥a ≤ X /a and take the expectation.

This very simple inequality can become very powerful when applied to a transformation of X . For
example, for any r.r.v. X , we have for any a ∈ ℝ and t > 0:

ℙ(X ≥ a) = ℙ(etX ≥ eta) ≤ e−ta E[etX ],

ℙ(X ≤ a) = ℙ(e−tX ≥ e−ta) ≤ eta E[e−tX ].

Therefore
ℙ(X ≥ a) ≤ inf

t>0
e−ta E[etX ] and ℙ(X ≤ a) ≤ inf

t>0
eta E[e−tX ].

Exercise 2.2.2. If X has the binomial distribution with parameters n ≥ 1 and p ∈ (0, 1), �nd the optimal
t > 0 in the above inequalities and thus the tightness bounds using this method.

Theorem 2.2.3 (Jensen’s inequality). Let � be a convex function from an open interval I to ℝ and let X be
a r.v. such that X ∈ I a.s. and E[|X |] < ∞. Then

(i) E[�(X )−] < ∞ so E[�(X )] = E[�(X )+] − E[�(X )−] makes sense in ℝ ∪ {∞},

(ii) We have
E[�(X )] ≥ �(E[X ]).

(iii) The inequality is an equality if and only if either X is a.s. constant or � is a�ne ℙX -a.s.

Proof. As a convex function on an open interval, � is continuous so �(X ) is indeed measurable. Moreover,
it is known that for every a ∈ I , there exists �a ∈ ℝ such that for all x ∈ I such that x − a ∈ I ,

�(x) ≥ �(a) + �a(x − a).

It follows that �(x)− ≤ (�(a) + �a(x − a))−, and when applied to x = X , the right-hand side has �nite mean
so we can indeed de�ne E[�(X )] ∈ ℝ ∪ {∞}. Moreover, for a = E[X ], we get after taking the expectation:

E[�(X )] ≥ E[�(E[X ]) + �E[X ](X − E[X ])] = �(E[X ]).

Finally, since �(X ) ≥ �(E[X ]) + �E[X ](X − E[X ]) a.s. then the equality of the expectations holds i� the r.v.’s
are a.s. equal.

Notation. For p ≥ 1, set ‖X ‖p = E[|X |p]1/p ∈ [0,∞] and write X ∈ Lp if ‖X ‖p < ∞.

Theorem 2.2.4 (Hölder’s inequality). Let p, q > 1 satisfy 1/p + 1/q = 1, then

‖XY ‖1 ≤ ‖X ‖p ‖Y ‖q .

Consequently, XY ∈ L1 as soon as X ∈ Lp and Y ∈ Lq . Moreover, we have ‖XY ‖1 = ‖X ‖p ‖Y ‖q i� either X = 0
a.s. or Y = 0 a.s. or there exists c > 0 such that |X |p = c |Y |q a.s.
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Proof. Let us start with the Young inequality: for every a, b > 0, by strict convexity of exp, it holds

ab = exp(log(ap)/p + log(bq)/q) ≤ ap/p + bq/q,

with equality i� ap = bq . Suppose ‖X ‖p > 0 and ‖Y ‖q > 0 as otherwise either X or Y (or both) equals 0 a.s. so
XY = 0 a.s. and the theorem clearly holds. Assume also they are �nite. Then the Young inequality applied
to a = |X |/ ‖X ‖p and b = |Y |/ ‖Y ‖q yields

|XY |
‖X ‖p ‖Y ‖q

≤
1
p(

|X |
‖X ‖p )

p
+
1
q(

|Y |
‖Y ‖q)

q
=

|X |p

p ‖X ‖pp
+

|Y |q

q ‖Y ‖qq
,

with equality i� (|X |/ ‖X ‖p)p = (|Y |/ ‖Y ‖q)q , i� there exists c > 0 such that |X |p = c |Y |q a.s. Taking the
expectation, we obtain

‖XY ‖1
‖X ‖p ‖Y ‖q

≤
1
p
+
1
q
= 1,

and the result follows.

Corollary 2.2.5 (Inclusion of Lp spaces). Let p ≥ q ≥ 1, then ‖X ‖q ≤ ‖X ‖p . Consequently Lp ⊂ Lq .

Proof. Just apply Hölder’s inequality to X and 1 and the exponents r = p/q and s = r/(r − 1) = p/(p − q) so
1/r + 1/s = 1 to get

‖X ‖q = E[|X |q]1/q ≤ E[|X |qr ]1/(qr) ‖1‖s = ‖X ‖p .

In particular, if ‖X ‖p < ∞ then ‖X ‖q < ∞.

Remark 2.2.6. The inclusion Lp ⊂ Lq for p ≥ q ≥ 1 is quite characteristic of �nite measures in the sense
that if � is a � -�nite measure such that there exists a pair p > q ≥ 1with Lp(�) ⊂ Lq(�), then � is in fact �nite.
To see that, let I ∶ Lp(�)→ Lq(�) be the identity operator, then by an argument similar to that used in the
proof of Theorem 2.2.8 below, its graph its closed in the sense that if Xn → X in Lp and if I (Xn) = Xn → Y
in Lq , then for each of these sequences we can extract a subsequence that converges a.s. so X = Y a.s. By
the closed graph theorem (applied in the quotient spaces Lp and Lq), we infer that I is a continuous linear
operator, so there exists C < ∞ such that for every X ∈ Lp(�), we have ‖X ‖q ≤ C ‖X ‖p . In particular, if
�(A) < ∞, then for X = 1A, we read �(A)1/p ≤ C�(A)1/q and so �(A) ≤ C1/(1/p−1/q) < ∞. Hence, if � is � -�nite,
then there exists (An)n≥1 with �(An) < ∞ for all n and E = ⋃n An so �(E) = limn �(An) = C1/(1/p−1/q) < ∞.

2.2.2 Lp spaces are almost Banach spaces

Let us start with another famous inequality.

Corollary 2.2.7 (Minkowski’s inequality). Let p ≥ 1, then

‖X + Y ‖p ≤ ‖X ‖p + ‖Y ‖q .

Proof. The claim is clear for p = 1 so �x p > 1 and notice that for any x, y ∈ ℝ, we have

|x + y |p ≤ |x | |x + y |p−1 + |y | |x + y |p−1.

Let q = p/(p − 1) be such that 1/p + 1/q = 1, then by Hölder’s inequality,

E[|X + Y |p] ≤ E[|X | |X + Y |p−1] + E[|Y | |X + Y |p−1]

≤ ‖X ‖p ‖|X + Y |p−1‖q + ‖Y ‖p ‖|X + Y |p−1‖q
≤ (‖X ‖p + ‖Y ‖p)E[|X + Y |p]1−1/p .

The result follows after rearranging the terms.
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As a consequence, the space (Lp , ‖ ⋅ ‖p) is basically a normed vector space, except that ‖X ‖p = 0 if and
only if X = 0 a.s. One can get a true normed vector space by taking the quotient by the equivalence relation
X ∼ Y when X = Y a.s. and actually, what we denote by Lp here is usually denoted by Λp , whereas Lp

should refer to the quotient space. We prefer to work without quotienting and speak of Lp as a metric space
by abuse of notation. The next result shows that it is a Banach space.

Theorem 2.2.8 (Completeness). For any p ≥ 1, any Cauchy sequence in Lp converges.

Proof. Let (Xn)n≥1 be a Cauchy sequence in Lp i.e. ‖Xn‖p < ∞ for all n ≥ 1 and

sup
s,t≥n

‖Xs − Xt ‖p ⟶
n→∞

0.

Then we can build a sequence of integers (nk)k≥1 such that sups,t≥nk ‖Xs − Xt ‖p ≤ 2
−k for every k ≥ 1, and in

particular,

E[∑
k≥1

|Xnk+1 − Xnk |] = ∑
k≥1

‖Xnk+1 − Xnk ‖1 ≤ ∑
k≥1

‖Xnk+1 − Xnk ‖p < ∞.

Thus a.s. the series ∑k≥1(Xnk+1 − Xnk ) converges absolutely and so Xnk converges to some X . Fix k ≥ 1 and
s ≥ nk , then for every � ≥ k we have that

E[|Xs − Xn� |
p] ≤ 2−pk

so by Fatou’s lemma, letting � → ∞, we get

E[|Xs − X |p] ≤ lim inf
�→∞

E[|Xs − Xn� |
p] ≤ 2−pk .

Since Xs ∈ Lp , then this shows that X ∈ Lp , and furthermore,

lim sup
s→∞

E[|Xs − X |p] ≤ 2−pk .

since k ≥ 1 is arbitrary, we conclude that Xs → X in Lp .

2.2.3 The case of L2

Let us end with some extra words on the case p = 2. Here L2 not only is a Banach space, but a Hilbert space
since the norm ‖ ⋅ ‖2 comes from an inner (or scalar) product, namely for X, Y ∈ L2,

X ⋅ Y = E[XY ],

which is well-de�ned by Hölder’s inequality, which in the case p = q = 2 is the Cauchy–Schwarz inequality
for inner products.

De�nition 2.2.9 (Covariance). For X, Y ∈ L2, de�ne their covariance by

Cov(X, Y ) = E[(X − E[X ])(Y − E[Y ])] = E[XY ] − E[X ]E[Y ],

as well as their variance by

Var(X ) = Cov(X, X ) = E[(X − E[X ])2] = E[X 2] − E[X ]2,

and similarly for Y , and �nally de�ne their correlation coe�cient by

�(X, Y ) =
Cov(X, Y )

√
Var(X ) Var(Y )

∈ [−1, 1]

by the Cauchy–Schwarz inequality.
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Notation. If X = (X1,… , Xn) is a random vector in ℝn, we denote by CX its covariance matrix, given for
every 1 ≤ i, j ≤ n by

(CX )i,j = Cov(Xi , Xj).

From a geometrical point of view, suppose E[X ] = E[Y ] = 0 (otherwise subtract the mean), then Var(X )
is the square-norm of the “vector” X and �(X, Y ) is the cosine of the angle between X and Y . The case
�(X, Y ) = 0, equivalently Cov(X, Y ) = E[XY ] = 0, corresponds to the orthogonality of the vectors, which is
the case as soon as X and Y are independent but is weaker than independence in general).

Remark 2.2.10. The covariance is bilinear, so the variance satis�es for X1,… , Xn ∈ L2:

Var(

n
∑
k=1

akXk) =
n
∑
k=1

a2k Var(Xk) + 2 ∑
1≤k<�≤n

aka� Cov(Xk , X� ).

Let ⟨ ⋅ , ⋅ ⟩ denote the scalar product in ℝn, let (X1,… , Xn) ∈ ℝn and let CX denote its covariance matrix,
then this reads equivalently: for every a = (a1,… , an) ∈ ℝn,

Var(⟨a, X⟩) = ⟨a, CXa⟩ = atCXa.

Exercise 2.2.11. Let X = (X1,… , Xn) be a random vector in ℝn with covariance matrix CX . Prove that CX
is noninvertible if and only if one Xk is an a�ne combination of the other ones.

2.3 Convergence of random variables

In this section, all the random variables are de�ned on the same probability space (Ω,F,ℙ) and take values
in (ℝd ,B(ℝd )) and we let | ⋅ | denote the Euclidean norm in ℝd . The Lp spaces considered are always for
p ≥ 1.

2.3.1 De�nitions and �rst properties

De�nition 2.3.1. We say that Xn converges to X :

(i) almost surely (a.s.) if ℙ(Xn → X ) = ℙ({! ∈ Ω∶ Xn(!)→ X (!)}) = 1,

(ii) in Lp if Xn, X ∈ Lp and E[|Xn − X |p]→ 0,

(iii) in probability if for every " > 0 �xed, we have ℙ(|Xn − X | > ")→ 0.

Let us observe that {Xn → X} = ⋂k≥1⋃N≥1⋂n≥N {|Xn − X | ≤ 1/k} is indeed measurable so the
a.s. convergence is well-de�ned.

Proposition 2.3.2. These notions satisfy the following relations:

(i) If Xn → X in Lp for a given p ≥ 1 then Xn → X in Lq for all q ∈ [1, p) and also in probability.

(ii) If Xn → X a.s. then also in probability.

(iii) If Xn → X and Xn → Y in probability then X = Y a.s. Thus the same conclusion holds if we replace
one or both convergences by a stronger one (a.s. or in Lp).

(iv) Xn → X in probability if and only if every subsequence has a further subsequence that tends to X a.s.

Proof. (i) By the Hölder or Jensen inequality, we have the inclusion Lp ⊂ Lq which reads here E[|Xn −
X |q] ≤ E[|Xn − X |p]q/p → 0. Also, the Markov inequality implies that for every " > 0, we have
ℙ(|Xn − X | > ") ≤ "−p E[|Xn − X |p]→ 0.
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(ii) Fix " > 0 and note that if Xn → X a.s. then 1|Xn−X |>" → 0 a.s. so ℙ(|Xn − X | > ")→ 0 by dominated
convergence.

(iii) By the triangle inequality, for every " > 0,

ℙ(|X − Y | > ") ≤ ℙ(|Xn − X | > "/2) + ℙ(|Xn − Y | > "/2) ⟶
n→∞

0.

Thus
ℙ(X ≠ Y ) = ℙ(⋃

k≥1
{|X − Y | > 1/k}) ≤ ∑

k≥1
ℙ(|X − Y | > 1/k) = 0.

(iv) Suppose Xn → X in probability, then de�ne n1 = 1 and the iteratively for every k ≥ 1,

nk+1 = inf{j > nk ∶ ℙ(|Xj − X | > 2−(k+1)) ≤ 2−(k+1)}.

Then ∑k≥1 ℙ(|Xnk − X | > 2−k) < ∞ so by the Borel–Cantelli lemma, with probability 1 only �nitely
many indices nk have that |Xnk − X | > 2−k and so Xnk → X with probability 1.

On the other hand, if Xn does not converge to X in probability, then there exists " > 0 and an
increasing sequence of integers (nk)k≥1 such that ℙ(|Xnk −X | > ") > " for all k ≥ 1 so this subsequence
has no further subsequence that converges in probability and so a.s.

Let (Xn)n be independent r.v.’s such that ℙ(Xn = n1/p) = 1/n = 1 −ℙ(Xn = 0). Then Xn → 0 in probability
but not in Lp since E[|Xn |p] = 1 for each n. It does not converge a.s. either since the Borel–Cantelli lemma
shows that a.s. there exists in�nitely many indices n such that Xn = n1/p .

Remark 2.3.3. In a metric space a sequence (xn)n converges to some x if and only if every subsequence has
a further subsequence that tends to x . Thus there is no metric on r.v.’s that corresponds to a.s. convergence.
On the other hand we saw that if one does not distinguish r.v.’s that are equal a.s. then the Lp convergence
corresponds to a metric (even to a norm); this is also the case of convergence in probability, with e.g. the
distance

d(X, Y ) = E[max{|X − Y |, 1}].

See also the exercise sheet.

Lemma 2.3.4 (Continuous mapping). Suppose that f ∶ ℝd → ℝe is continuous ℙX -a.s. then

(i) If Xn → X a.s. then f (Xn)→ f (X ) a.s.

(ii) If Xn → X in probability then f (Xn)→ f (X ) in probability.

Proof. (i) Let Cf = {x ∈ ℝd ∶ f is continuous at x} ∈ B(ℝd ). Then we have

X −1(Cf ) = {! ∈ Ω∶ f is continuous at X (Ω)} ∈ F

and 1 = ℙX (Cf ) = ℙ(X −1(Cf )) so if we let A = {! ∈ Ω∶ Xn(!) → X (!)}, then ℙ(A) = 1 so
ℙ(A ∩ X −1(Cf )) = 1. Finally for every ! ∈ A ∩ X −1(Cf ) we have f (Xn(!))→ f (X (!)).

(ii) IfXn → X in probability then every subsequence (nk)k has a further subsequence (nkj )j that converges
to X a.s. so by the �rst point f (Xnkj )→ f (X ) a.s. By the last item in Proposition 2.3.2 this is equivalent
to f (Xn)→ f (X ) in probability.

Corollary 2.3.5. If Xn → X and Yn → Y in probability, then (Xn, Yn) → (X, Y ) in probability and so
Xn + Yn → X + Y , XnYn → XY in probability etc. The same holds if all convergences are a.s.

Remark 2.3.6. Deducing f (Xn) → f (X ) in Lp from Xn → X in Lp where f is continuous ℙX -a.s. is not
automatic! We will see in Theorem 2.3.14 that the sequence (|f (Xn)|p)n≥1 must be uniformly integrable. This
is one reason why this notion of convergence is sometimes less interesting than convergence in probability.
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2.3.2 Uniform Integrability (⋆)

Uniform integrability is the key assumption that allows to improve a convergence in probability to an
almost sure convergence. Let us motivate the forthcoming de�nition with an observation.

Lemma 2.3.7. A r.v. X is integrable if and only if

lim
K→∞

E[|X |1|X |>K] = 0.

Proof. Notice that E[|X |1|X |≤K ] ≤ K , so in [0,∞] it makes sense to write

E[|X |1|X |>K ] = E[|X |] − E[|X |1|X |≤K ].

Then either E[|X |] = ∞ and then E[|X |1|X |>K ] = ∞ for all K , or E[|X |] < ∞ and by monotone convergence,
the right-hand side converges 0 as K → ∞.

De�nition 2.3.8 (UI r.v.’s). A collection (Xi)i∈I of integrable r.v.’s is said to be uniformly integrable when

lim
K→∞

sup
i∈I

E[|Xi |1|Xi |>K] = 0.

The next result is a useful reformulation of the UI property.

Proposition 2.3.9. A collection (Xi)i∈I of integrable r.v.’s is UI if and only if supi∈I E[|Xi |] < ∞ (we say it is
bounded in L1) and for every " > 0, there exists � > 0 such that for every A ∈ F,

if ℙ(A) ≤ � then sup
i∈I

E[|Xi |1A] ≤ ".

Proof. First suppose that (Xi)i∈I is UI, then for K large enough, we have

sup
i∈I

E[|Xi |] ≤ sup
i∈I

E[|Xi |1|Xi |≤K] + sup
i∈I

E[|Xi |1|Xi |>K] ≤ K + 1.

Fix now " > 0 and let K be large enough so supi∈I E[|Xi |1|Xi |>K ] ≤ "/2. Put � = "/(2K ) and take any A ∈ F

such that ℙ(A) ≤ � , then for any i ∈ I it holds

E[|Xi |1A] ≤ E[|Xi |1|Xi |>K ] + K ℙ({|Xi | ≤ K} ∩ A) ≤ ".

Conversely, suppose that supi∈I E[|Xi |] ≤ C < ∞, �x " > 0 arbitrary and � > 0 as in the second property.
Let K be large enough so ℙ(|Xi | > K ) ≤ E[|Xi |]/K ≤ C/K ≤ � for all i ∈ I , then by the second property,
E[|Xi |1|Xi |>K ] ≤ " for all i ∈ I .

Remark 2.3.10. As an example of a family of r.v.’s bounded in L1 but not UI, take ℙ(Xn = n) = 1/n and
ℙ(Xn = 0) = 1 − 1/n. Then for every K ≥ 0,

sup
n≥1

E[|Xn |] = 1 and sup
n≥1

E[|Xn |1|Xn |>K] = 1.

One can also check that the second property of Proposition 2.3.9 fails here.

The next result gives an explicit way of checking wether collection of r.v.’s if UI. Of course the converse
implication is the one useful in practice.

Theorem 2.3.11 (de la Vallée Poussin). A collection (Xi)i∈I of integrable r.v.’s is UI if and only if there exists
'∶ ℝ+ → ℝ+ such that '(x)→ ∞ as x → ∞ and

sup
i∈I

E[|Xi |'(|Xi |)] < ∞.
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Proof. Suppose that there exists such a function ', then for every K > 0, for every i ∈ I , we have:

E[|Xi |1|Xi |>K ] = E[|Xi |
'(|Xi |)
'(|Xi |)

1|Xi |>K] ≤ E[|Xi |
'(|Xi |)

infx>K '(x)
1|Xi |>K] ≤

E[|Xi |'(|Xi |)]
infx>K '(x)

.

The numerator is bounded uniformly in i ∈ I and the denominator tends to ∞ as K → ∞.
Conversely, suppose that (Xi)i∈I is UI and build inductively an increasing sequence Kn → ∞ such that

sup
i∈I

E[|Xi |1|Xi |>Kn ] ≤ 2
−n

for every n ≥ 1. Put '(0) = 0 and for x > 0,

'(x) =
1
x
∑
n≥1
(x − Kn)+ = ∑

n≥1
(1 −

Kn
x )1x>Kn .

Then for every N ≥ 1, if x ≥ 2K2N , then the sum contains at least 2N terms and each of them is larger than
1/2 so '(x)→ ∞. Moreover, for every x > 0, we have

x'(x) = ∑
n≥1
(x − Kn)1x>Kn ≤ ∑

n≥1
x 1x>Kn .

Recall the construction of (Kn)n, then we conclude that

sup
i∈I

E[|Xi |'(|Xi |)] ≤ sup
i∈I

∑
n≥1

E[|Xi |1|Xi |>Kn ] ≤ 1,

which ends the proof.

Remark 2.3.12. One can show that the previous function  ∶ x ↦ x'(x) is convex, increasing, and with
moderate growth in that  (x) ≤ x2 for all x ≥ 0 so in the theorem, one can restrict to those functions.

We now list some su�cient conditions that imply uniform integrability.

Exercise 2.3.13 (Su�cient conditions). Prove the following:

(i) If the Xi’s have the same law and are in L1, then they are UI.

(ii) If C1,… , Cn are collections of UI r.v.’s, then so is ⋃n
i=1 Ci .

(iii) If (Xi)i∈I and (Yi)i∈I are UI, then so is (aXi + bYi)i∈I for any constants a, b.

(iv) If there exists Y ∈ L1 such that |Xi | ≤ Y for all i ∈ I , then (Xi)i∈I is UI.

(v) If there exists p > 1 such that supi∈I E[|Xi |p] < ∞, then (Xi)i∈I is UI.

The reason to consider UI r.v.’s is the next result which is the central result of this section. Indeed,
combined with the previous exercise, this theorem extends the dominated convergence to the best possible.
Of course again, the implication (i) ⟹ (ii) is the one useful in practice.

Theorem 2.3.14. Fix p ≥ 1, a sequence (Xn)n≥1 of r.v.’s in Lp , and a r.v. X . Then the following assertions are
equivalent:

(i) Xn → X in probability and (|Xn |p)n≥1 is UI,

(ii) X ∈ Lp and Xn → X in Lp .

Proof. Let us only prove the claim for p = 1. For p > 1, all the arguments still apply, one can simply replace
the triangle inequality in ℝd by the easy bound |x + y |p ≤ 2p(|x |p + |y |p) for all x, y ∈ ℝd .
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Assume �rst that Xn → X in probability and (Xn)n≥1 is UI. In particular (Xn)n≥1 is bounded in L1. Let us
extract a subsequence Xnk → X a.s. Then by Fatou’s lemma,

E[|X |] = E[lim inf
k→∞

|Xnk |] ≤ lim inf
k→∞

E[|Xnk |] ≤ sup
n≥1

E[|Xn |] < ∞.

Hence X ∈ L1. Consequently (Yn)n = (Xn − X )n is UI (Exercise 2.3.13) and converges to 0 in probability, and
we aim at showing that it converges in L1. For any ", K > 0, it holds

E[|Yn |] ≤ E[|Yn |1|Yn |≤"] + E[|Yn |1"<|Yn |≤K ] + E[|Yn |1|Yn |>K ]

≤ " + K ℙ(|Yn | > ") + sup
n≥1

E[|Yn |1|Yn |>K ].

Let us make n → ∞, then K → ∞, and �nally " → 0, then the probability at the last line tends to 0 since
Yn → 0 in probability and the expectation tends to 0 by the UI property.

Suppose next thatE[|Xn−X |]→ 0. Recall that the Markov inequality implies thatXn → X in probability.
Also E[|Xn |] ≤ E[|Xn − X |] + E[|X |]→ E[|X |] so (Xn)n is bounded in L1. We focus on the UI property. Let us
write for any K, L > 0 the simpler but clever inequalities:

|Xn |1|Xn |>K ≤ |Xn − X |1|Xn |>K + |X |1|Xn |>K,|X |≤L + |X |1|Xn |>K,|X |>L

≤ |Xn − X |1|Xn |>K +
L
K

|Xn |1|Xn |>K,|X |≤L + |X |1|Xn |>K,|X |>L

≤ |Xn − X | +
L
K

|Xn | + |X |1|X |>L.

Consequently, with L =
√
K , we obtain

E[|Xn |1|Xn |>K ] ≤ E[|Xn − X |] +
1

√
K
sup
n≥1

E[|Xn |] + E[|X |1|X |>
√
K ].

Fix " > 0 and let N be large enough, so E[|Xn − X |] ≤ " for all n ≥ N . Recall that supn≥1 E[|Xn |], that X ∈ L1

is UI, and similarly that the �nite collection (Xn)n≤N is UI. Then for K large enough, we have

sup
n≤N

E[|Xn |1|Xn |>K ] ≤ " and sup
n>N

E[|Xn |1|Xn |>K ] ≤ 3",

so indeed (Xn)n is UI.

Corollary 2.3.15 (Boundedness in Lp). Suppose that Xn → X in probability and supn E[|Xn |p] < ∞ for some
p > 1. Then Xn → X in Lq for all q ∈ [1, p).

Proof. By Exercise 2.3.13, for any q ∈ [1, p), the family (|Xn |q)n≥1 is bounded in Lr for r = p/q > 1 so it is UI.
Then Theorem 2.3.14 implies the convergence in Lq .

Remark 2.3.16. Under the assumptions of Corollary 2.3.15, Fatou’s lemma implies E[|X |p] ≤ supn E[|Xn |p] <
∞ but it may be the case that Xn does not converge to X in Lp . Just adapt a previous example and take
ℙ(Xn = n1/p) = 1/n = 1 − ℙ(Xn = 0); in this case Xn → 0 in probability so if it converges in Lp , then the limit
must be 0 a.s. by Lemma 2.3.2, but E[|Xn |p] = 1 for all n.

2.4 Law of Large Numbers

The Law of Large Numbers formally links the mathematical notion of expectation and probability of an
event with the conceptual idea of asymptotic frequenct. We restrict ourselves to real-valued random
variables, but it extends to vectors by applying it separately on each component.

Let us start with a weak version, where convergence holds in probability, we next prove the strong law,
with an almost sure convergence. The Lp part of the statement uses the notion of uniform integrability
from Section 2.3.2.

35



Theorem 2.4.1 (WLLN). Let (Xn)n≥1 be i.i.d. r.v.’s in ℝ with �nite mean E[X1] = m ∈ ℝ. Then

X1 +⋯ + Xn
n

⟶
n→∞

m

in probability and in L1. If X1 ∈ Lp for some p > 1, then the convergence also holds in Lp .

Proof. The L2 case is immediate: Suppose in addition that �2 = Var(X1) < ∞, then by independence,

E[(
X1 +⋯ + Xn

n
−m)

2

] = Var(
X1 +⋯ + Xn

n ) =
Var(X1) +⋯ + Var(Xn)

n2
=
�2

n
⟶
n→∞

0.

Thus n−1∑n
k=1 Xk converges to m in L2 and so in probability as well.

Now suppose only that X1 ∈ L1. For every K > 0, for every i ≥ 1, let us set

XK
i = Xi 1|Xi |≤K and YK

i = Xi 1|Xi |>K .

On the one hand, by Lemma 2.3.7,

E[
||||
1
n

n
∑
i=1

YK
i
||||]
≤ E[|YK

1 |] = E[|X1|1|X1 |>K ] ⟶
K→∞

0.

On the other hand,
|m − E[XK

1 ]| ≤ E[|X1 − X1 1|X1 |≤K |] = E[|YK
1 |] ⟶

K→∞
0.

Furthermore, by the L2 case, for every K > 0 �xed, we have

XK
1 +⋯ + XK

n
n

⟶
n→∞

E[XK
1 ] in L2 and thus in L1.

Hence

lim sup
n→∞

E[
||||
X1 +⋯ + Xn

n
−m

||||]
≤ lim sup

n→∞
E[

||||
XK
1 +⋯ + XK

n
n

− E[XK
1 ]

||||]
+ |m − E[XK

1 ]| + E[
||||
1
n

n
∑
i=1

YK
i
||||]

≤ 2E[|YK
1 |] ⟶

K→∞
0,

so (X1 +⋯ + Xn)/n → m in L1 and thus in probability.
Suppose now that X1 ∈ Lp for some p > 1. Since n−1∑n

k=1 Xk converges to m in probability, it su�ces to
prove that the sequence (|n−1∑n

k=1 Xk |p)n is UI to deduce the Lp convergence from Theorem 2.3.14. Let us
use the characterisation from Proposition 2.3.9. Since the Xn’s have the same law, then by Exercise 2.3.13
the sequence (|Xn |p)n≥1 is UI. Then for every " > 0, there exists � > 0 such that for every A ∈ F,

if ℙ(A) ≤ � then sup
k≥1

E[|Xk |p 1A] ≤ ".

Using the Minkowski inequality, we infer that

E[
|||
1
n

n
∑
k=1

Xk
|||
p
1A]

1/p
≤
1
n

n
∑
k=1

E[|Xk |p 1A]1/p ≤ "1/p ,

and the sequence (|n−1∑n
k=1 Xk |p)n is indeed UI.

Let us next strengthen the convergence to an almost sure one.

Theorem 2.4.2 (SLLN). Let (Xn)n≥1 be i.i.d. r.r.v.’s with E[|X1|] < ∞ and E[X1] = m ∈ ℝ. Then

X1 +⋯ + Xn
n

⟶
n→∞

m

a.s. and in L1. If X1 ∈ Lp for some p > 1, then the convergence also holds in Lp .
Conversely, if n−1(X1 + ⋯ + Xn) converges a.s. to some limit X which is a.s. �nite, then X is a.s. constant

equal to some m ∈ ℝ and the r.v.’s have �nite mean E[X1] = m.
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Let us point out that the fact that the limit of n−1(X1 + ⋯ + Xn) has to be constant can be shown by
Theorem 2.1.16.

Proof. The idea is to introduce a cut-o�, namely write:

1
n

n
∑
k=1

Xk =
1
n

n
∑
k=1

(Xk 1|Xk |≤k − E[Xk 1|Xk |≤k]) +
1
n

n
∑
k=1

Xk 1|Xk |>k +
1
n

n
∑
k=1

E[Xk 1|Xk |≤k]. (2.1)

Let us prove that the �rst two terms tend to 0 a.s. while the last one tends to m. Indeed, �rst by monotone
convergence applied to each expectation, we have:

E[X1 1|X1 |≤k] = E[X +
1 1|X1 |≤k] − E[X

−
1 1|X1 |≤k] ⟶

k→∞
E[X +

1 ] − E[X
−
1 ] = m.

This implies further that
1
n

n
∑
k=1

E[X1 1|X1 |≤k] ⟶
n→∞

m,

and since the Xk ’s have the same law, then E[Xk 1|Xk |≤k] = E[X1 1|X1 |≤k] for each k, hence the convergence
to m of the third term in the right-hand side of (2.1).

Similarly:

E[∑
k≥1

1|Xk |>k] = ∑
k≥1

E[1|Xk |>k] = ∑
k≥1

E[1|X1 |>k] = E[∑
k≥1

1|X1 |>k] ≤ E[|X1|] < ∞.

Consequently ∑k≥1 1|Xk |>k < ∞ a.s. so with probability one, only �nitely many indices k satisfy |Xk | > k
and in particular:

1
n

n
∑
k=1

Xk 1|Xk |>k
a.s.
⟶
n→∞

0,

since the sum a.s. only contains �nitely many nonzero terms.
It remains to take care of the �rst term in our decomposition (2.1). Let us put

Yk = Xk 1|Xk |≤k − E[Xk 1|Xk |≤k] and Zn =
n
∑
k=1

Yk
k
.

Let us prove that n−1∑n
k=1 Yk converges to 0 a.s. We shall rely on Kronecker’s lemma, namely write

Yn = n(Zn − Zn−1), so

1
n

n
∑
k=1

Yk =
1
n

n
∑
k=1

k(Zk − Zk−1) =
1
n(

n
∑
k=1

kZk −
n
∑
k=1
(k − 1)Zk−1 −

n
∑
k=1

Zk−1) = Zn −
1
n

n
∑
k=1

Zk−1.

We shall prove that a.s. Zn converges to a �nite limit, which implies that n−1∑n
k=1 Zk−1 converges to the

same limit, which �nally implies that n−1∑n
k=1 Yk converges to 0. Note that the Yk ’s are independent and

have E[Yk] = 0, and each Yk is bounded (by 2k), so

E[(∑
k≥1

Yk
k )

2

] = ∑
k≥1

Var(Yk)
k2

≤ ∑
k≥1

1
k2

E[X 2
1 1|X1 |≤k] = E[X

2
1 ∑
k≥1

1
k2
1|X1 |≤k].

Now for any k ≥ 1 and t ∈ [k, k + 1] we have t2 ≤ (k + 1)2 ≤ (2k)2 = 4k2, so for any x ∈ ℝ, it holds:

∑
k≥1

1
k2
1|x |≤k ≤ ∑

k≥1
∫

k+1

k

4
t2
1|x |≤k dt = ∫

∞

max(|x |,1)

4
t2
dt =

4
max(|x |, 1)

.

Consequently, since X1 ∈ L1, then, combining the last to displays, we have

E[(∑
k≥1

Yk
k )

2

] ≤ 4E[
X 2
1

max(|X1|, 1)]
≤ 4E[1 + |X1|] < ∞.

37



This implies that a.s. the series ∑k≥1 k−1Yk is convergent, namely that Zn has a �nite limit as we wanted.
Let us �nish with the converse implication: assume n−1(X1 + ⋯ + Xn) converges a.s. to some limit X

which is a.s. �nite and let us prove that the r.v.’s have �nite mean and X = E[X1] a.s. By our assumption,
we have

Xn
n
=
X1 +⋯ + Xn

n
−
X1 +⋯ + Xn−1

n
a.s.
⟶
n→∞

X − X = 0.

In particular, a.s. for n large enough we have |Xn | ≤ n, that is ℙ(lim supn{|Xn | ≥ n}) = 0. Since the Xn’s are
independent, then this probability is either 0 or 1 by the Borel–Cantelli lemma, according as wether the
series of the probabilities converges or not. We infer that

E[|X1|] ≤ ∑
n≥1

ℙ(|X1| + 1 ≥ n) = 1 +∑
n≥1

ℙ(|Xn | ≥ n) < ∞.

Hence X1 ∈ L1 and thus n−1(X1 +⋯ + Xn)→ E[X1] a.s. by the �rst part of the proof. Since we asuume that
n−1(X1 +⋯ + Xn)→ X a.s. then we conclude that X = E[X1] a.s.

The almost sure convergence remains true in the case of in�nite (but well-de�ned!) mean.

Corollary 2.4.3. Let (Xn)n≥1 be i.i.d. r.r.v.’s with E[X −
1 ] < ∞ and E[X +

1 ] = ∞ so we can make sense of
E[X1] = ∞. Then

X1 +⋯ + Xn
n

a.s.
⟶
n→∞

∞.

Proof. Fix K > 0, then the r.v.’s (max{Xi , K})i are i.i.d. with �nite mean so by the previous strong law,

1
n

n
∑
i=1

Xi ≥
1
n

n
∑
i=1
(max{Xi , K})

a.s.
⟶
n→∞

E[max{X1, K}].

By monotone convergence, the right-hand side further converges to E[X1] = ∞ as K → ∞.

Finally, if the mean is not de�ned, then three possible cases may occur.

Proposition 2.4.4. Let (Xn)n≥1 be i.i.d. r.r.v.’s with both E[X −
1 ] = ∞ and E[X +

1 ] = ∞, then a.s.

either lim inf
n→∞

X1 +⋯ + Xn
n

= −∞ or lim sup
n→∞

X1 +⋯ + Xn
n

= ∞.

Proof. Indeed �x any integer K ≥ 1. Then

∑
n≥1

ℙ(K−1X +
n ≥ n) = ∑

n≥1
ℙ(K−1X +

1 ≥ n) ≥ E[K−1X +
1 ] = ∞.

Since the r.v.’s X +
n are independent, then the Borel–Cantelli lemma shows that a.s. the events {X +

n ≥ Kn}
occur for in�nitely many indices n. Then obviously so do the events {Xn ≥ Kn}. Now for any such index n,
we have either X1 +⋯ +Xn−1 ≤ −Kn/2 or X1 +⋯ +Xn−1 ≥ −Kn/2 and in this second case X1 +⋯ +Xn ≥ Kn/2.
We infer that a.s.

either lim inf
n→∞

X1 +⋯ + Xn
n

≤ −
K
2

or lim sup
n→∞

X1 +⋯ + Xn
n

≥
K
2
.

Then �nally this holds a.s. simultaneously for all integers K since there are countably many of them.

Let us mention that that actually, depending on the law of X , either n−1(X1 + ⋯ + Xn) → ∞ a.s. or
n−1(X1 +⋯+Xn)→ −∞ a.s. or we have both lim sup n−1(X1 +⋯+Xn) = ∞ and lim inf n−1(X1 +⋯+Xn) = −∞
a.s. and we have necessary and su�cient conditions to tell which case occurs. The interested reader can look
at the original article by Erickson “The strong law of large numbers when the mean is unde�ned” at https:
//www.ams.org/journals/tran/1973-185-00/S0002-9947-1973-0336806-5/home.html.
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2.5 Convergence in distribution

In this section, the random variables all take values in (ℝd ,B(ℝd )) (but let us mention that this generalises
to separable and complete metric spaces) but may be de�ned on di�erent probability spaces (Ω,F,ℙ). We
denote by Cb = Cb(ℝd ,ℝ) the set of continuous and bounded functions from ℝd to ℝ.

2.5.1 De�nitions and �rst properties

De�nition 2.5.1 (Weak convergence of measures). Let � and (�n)n≥1 be probability measures on (ℝd ,B(ℝd )).
The sequence (�n)n≥1 is said to converge weakly (or narrowly) to � when

�n(f ) = ∫ f d�n ⟶
n→∞ ∫ f d� = �(f ) for all f ∈ Cb .

A sequence (Xn)n≥1 of r.v.’s in ℝd is said to converge in distribution to a r.v. X when their laws converge
weakly i.e. when

E[f (Xn)] ⟶
n→∞

E[f (X )] for all f ∈ Cb .

Remark 2.5.2. Note that speaking of convergence of r.v.’s is an abuse of language since only their laws
converge. For example, if Xn has the same law as −Xn, then they both converge to the same limit so one
cannot simply take sums and products through this notion of convergence.

Convergence in distribution is the weakest notion we have seen, as shown in the next result.

Proposition 2.5.3. Suppose that the r.v.’s are de�ned on the same probability space. Then

(i) If Xn → X in probability, then Xn → X in distribution.

(ii) If Xn → X in distribution and X is a.s. constant, then Xn → X in probability.

Proof. (i) Suppose that Xn → X in probability and let f be continuous and bounded, then f (Xn)→ f (X )
in probability, and then by dominated convergence, E[f (Xnk )]→ E[f (X )].

(ii) Suppose that Xn → X in distribution and ℙ(X = c) = 1 for some c ∈ ℝd . Fix " > 0 and let f" be
a continuous and bounded function that satis�es f"(x) = 1 when |x − c| > " and f"(x) = 0 when
|x − c| ≤ "/2. Then

ℙ(|Xn − c| > ") ≤ E[f"(Xn)] ⟶
n→∞

E[f"(c)] = 0.

Viewing a probability measure on ℝd as a function B(ℝd )→ [0, 1], a natural notion of convergence
would be a pointwise convergence, i.e. �n → � when �n(A)→ �(A) for all A ∈ B(ℝd ). This is actually quite
strong because of boundary e�ects, for example, if Un has the uniform distribution on {k/n∶ 1 ≤ k ≤ n}
and U the uniform distribution on [0, 1], then for f continuous and bounded,

E[f (Un)] =
1
n

n
∑
k=1

f (k) ⟶
n→∞ ∫

1

0
f (x) dx = E[f (U )]

so Un → U in distribution, however

ℙ(Un ∈ ℚ) = 1 whereas ℙ(U ∈ ℚ) = 0.

The next result compares this notion with the weak convergence.

Theorem 2.5.4 (Portmanteau). Let � and (�n)n≥1 be probability measures on (ℝd ,B(ℝd )), then the following
are equivalent:

(i) �n → � weakly,
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(ii) For every open set O ⊂ ℝd it holds lim infn �n(O) ≥ �(O),

(iii) For every closed set C ⊂ ℝd it holds lim supn �n(C) ≤ �(C),

(iv) For every Borel set B ⊂ ℝd such that �()B) = 0 it holds lim �n(B) = �(B).

Proof. Suppose that �n → � weakly and �x an open set O. For every k ≥ 1 de�ne the function

fk(x) = min{kd(x, Oc), 1}

which is continuous and bounded on ℝd . Moreover as k → ∞ it increases to the function 1O . Thus

lim inf
n→∞

�n(O) ≥ lim inf
n→∞

�n(fk) = �(fk) ⟶
k→∞

�(O),

by monotone convergence.
The 2nd and 3rd items are clearly equivalent by taking the complement. Suppose that they both hold

and �x B with �()B) = 0. Let O ⊂ B denote is interior and C ⊃ B its closure, so )B = C ⧵ O. Then we know
that

lim inf
n→∞

�n(B) ≥ lim inf
n→∞

�n(O) ≥ �(O) and lim sup
n→∞

�n(B) ≤ lim sup
n→∞

�n(C) ≤ �(C),

and furthermore �(C) = �(O) + �(C ⧵ O) = �(O) so it also equals �(B) and thus

lim
n→∞

�n(B) = �(B).

Finally, suppose lim �n(B) = �(B)whenever �()B) = 0 and �x f ∈ Cb . Replacing f by f −inf f if necessary,
let us assume that f ∈ [0, K ] for some K > 0. Observe that for any x ∈ ℝd we have

f (x) = ∫
K

0
1t≤f (x) dt

so by Fubini’s theorem, if we let Aft = {x ∈ ℝd ∶ f (x) ≥ t}, then

�(f ) = ∫
ℝd
f (x)�(dx) = ∫

K

0 (∫
ℝd
1t≤f (x)�(dx)) dt = ∫

K

0
�(Aft ) dt.

Note that )Aft = {x ∈ ℝd ∶ f (x) = t} which are disjoint sets for di�erent values of t . Therefore, for any
k ≥ 1, since �(ℝd ) = 1, then there can only be at most k values of t for which �()Aft ) ≥ 1/k. Thus the set
D = {t ∈ [0, K ]∶ �()Aft ) ≠ 0} is at most countable and in particular has zero Lebesgue measure. Now for
any t ∈ Dc we have �()Aft ) = 0 so �(Aft ) = limn �n(A

f
t ). By dominated convergence,

�n(f ) = ∫
K

0
�n(A

f
t )1t∈Dc dt ⟶

n→∞ ∫
K

0
�(Aft )1t∈Dc dt = �(f ),

thus �n → � weakly.

In practice, it may be useful to check the convergence of integrals of even more restrictive functions
than all continuous and bounded ones. The next result shows many possibilities. It is very important here
that both �n and � are probability measures, even if their are �nite, it fails if they do not have the same total
mass.

Theorem 2.5.5 (Restriction of test functions). Let �n, � be probability measures on (ℝd ,B(ℝd )), then the
following are equivalent:

(i) �n(f )→ �(f ) for all f continuous and bounded,

(ii) �n(f )→ �(f ) for all f continuous and with compact support,

40



(iii) �n(f ) → �(f ) for all f ∈ H ⊂ Cb such that the closure of H for the sup norm contains all continuous
functions with compact support,

(iv) �n(f )→ �(f ) for all f uniformly continuous and bounded,

(v) �n(f )→ �(f ) for all f Lipschitz and bounded,

(vi) �n(f )→ �(f ) for all f continuous �-a.s. and bounded.

Proof. Clearly, (i) ⟹ (iv) ⟹ (v). Suppose (v) holds, and recall the sequence of functions

fk(x) = min{kd(x, Oc), 1}

where k ≥ 1 and O is a �xed open set. Then this function is actually k-Lipschitz and the argument from the
proof of Theorem 2.5.4 shows that the convergence �n(k) → �(k) for all k implies lim infn �n(O) ≥ �(O),
which implies (i).

On the other hand, clearly, (i) ⟹ (ii) ⟹ (iii). Suppose (iii) holds and let f be a continuous function
with compact support. Then f is the limit for the sup norm of a sequence of functions in H so we can build
a sequence (fk)k in H such that ‖f − fk‖∞ ≤ 1/k for all k ≥ 1. We infer that

lim sup
n→∞

|�n(f ) − �(f )| ≤ lim sup
n→∞

|�n(f ) − �n(fk)| + |�n(fk) − �(fk)| + |�(fk) − �(f )|

≤ 2 ‖f − fk‖∞ + lim sup
n→∞

|�n(fk) − �(fk)|

≤ 2/k ⟶
k→∞

0,

hence (iii) ⟹ (ii).
Suppose next that (ii) holds and �x f continuous and bounded. Let (gk)k be continuous functions with

compact support which satisfy 0 ≤ gk ≤ 1 and gk ↑ 1. Then f gk is continuous with compact support and
f gk ↑ f so

lim sup
n→∞

|�n(f ) − �(f )| ≤ lim sup
n→∞

|�n(f ) − �n(f gk)| + |�n(f gk) − �(f gk)| + |�(f gk) − �(f )|

≤ 2 ‖f ‖∞ lim sup
n→∞

(1 − �n(gk))

≤ 2 ‖f ‖∞(1 − �(gk)),

which further converges to 0 as k → ∞ by monotone convergence.
Finally, (vi) ⟹ (i) so it remains to prove the converse implication. Suppose that (i) holds, �x f

continuous �-a.s. and bounded and �x " > 0. Let K > 0 be such that |f | ≤ K and note that as in the
previous proof, for any k ≥ 1 there can only be at most k di�erent values of t ∈ ℝ such that �({f = t}) =
∫ 1f (x)=t �(dx) ≥ 1/k so the set D = {t ∈ ℝ∶ �({f = t}) > 0} ⊂ [−K, K ] is at most countable. Then there
exists k ≥ 1 and values a0 < ⋯ < ak such that: a0 < −K , ak > K , and ai − ai−1 ≤ " and ai ∈ Dc for all i ≤ k.
De�ne then Ai = {x ∈ ℝd ∶ ai−1 < f (x) ≤ ai} so )Ai ⊂ {x ∈ ℝd ∶ f (x) ∈ {ai−1, ai}} ∪ Cc

f where we recall the
notation Cf = {x ∈ ℝd ∶ f is continuous at x}. By our assumption �(Cc

f ) = 0 and by our construction of Ai
we get �()Ai) = 0 so �n(Ai)→ �(Ai) for each i ≤ k and so

k
∑
i=1

ai�n(Ai) ⟶
n→∞

k
∑
i=1

ai�(Ai).

Finally, from the construction we have f ≤ ∑k
i=1 ai 1Ai ≤ f + " so we infer that

lim sup
n→∞

�n(f ) ≤
k
∑
i=1

ai�(Ai) ≤ �(f ) + " and lim inf
n→∞

�n(f ) ≥
k
∑
i=1

ai�(Ai) ≥ �(f ) − ",

so �n(f )→ �(f ) since " > 0 is arbitrary.
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Thanks to the last item, we can generalise easily Lemma 2.3.4 to convergences in distribution.

Lemma 2.5.6 (Continuous mapping). Suppose that Xn → X in distribution and that f ∶ ℝd → ℝe is
continuous ℙX -a.s. then f (Xn)→ f (X ) in distribution.

Proof. Let g be a continuous and bounded function, then g◦f is bounded and continuous ℙX -a.s. so by
Theorem 2.5.5 we have

E[g(f (Xn))] = E[g◦f (Xn)] ⟶
n→∞

E[g◦f (X )] = E[g(f (X ))],

i.e. f (Xn)→ f (X ) in distribution.

2.5.2 Distribution functions (⋆)

Although the discussion in this subsection can be made in ℝd , let us restrict to ℝ for the sake of clarity.
Recall that a function F ∶ ℝ → [0, 1] is a distribution function when it is nondecreasing, right-continuous,
and such that F (x) → 0 as x → −∞ and F (x) → 1 as x → ∞. Recall that for any function F we let
CF = {x ∈ ℝ∶ F is continuous at x} denote its continuity set. Recall �nally that every r.r.v. X has a
distribution function FX ∶ x ↦ ℙ(X ≤ x) and that for each distribution function F , there exists a r.r.v. X
such that F = FX .

De�nition 2.5.7 (Weak convergence of distribution functions). A sequence (Fn)n≥1 of distribution function
is said to converge weakly to a distribution function F when

Fn(x) ⟶
n→∞

F (x) for all x ∈ CF .

As for discontinuity points, basically one has to decide wether we take the left-limit or the right-limit.

Example 2.5.8. If Fn(x) = (1 − e−�nx )1x>0 with �n → ∞, then Fn(x)→ 1x>0 for all x ∈ ℝ and the limit is
left-continuous. However Fn converges weakly to F ∶ x ↦ 1x≤0 which is a distribution function.

Proposition 2.5.9. We have Xn → X in distribution if and only if FXn → FX weakly.

Proof. Note that for every x ∈ ℝ we have )(−∞, x] = {x} and ℙX ({x}) = ℙ(X = x) = F (x) − F (x−) so the
direct implication is a particular case of Theorem 2.5.4. For the converse implication, suppose that FXn → FX
weakly and let a < b. Then

lim inf
n→∞

ℙXn ((a, b)) = lim inf
n→∞ (FXn (b−) − FXn (a))

≥ lim inf
n→∞

FXn (b−) − lim sup
n→∞

FXn (a+)

≥ FX (b−) − FX (a) = ℙX ((a, b)).

Recall that any open set of ℝ is a countable union of disjoint open interval, say O = ⋃k(ak , bk), then

lim inf
n→∞

ℙXn (O) = lim inf
n→∞

∑
k
ℙXn ((ak , bk)) ≥ ∑

k
lim inf
n→∞

ℙXn ((ak , bk)) ≥ ∑
k
ℙX ((ak , bk)) = ℙX (O).

By Theorem 2.5.4 again, this is equivalent to Xn → X in distribution.

The next theorem is quite useful in practice, but one should not misunderstand its statement.

Theorem 2.5.10 (Skorokhod’s representation). Suppose that Fn, F are distribution functions such that Fn →
F weakly. Then there exists a probability space (Ω,F,ℙ) and r.v.’s Xn, X all de�ned on it, which have distribu-
tion function Fn, F respectively and such that Xn → X a.s.
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Proof. Recall from Theorem 2.1.3 that given the distribution function F we can construct X on the space
(Ω,F,ℙ) = ((0, 1),B(0, 1), Leb) by setting for any u ∈ (0, 1)

X (u) = G(u) = inf{t ∈ ℝ∶ F (t) > u} = sup{t ∈ ℝ∶ F (t) ≤ u}.

De�ne also
H (u) = inf{t ∈ ℝ∶ F (t) ≥ u} = sup{t ∈ ℝ∶ F (t) < u} ≥ G(u).

De�ne similarly Gn, Hn, and Xn from Fn.
Fix u ∈ (0, 1). For t < G(u) such that F is continuous at t we have u > F (t) = limn Fn(t) so for every n

large enough, Fn(t) < u and thus t ≤ Gn(u), i.e. lim infn Gn(u) ≥ t . Recall that F has at most countably many
discontinuity points so there exists a sequence of such t’s converging to G(u), and passing to the limit, we
get lim infn→∞ Gn(u) ≥ G(u). The same reasoning with t > H (u) leads to lim supn Hn(u) ≤ H (u). Thus for
every u ∈ (0, 1),

G(u) ≤ lim inf
n→∞

Gn(u) ≤ lim sup
n→∞

Gn(u) ≤ lim sup
n→∞

Hn(u) ≤ H (u).

Notice that (G(u), H (u)) is the largest open interval (a, b) such that F (t) = F (u) for all t ∈ (a, b) so these
intervals are either disjoint or equal for di�erent values of u. In particular there can only be at most countably
many non empty ones (since each one contains a rational number) so the set Ω0 = {u ∈ (0, 1)∶ G(u) < F (u)}
is countable and in particular has Lebesgue measure 0. We conclude that for every u ∈ Ω ⧵ Ω0, which has
probability 1, we have Xn(u) = Gn(u)→ G(u) = X (u).

If one starts with r.v.’s Xn, X in the �rst place with Xn → X in distribution, then the theorem states that
there exists another probability space with new r.v.’s X ′

n, X ′ de�ned on it, with the same law as Xn, X and
such that X ′

n → X ′ a.s. This does not mean that Xn → X a.s!

Example 2.5.11. To see how this reasoning works, let us give another proof of Lemma 2.5.6. Suppose
that Xn → X in distribution and that f ∶ ℝd → ℝe is continuous ℙX -a.s. Then there exist X ′

n, X ′ with
the same law as Xn, X and such that X ′

n → X ′ a.s. Then f (X ′
n) → f (X ′) a.s. by Lemma 2.3.4 and so

f (X ′
n)→ f (X ′) in distribution. Since f (X ′

n), f (X ′) have the same law as f (Xn), f (X ) respectively, we conclude
that f (Xn)→ f (X ) in distribution.

Similarly, any theorem which assumes that Xn → X a.s. and conclude about the behaviour of quantities
of the form E[f (Xn)] also generalises to assuming only Xn → X in distribution.

2.6 Characteristic functions

In this section, the random variables all take values in (ℝd ,B(ℝd )). Recall that we denote by ⟨ ⋅ , ⋅ ⟩ the
scalar product in ℝd , also | ⋅ | denotes the associated square norm (as well as the modulus in ℂ). We use t to
denote a real number and u for a vector in ℝd . We let (u1,… , ud ) denote the coordinates of u and (un)n≥1
denote a sequence of vectors (un1 ,… , und ). We stress that we use the line notation for vectors when writing
in the text, but think of them as columns when it comes to matrix operations.

2.6.1 The characteristic function

De�nition 2.6.1. The characteristic function of a r.v. X in ℝd is the function 'X ∶ ℝd → ℂ de�ned by

'X (u) = E[ei ⟨u,X⟩] = E[ei∑
d
k=1 ukXk ].

It is well-de�ned since x ↦ ei ⟨u,x⟩ is continuous and bounded for every given u ∈ ℝd .

We leave the proof of the basic properties as an exercise.

Proposition 2.6.2. The characteristic function of X satis�es the following properties:
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(i) 'X (0) = 1,

(ii) 'X (−u) = 'X (u) for every u ∈ ℝd ,

(iii) |'X (u)| ≤ 1 for every u ∈ ℝd ,

(iv) |'X (u + ℎ) − 'X (u)| ≤ E[|ei ⟨ℎ,X⟩ −1|] for every u, ℎ ∈ ℝd so 'X is uniformly continuous.

(v) If X has dimension d2, then for every d1 × d2 matrix C and vectors u, v ∈ ℝd1 , we have

'CX+v(u) = E[ei ⟨u,CX+v⟩] = E[ei ⟨u,v⟩+i ⟨C
tu,X⟩] = ei ⟨u,v⟩ 'X (C tu).

In particular,

(a) If d1 = d2 = d and C = aId with a ∈ ℝ, then 'aX+v(u) = ei ⟨u,v⟩ 'X (au).

(b) Also, if d1 = 1, then C = c ∈ ℝd2 and CX = ⟨c, X⟩, and so for every s, t ∈ ℝ, we have '⟨c,X⟩+s(t) =
eist 'X (tc).

(vi) If X 1,… , X n are independent random vectors with dimension d1,… , dn respectively, then for all u1 ∈
ℝd1 ,… , un ∈ ℝdn , we have

'(X 1,…,X n)((u1,… , un)) = E[
n

∏
k=1

ei ⟨u
k ,X k⟩

] =
n

∏
k=1

'X k (uk).

Combined with the previous item, if d1 = ⋯ = dn = d , then for every u ∈ ℝd , we have

'X 1+⋯+X n (u) =
n

∏
k=1

'X k (u).

Indeed, X 1 +⋯+X n = CX where C is the d × dn matrix with all entries equal to 1 and X = (X 1,… , X n)
is the concatenation of the X k ’s.

The characteristic function corresponds to a Fourier transform of the law of the random vector. For
explicit calculations, by the transfer lemma, if X takes countably many values, say in ℤd for example, then

'X (u) = ∑
x∈ℤd

ei ⟨u,x⟩ ℙ(X = x),

whereas if X admits a density fX with respect to the Lebesgue measure in ℝd , then

'X (u) = ∫
ℝd
ei ⟨u,x⟩ fX (x) dx.

The next exercise is treated in the exercise sheet.

Example 2.6.3. The characteristic function of a Gaussian r.v. Z ∼ N(m, �2) is given for every t ∈ ℝ by

'Z (t) = ∫
ℝ

1
√
2��2

exp(itz −
(z −m)2

2�2 ) dz = exp(itm −
t2�2

2 ).

More generally, if Z1,… , Zd are i.i.d. with the law N(0, �2), by independence we get for every u ∈ ℝd :

∫
ℝd

1
(2��2)d/2

exp(i ⟨u, z⟩ −
|z|2

2�2)
dz = exp(−

|u|2�2

2 ). (2.2)

We shall use this identity now to prove the main result of this section, which is that the characteristic
function does indeed characterise the law.
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Theorem 2.6.4. If X and Y have the same characteristic function then they have the same law.

Proof. Let X and Y both have characteristic function ' and independently, let Z = (Z1,… , Zd ) be i.i.d. stand-
ard Gaussian r.r.v.’s. The key point is to prove that X + Z /k has the same law as Y + Z /k for any given k ≥ 1.
Indeed, for all measurable and nonnegative functions g we have

E[g(X + Z /k)] = ∫
ℝd×ℝd

g(x + z/k)ℙX (dx) ⊗
1

(2� )d/2
exp(−

|z|2

2 ) dz

Fubini= ∫
ℝd(∫

ℝd
g(x + z/k)

1
(2� )d/2

exp(−
|z|2

2 ) dz)ℙX (dx)

y=x+z/k= ∫
ℝd(∫

ℝd
g(y)

1
(2� )d/2

exp(−
k2 |x − y |2

2 )k
d dy)ℙX (dx).

By (2.2) the exponential term can be rewritten as

exp(−
k2 |x − y |2

2 ) = ∫
ℝd

1
(2�k2)d/2

exp(i ⟨x − y, z⟩ −
|z|2

2k2)
dz

= ∫
ℝd

1
(2�k2)d/2

exp(i ⟨x, z⟩) exp(−i ⟨y, z⟩ −
|z|2

2k2)
dz.

Using Fubini’s theorem again, we arrive at

E[g(X + Z /k)] = ∫
ℝd(∫

ℝd
g(y)(

1
(2� )d ∫

ℝd
exp(i ⟨x, z⟩) exp(−i ⟨y, z⟩ −

|z|2

2k2)
dz) dy)ℙX (dx)

= ∫
ℝd
g(y)(

1
(2� )d ∫

ℝd
'(z) exp(−i ⟨y, z⟩ −

|z|2

2k2)
dz) dy.

Therefore the term in parenthesis is a density for X + Z /k and it only depends on ' so X + Z /k does have
the same law as Y + Z /k.

Now observe that X +Z /k → X a.s. and thus in distribution; similarly Y +Z /k → Y in distribution and
since X + Z /k and Y + Z /k have the same law, then the limit law is the same: X has the same law as Y .

Remark 2.6.5 (Lévy’s inversion formula). One can recover more explicitly the law of a random variable
with a given characteristic function '. In dimension d = 1 to simplify, one always has

1
2� ∫

K

−K

e−iat − e−ibt

it
'(t) dt ⟶

K→∞

F (b) + F (b−)
2

−
F (a) + F (a−)

2
,

where F is the corresponding distribution function. Moreover, if ∫ |'| < ∞, then the law admits a continuous
density given by

f (x) =
1
2� ∫

∞

−∞
e−ixt '(t) dt.

A consequence of the previous theorem is that the characteristic function of a vector characterises the
independence in the following way, stronger than in Proposition 2.6.2.

Corollary 2.6.6. Let X 1,… , X n be random vectors in ℝd . They are independent if and only if for every
u1,… , un ∈ ℝd it holds

E[exp(i (⟨u1, X 1⟩ +⋯ + ⟨un, X n⟩))] = E[exp(i ⟨u1, X 1⟩)] ×⋯ × E[exp(i ⟨un, X n⟩)].

Proof. The direct implication is clear since if the vectorsX k are independent, then so are the exp(i ⟨uk , X k⟩)’s
and thus

E[

n
∏
k=1

exp(i ⟨uk , X k⟩)] =
n

∏
k=1

E[exp(i ⟨uk , X k⟩)].

Conversely, suppose that this identity holds for all uk ’s, then because the characteristic function characterises
the law then the vector (X 1,… , X n) in ℝdn has the same law as the concatenation of n independent vectors
so indeed these vectors are independent.
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Let us end with a useful computation: the moments of a r.v. can be obtained by di�erentiating the
characteristic function at 0.

Proposition 2.6.7 (Moments). Suppose that E[|X |n] < ∞, then 'X ∈ Cn and every u ∈ ℝd , every k ≤ n, and
for every j1,… , jk ∈ {1,… , d}, it holds

)k

)uj1 ⋯ )ujk
'X (u) = ik E[Xj1 ⋯Xjk e

i ⟨u,X⟩].

In particular, for u = 0, the right-hand side equals ik E[Xj1 ⋯Xjk ].

Proof. It is a matter of exchanging derivation and expectation; we use that E[|X |k] < ∞ to get the domination
|ik ∏k

�=1 Xj� ei ⟨u,X⟩| ≤ ∏k
�=1 |Xj� | ∈ L1.

2.6.2 Characteristic functions & Convergence in distribution

A second reason of the success of characteristic functions is that they characterise the convergence in
distribution.

Theorem 2.6.8. We have X n → X in distribution if and only if 'X n → 'X pointwise.

Proof. The direct implication follows from the fact that the function x ↦ ei ⟨u,x⟩ is continuous and bounded
for every �xed u ∈ ℝd . For the converse one, we argue as in the proof of Theorem 2.6.4 and we consider
X n + Z /k where Z is an independent random vector which has the same law as d i.i.d. standard Gaussian
r.r.v.’s. Recall from that proof that X n + Z /k has a density given by

f nk (y) =
1

(2� )d ∫
ℝd
'X n (z) exp(−i ⟨y, z⟩ −

|z|2

2k2)
dz.

If 'X n → 'X pointwise, then by dominated convergence, f nk converges pointwise to fk , the density of
X + Z /k. By a second application of the dominated convergence theorem we infer that for any continuous
and bounded function g,

E[g(X n + Z /k)] ⟶
n→∞

E[g(X + Z /k)],

i.e. that X n + Z /k → X + Z /k in distribution for any k ≥ 1 �xed.
It remains to prove that X n → X in distribution. Fix g bounded and L-Lipschitz, then for every k ≥ 1,

|E[g(Xn)] − E[g(X )]|

≤ E[|g(Xn + Z /k) − g(Xn)|] + |E[g(Xn + Z /k)] − E[g(X + Z /k)]| + E[|g(X + Z /k) − g(X )|]

≤
2L
k

E[|Z |] + |E[g(Xn + Z /k)] − E[g(X + Z /k)]|.

The second term tends to 0 as n → ∞ and further the �rst one tends to 0 as k → ∞. Hence E[g(Xn)]→
E[g(X )] for every Lipschitz and bounded function, which is equivalent to the convergence in distribution
by Theorem 2.5.5.

This theorem shows that, given a sequence (Xn)n and a candidate X for its limit in distribution, in order
to prove the convergence one may rely on the characteristic functions, and we shall use this idea to prove
the Central Limit Theorem in the next section. However sometimes one does not have a priori a candidate
X . In this case, we have the following powerful extension.

Theorem 2.6.9 (Lévy). Let Xn have characteristic function 'n for every n ≥ 1 and suppose that there exists
a function '∶ ℝd → ℂ which is continuous at 0 and such that 'n → ' pointwise. Then there exists X whose
characteristic function is ' and such that Xn → X in distribution.
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We will omit the proof of this result. The key point is to prove that there exists a subsequence (Xnk )k
which converges in distribution to some X (key word is tightness). Then by Theorem 2.6.8 the characteristic
functions converge along this subsequence, and by our assumption and Theorem 2.6.4 this means that X
has characteristic function '. A second application of Theorem 2.6.8 allows us to conclude that Xn → X in
distribution.

Recall that the characteristic function of a random vector is always continuous at 0 so by Theorem 2.6.9
if 'n does not converge, or converges to a limit which is not continuous at 0, then Xn does not converge in
distribution.

2.7 Central Limit Theorems & Gaussian vectors

2.7.1 Central Limit Theorems in dimension 1 (⋆)

Let us start with the dimension d = 1. Recall that the Law of Large Number states that if (Xn)n≥1 are
i.i.d. r.v.’s with mean E[X1] = m, then

X1 +⋯ + Xn
n

⟶
n→∞

m

in probability for the weak law and almost surely for the strong law. One then wonders at which speed does
this convergence occur, or equivalently asks for the second order term. The Central Limit Theorem shows
that under a �nite variance assumption, these �uctuations are of order

√
n, and remain random in the limit.

Theorem 2.7.1 (Standard CLT). Let (Xn)n≥1 be i.i.d. r.v.’s with E[X1] = m ∈ ℝ and Var(X1) = �2 ∈ (0,∞).
Then we have the convergence in distribution

√
n
�2(

X1 +⋯ + Xn
n

−m) =
X1 +⋯ + Xn − nm√

n�2
(d)
⟶
n→∞

Z ∼ N(0, 1).

We shall prove actually a more general version by removing the assumption that the r.v.’s have the same
law. In the sequel we are given for every n ≥ 1 a collection (Xn,k)k≤n of independent r.r.v.’s with E[Xn,k] = 0
(otherwise subtract the mean) and E[X 2

n,k] = Var(Xn,k) = �
2
n,k ∈ [0,∞), and with at least one index such that

�2n,k ≠ 0. We let

s2n =
n
∑
k=1

�2n,k ∈ (0,∞).

The following statement and �rst proof are due to Lindeberg, and Lévy then proposed a proof based on
characteristic functions.

Theorem 2.7.2 (Lindeberg’s CLT). Assume the so-called Lindeberg condition: for any " > 0,

1
s2n

n
∑
k=1

E[|Xn,k |2 1|Xn,k |>"sn] ⟶
n→∞

0. (2.3)

Then we have the convergence in distribution

Xn,1 +⋯ + Xn,n
sn

(d)
⟶
n→∞

Z ∼ N(0, 1). (2.4)

Let us defer the proof to the next section and immediately deduce the CLT for i.i.d. r.v.’s from this
statement.

Proof of Theorem 2.7.1. In this case, the Xn,k all have the same law so s2n = n�2 and moreover, for any " > 0,
we have by dominated convergence

1
s2n

n
∑
k=1

E[|Xn,k |2 1|Xn,k |>"sn] =
1
�2

E[|X1 −m|2 1|X1−m|>"
√
n�2] ⟶

n→∞
0.

Thus (2.3) is satis�ed and we can apply Theorem 2.7.2.
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The Lindeberg condition (2.3) may be hard to check in practice and other stronger conditions, but
simpler to verify, exist such as the Lyapunov condition.

Theorem 2.7.3 (Lyapunov’s CLT). Suppose that there exists � > 0 such that

1
s2+�n

n
∑
k=1

E[|Xn,k |2+�] ⟶
n→∞

0. (2.5)

Then (2.3) holds so we have the convergence in distribution

Xn,1 +⋯ + Xn,n
sn

(d)
⟶
n→∞

Z ∼ N(0, 1).

Proof. Put p = (2 + �)/2 and q = (2 + �)/� so 1/p + 1/q = 1. Then the Hölder inequality and then the Markov
inequality yield

E[|Xn,k |2 1|Xn,k |>"sn] ≤ E[|Xn,k |2+�]
1/p ℙ(|Xn,k | > "sn)1/q

≤ E[|Xn,k |2+�]
1/p

(
E[|Xn,k |2+� ]
("sn)2+� )

1/q

=
E[|Xn,k |2+� ]
("sn)�

.

Thus
1
s2n

n
∑
k=1

E[|Xn,k |2 1|Xn,k |>"sn] ≤
1

"� s2+�n

n
∑
k=1

E[|Xn,k |2+� ],

which tends to 0 under (2.5).

The Lyapunov condition (2.5) is often checked with 2 + � = 3 or 4 in practice (provided such a moment
exists).

2.7.2 Proof of the Lindeberg CLT (⋆)

The proof of Theorem 2.7.2 will use the following two elementary results.

Lemma 2.7.4. For every n ≥ 0 and every x ∈ ℝ, it holds

||||
eix −

n
∑
k=0

(ix)k

k!
||||
≤ min(

2 |x |n

n!
,
|x |n+1

(n + 1)!)
.

Proof. Put Rn(x) = eix −∑n
k=0

(ix)k
k! the rest of the Taylor expansion of eix . Then for n = 0 we have

R0(x) = eix −1 = cos(x) − 1 + i sin(x) = ∫
x

0
(− sin(y) + i cos(y)) dy = ∫

x

0
i eiy dy

so indeed |R0(x)| ≤ min(2, |x |). Then for n ≥ 1, we have

Rn(x) = ∫
x

0
i Rn−1(y) dy,

and the result follows by induction.

Remark 2.7.5. We shall use this lemma with n = 2 and infer that, for any � > 0 and any x ∈ ℝ, we have:

|||e
ix −(1 + ix −

x2

2 )
||| ≤ min(x

2,
|x |3

6 ) ≤ x2 1|x |>� +
|x |3

6
1|x |≤� ≤ x2 1|x |>� + �x2.
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Lemma 2.7.6. Let �1,… , �n, �1,… , �n ∈ ℂ be such that |�k |, |�k | ≤ 1 for all k ≤ n. Then

||||

n
∏
k=1

�k −
n

∏
k=1

�k
||||
≤

n
∑
k=1

|�k − �k |.

Proof. The claim is obvious for n = 1 and for n ≥ 2, we have

n
∏
k=1

�k −
n

∏
k=1

�k = (�n − �n)
n−1
∏
k=1

�k + �n(

n−1
∏
k=1

�k −
n−1
∏
k=1

�k),

hence
||||

n
∏
k=1

�k −
n

∏
k=1

�k
||||
≤ |�n − �n | +

||||

n−1
∏
k=1

�k −
n−1
∏
k=1

�k
||||
,

and the claim follows by induction.

Let us make one last observation.

Lemma 2.7.7. Under (2.3) we have

sup
k≤n

�2n,k
s2n

⟶
n→∞

0. (2.6)

Proof. For every " > 0, we have

sup
k≤n

�2n,k
s2n

≤ sup
k≤n

1
s2n

E[|Xn,k |2 1|Xn,k |≤"sn] + sup
k≤n

1
s2n

E[|Xn,k |2 1|Xn,k |>"sn]

≤ "2 +
n
∑
k=1

1
s2n

E[|Xn,k |2 1|Xn,k |>"sn],

which converges to "2 according to (2.3).

We are now ready to prove Theorem 2.7.2.

Proof of Theorem 2.7.2. By independence, for all n ≥ 1 and all t ∈ ℝ, we have that

E[eits
−1
n ∑n

k=1 Xn,k ] = E[
n

∏
k=1

eits
−1
n Xn,k

] =
n

∏
k=1

E[ei(s
−1
n t)Xn,k ].

Recall Theorem 2.6.8, our aim is thus to prove that this converges to E[eitZ ] = e−t2/2.
We deduce from Remark 2.7.5 and after taking the expectation that for every " > 0 and every t ∈ ℝ,

||||
E[ei(s

−1
n t)Xn,k ] −(1 −

t2�2n,k
2s2n )

||||
≤ E[min(

t2X 2
n,k

s2n
,
|t |3 |Xn,k |3

s3n )]

≤
t2

s2n
E[X 2

n,k 1|Xn,k |>"sn] + " |t |
3�

2
n,k

s2n
.

According to Lemma 2.7.6, we have then for any t ∈ ℝ,

||||
E[eits

−1
n ∑n

k=1 Xn,k ] −
n

∏
k=1

(1 −
t2�2n,k
2s2n )

||||
≤

n
∑
k=1

||||
E[ei(s

−1
n t)Xn,k ] −(1 −

t2�2n,k
2s2n )

||||

≤
n
∑
k=1

(
t2

s2n
E[X 2

n,k 1|Xn,k |>"sn] + " |t |
3�

2
n,k

s2n )

≤
t2

s2n

n
∑
k=1

E[X 2
n,k 1|Xn,k |>"sn] + " |t |

3.
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By the assumption (2.3) the last line tends to |t |3" and as " > 0 is arbitrary, we infer that

||||
E[eits

−1
n ∑n

k=1 Xn,k ] −
n

∏
k=1

(1 −
t2�2n,k
2s2n )

||||
⟶
n→∞

0 (2.7)

as soon as (2.3) is satis�ed.
Now let (Zn,k)1≤k≤n be independent Gaussian r.v.’s with Zn,k ∼ N(0, �2n,k) respectively. We claim that they

satisfy (2.3). Indeed, if Z ∼ N(0, 1), then Zn,k has the same law as �n,kZ and so, by the Cauchy–Schwarz
inequality,

1
s2n

n
∑
k=1

E[|Zn,k |2 1|Zn,k |>"sn] =
1
s2n

n
∑
k=1

�2n,k E[|Z |
2
1|Z |>"sn/�n,k]

≤
1
s2n

n
∑
k=1

�2n,k
√
E[|Z |4]ℙ(|Z | > "sn/�n,k)

≤
√
E[|Z |4]ℙ(|Z | > " inf

k≤n
sn/�n,k).

Recall from Lemma 2.7.7 that infk≤n sn/�n,k → ∞, then the last line tends to 0 and so indeed (Zn,k)1≤k≤n
satisfy (2.3). We infer that they satisfy (2.7) and thus by the triangle inequality:

|E[eits
−1
n ∑n

k=1 Xn,k ] − E[eits
−1
n ∑n

k=1 Zn,k ]| ⟶
n→∞

0.

It remains to observe that since the Zn,k ’s are independent Gaussian random variables, then s−1n ∑n
k=1 Zn,k

has the Gaussian law with mean s−1n ∑n
k=1 E[Zn,k] = 0 and variance s−2n ∑n

k=1 E[Z 2n,k] = s
−2
n ∑n

k=1 �2n,k = 1, that
is s−1n ∑n

k=1 Zn,k is a standard Gaussian and so

E[eits
−1
n ∑n

k=1 Zn,k ] = E[eitZ ] = e−t
2/2 .

This completes the proof.

Remark 2.7.8 (Minimal assumption). We have proved that the Lindeberg condition (2.3) implies both the
Central Limit Theorem (2.4) and the fact that no one variable dominates the others in the sense that the
largest variance is small compared to the sum of the variances (2.6). Feller has proved conversely that (2.4)
and (2.6) combined imply the Lindeberg condition (2.3) which is therefore the minimal assumption one
can make in order to have a CLT after rescaling by the square-root of the sum of the variances. Let us
mention that the convergence to a Gaussian law under a di�erent rescaling may hold, even for i.i.d. r.v.’s
with in�nite variance (key words are domain of attraction of a Gaussian law).

2.7.3 Higher dimensions: Gaussian vectors

We now aim at considering CLT’s in dimension d ≥ 2. The �rst question to address is: what is the analogue
of the Gaussian law in higher dimension? From now on, in dimension 1, a constant random variable will be
seen as a Gaussian random variable with variance 0, that is we agree that N(c, 0) = �c is the Dirac mass at c
for any c ∈ ℝ.

De�nition 2.7.9. A random vector (X1,… , Xd ) is called a Gaussian vector when any linear combination of
its coordinates has a Gaussian law in ℝ, i.e. for every a = (a1,… , ad ), we have that ⟨a, X⟩ = ∑d

k=1 akXk is
Gaussian distributed.

By taking a to be a vector in the canonical basis of ℝd , we deduce that if X is a Gaussian vector, then
each coordinate Xk has a Gaussian law. The converse is not true in general! See the exercise sheet for an
example.

Proposition 2.7.10. Suppose that (X1,… , Xd ) are independent r.r.v. each with a Gaussian law, then the vector
(X1,… , Xd ) is a Gaussian vector.
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Proof. Fix a = (a1,… , ad ) and t ∈ ℝ, then by independence, the characteristic function of ⟨a, X⟩ at t equals

E[exp(it
d
∑
k=1

akXk)] =
d

∏
k=1

exp(itak E[Xk] −
a2k Var(Xk)

2 ) = exp(it ⟨a,E[X ]⟩ −
1
2
⟨a, Ca⟩),

where we have set C the diagonal matrix whose diagonal coordinates are Ck,k = Var(Xk). This proves that
⟨a, X⟩ has the Gaussian law N(⟨a,E[X ]⟩, ⟨a, Ca⟩).

Gaussian vectors whose coordinates are independent standard Gaussian will be the building blocks
of the more general ones, in the same way in dimension 1, any Gaussian random variable X ∼ N(m, �2)
can be written in law as m + �Z where Z = N(0, 1). Let us now characterise Gaussian vectors by their
characteristic function.

Theorem 2.7.11. A random vector X is a Gaussian vector if and only if there exists a vector m ∈ ℝd and a
d × d symmetric positive matrix C such that for all u ∈ ℝd ,

'X (u) = exp(i ⟨u,m⟩ −
1
2
⟨u, Cu⟩). (2.8)

In this case, mk = E[Xk] and Ck,� = Cov(Xk , X� ) for all 1 ≤ k, � ≤ d and we write X ∼ N(m,C). Finally, for
any m ∈ ℝd and any d × d symmetric positive matrix C , there exists a Gaussian vector X ∼ N(m,C).

Some linear algebra. Recall that a matrix C is said to be symmetric when C t = C , and further positive
when for all a ∈ ℝd , it holds ⟨a, Ca⟩ = atCa ≥ 0. If further atCa = 0 only when a = 0, then we say
that C is de�nite positive. A symmetric positive matrix C has nonnegative eigenvalues and can always be
diagonalised in a othornormal basis, i.e. it can be written as PDP−1, where P−1 = P t and D is diagonal, with
diagonal coordinates given by the eigenvalues of C . Then write

√
D for the diagonal matrix whose entries

are the square-root of those of D, and let A = P
√
DP−1. Then At = A and AtA = C . Finally, C is de�nite

positive if and only if all its eigenvalues are nonzero, which is equivalent to D being invertible, in which
case C is and C−1 = PD−1P t .

Proof of Theorem 2.7.11. Let us start with the last statement and construct for any m ∈ ℝd and any d × d
symmetric positive matrix C a random vector whose characteristic function is given by the formula (2.8).
Let Y = (Y1,… , Yd ) be a vector whose coordinate are i.i.d. standard Gaussian. We have seen in the proof of
Proposition 2.7.10 that Y has characteristic function

'Y (u) = E[ei ⟨u,Y⟩] = exp(−
1
2
⟨u, u⟩) = exp(−

1
2
|u|2).

Consequently, letting A be the symmetric matrix At = A such that A2 = C , we get

'AY (u) = E[ei ⟨u,AY⟩] = E[ei ⟨A
tu,Y⟩] = E[ei ⟨Au,Y⟩] = exp(−

1
2
|Au|2) = exp(−

1
2
⟨u, Cu⟩).

Then X = m + AY has characteristic function given by (2.8).
This form of characteristic function implies that X is a Gaussian vector since for any a ∈ ℝd and t ∈ ℝ,

'⟨a,X⟩(t) = 'X (ta) = exp(it ⟨a,m⟩ −
t2

2
⟨a, Ca⟩),

so ⟨a, X⟩ ∼ N(⟨a,m⟩, ⟨a, Ca⟩). By taking a to be the k’th vector in the canonical basis of ℝd , we deduce
that Xk ∼ N(mk , Ck,k) so m = E[X ] and the diagonal of C is given by Ck,k = Var(Xk). Similarly, by
taking a to be the sum of the k’th and � ’th vectors in the canonical basis of ℝd , we deduce that Zk + Z� ∼
N(mk +m� , Ck,k + C� ,� + 2Ck,� ) and so

Cov(Zk , Z� ) =
Var(Zk + Z� ) − Var(Zk) − Var(Z� )

2
=
(Ck,k + C� ,� + 2Ck,� ) − Ck,k − C� ,�

2
= Ck,� .

51



Finally, suppose conversely that X is a Gaussian vector, let m = E[X ] and C denotes its covariance
matrix, and let us prove that its characteristic function is given by (2.8). First note that m and C are
well-de�ned since each coordinate has a Gaussian law so is square-integrable. Moreover, for any u ∈ ℝd ,
the r.v. ⟨u, X⟩ has a Gaussian law with mean mu = E[⟨u, X⟩] = ⟨u,E[X ]⟩ = ⟨u,m⟩ by linearity, and with
variance �2u = Var(⟨u, X⟩) = Cov(⟨u, X⟩, ⟨u, X⟩) = ⟨u, Cu⟩ by bilinearity. Therefore

'X (u) = '⟨u,X⟩(1) = exp(imu −
1
2
�2u),

which equals the right-hand side of (2.8).

Recall that Gaussian random variables have a density with respect to the Lebesgue measure, except the
degenerate ones with variance 0. This can be generalised to higher dimension.

Proposition 2.7.12. A Gaussian vectorX ∼ N(m,C) has a density with respect to the d-dimensional Lebesgue
measure if and only of C is invertible, and in this case it takes the form: for every x ∈ ℝd ,

fX (x) =
1

(2� )d/2
√
detC

exp(−
1
2
⟨x −m,C−1(x −m)⟩).

Proof. Recall that we can represent the law of X in the form m +AY whereY is a collection of i.i.d. standard
Gaussian r.v.’s. and A = P

√
DP−1 with P t = P−1 and

√
D is diagonal and made of the square-root of the

eigenvalues of C . If C is invertible, then so is A so the a�ne transformation y ↦ x = m + AY is a
di�eomorphism and the change of variable formula yields for any measurable and bounded function g:

E[g(m + AY )] = ∫
ℝd
g(m + Ay)

d
∏
k=1

(
1

√
2�

exp(−
y2k
2 )) dy1 ⊗⋯ ⊗ dyd

= ∫
ℝd
g(m + Ay)

1
(2� )d/2

exp(−
|y |2

2 ) dy

= ∫
ℝd
g(x)

1
(2� )d/2

exp(−
|A−1(x −m)|2

2 ) |detA−1| dx

= ∫
ℝd
g(x)

1
(2� )d/2

√
detC

exp(−
⟨x −m,C−1(x −m)⟩

2 ) dx.

Thus when C is invertible, X has indeed the given density.
On the other hand, if C is not invertible, then there exists a ∈ ℝd such that Ca = 0. Consequently,

Var(⟨a, X⟩) = ⟨a, Ca⟩ = 0 so X almost surely belongs to the hyperplane H = a⟂ = {x ∈ ℝd ∶ ⟨a, x⟩ = 0}
which has d-dimensional Lebesgue measure 0. In particular X has no density.

Recall that the covariance between two independent r.r.v.’s is zero, but a null covariance does not imply
independence in general. It does for Gaussian vectors!

Proposition 2.7.13 (Independence). Let (X1,… , Xd ) be a Gaussian vector. Then the variables (X1,… , Xd ) are
independent if and only if the covariance matrix of X is diagonal.

Proof. The direct implication is known as just recalled. Suppose conversely that the covariance matrix C of
X is diagonal. Subtracting the mean E[X ] if necessary, suppose that E[X ] = 0. Then we know that for any
u ∈ ℝd ,

E[
d

∏
k=1

eiukXk] = E[e
i ⟨u,X⟩

] = exp(−
1
2
⟨u, Cu⟩) = exp(−

1
2

d
∑
k=1

u2kCk,k) =
d

∏
k=1

E[eiukXk ],

which characterises the independence by Corollary 2.6.6.
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Remark 2.7.14. More generally, the same proof extends (with more notation) to show that if we partition
X into sub-vectors, say (X 1,… , X k) where X 1 ∈ ℝd1 ,… , X k ∈ ℝdk , where d1 +⋯ + dk = d , then the vectors
X 1,… , X k are independent if and only if the covariance matrix C is block-diagonal with block sizes d1,… , dk ,
i.e. if and only if Cov(X i

ip , X
j
jq ) = 0 for any 1 ≤ i < j ≤ k and any 1 ≤ ip ≤ di and 1 ≤ jq ≤ dj .

We can now easily deduce the CLT for i.i.d. random vectors from the dimension 1 case in Theorem 2.7.1.

Theorem 2.7.15 (Multivariate CLT). Let (X n)n≥1 be i.i.d. random vectors with E[X 1] = m ∈ ℝd and
Cov(X 1) = C a symmetric positive de�nite matrix. Then we have the convergence in distribution:

X1 +⋯ + Xn − nm√
n

(d)
⟶
n→∞

Z ∼ N(0, C).

Proof. Assume m = 0 without loss of generality. Let u ∈ ℝd and t = Var(⟨u, X 1⟩) = ⟨u, Cu⟩ by bilinearity
of the covariance. We deduce from Proposition 2.6.2 that

'n−1/2∑n
k=1 X k (u) = '⟨u,n−1/2∑n

k=1 X k⟩(1) = 'n−1/2∑n
k=1 ⟨u,X k⟩(1).

Note that the random variables ⟨u, X k⟩ are i.i.d. with mean 0 and variance ⟨u, Cu⟩. Therefore by the CLT
in dimension 1, Theorem 2.7.1, the previous characteristic function converges to that of a Gaussian random
variable with variance ⟨u, Cu⟩ evaluated at 1, namely:

'n−1/2∑n
k=1 X k (u) ⟶

n→∞
exp(−

⟨u, Cu⟩2

2 ) = 'Z (u),

where Z ∼ N(0, C) and we conclude by Theorem 2.6.8.

One can get multivariate extensions of Lindeberg’s or Lyapunov’s CLT in a similar way. For every
n ≥ 1 let (X n,k)k≤n be independent random vectors with E[X n,k] = 0 (otherwise subtract the mean) and with
covariance matrix Cn,k with ‖Cn,k‖ < ∞, where we recall the norm ‖ ⋅ ‖ on symmetric positive matrices given
by the largest eigenvalue. Thus ‖Cn,k‖ < ∞ if and only if ⟨a, Cn,ka⟩ < ∞ for all a ∈ ℝd . Assume also that at
least one of them is invertible and set

Sn =
n
∑
k=1

Cn,k .

Note that Sn is the covariance matrix of ∑n
k=1 X n,k and it is invertible. Then it admits an invertible square-root

matrix
√
Sn and ‖(Sn)−1/2‖2 < ∞ equals the inverse of the smallest eigenvalue of Sn.

Theorem 2.7.16 (Lindeberg’s multivariate CLT). Assume the so-called Lindeberg condition: for any " > 0,

n
∑
k=1

E[‖(Sn)−1/2Xn,k‖2 1‖(Sn)−1/2Xn,k ‖>"] ⟶
n→∞

0. (2.9)

Then we have the convergence in distribution

(Sn)−1/2(Xn,1 +⋯ + Xn,n)
(d)
⟶
n→∞

Z ∼ N(0, Id ). (2.10)
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Part II

Markov Chains
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Chapter 3

Discrete Markov Chains

In words a Markov chain is a random process such that, at any given time, the future evolution only depends
on the curent position and not on the whole past trajectory. This lack of memory phenomenon appears
in many contexts and Markov chains are therefore a very important object in modelisation. They can be
studied in fairly general spaces, and this has important applications in probability and statistics in ℝd or
more abstract spaces, but this leads to several technicalities involving measure theory, even just to de�ne
the basic objects of interest. We shall therefore restrict ourselves to a countable set of values and thus
discrete random variables, which eliminates a lot of technicalities (and is already interesting!). We refer the
interested student to the books we suggest in the beginning of these notes for more general contexts.

In this chapter and in the next two, we assume that the random variables take value in a countable set X,
equipped with the � -algebra X of all subsets of X.

Contents
3.1 The Markov property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2 Transition matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3 Markov chains as random recursive sequences . . . . . . . . . . . . . . . . . . . . 60
3.4 Stopping times and the strong Markov property . . . . . . . . . . . . . . . . . . . 63
3.5 Harmonic functions and the Dirichlet problem (⋆) . . . . . . . . . . . . . . . . . . 64

In Section 3.1 we �rst de�ne formally Markov chains by three equivalent formulation of the Markov
property. Section 3.2 introduces the main technical tool associated with Markov chains, that is the transition
matrix which encodes the one-step displacement probability into an in�nite matrix. Section 3.3 shows that
a Markov chains can be seen as random dynamical systems, which explains their success in modelising
various phenomena. Section 3.4 presents a generalisation of the lack of memory of Markov chain from a
�xed time to a random time. The correct notion of random time here being so-called stopping times, which
will play a central role. We end by presenting in Section 3.5 an application of this property to solve the
discrete Dirichlet problem, related to the question of the �rst exit or entry point in a given subset, which
has many applications from physics to �nance.

3.1 The Markov property

The term stochastic process is meant to describe the evolution of a single random variable as time passes. The
formal de�nition is very simple and does not say much, but we include it since we are going to extensively
use this expression, although we shall often drop the adjective “stochastic”.

De�nition 3.1.1. A stochastic process is a sequence of random variables X = (Xn)n≥0 de�ned on a common
probability space (Ω,F,ℙ) and with value in the same measurable space (X,X).
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Recall that for any event B ∈ Fwith nonzero probability, the formula:

ℙ(A ∣ B) =
ℙ(A ∩ B)
ℙ(B)

for all A ∈ Fde�nes a probability measure ℙ( ⋅ ∣ B). Below, we implicitly assume that all the events by
which we condition have nonzero probability.

Recall that we will restrict ourselves to stochastic processes (Xn)n≥0 which take values in a countable
space X. Here is our object of interest.

Theorem 3.1.2. Let (Xn)n be a stochastic process with values in X. The following assertions are equivalent:

(i) For every n ≥ 0, for any x0,… , xn+1 ∈ X, we have:

ℙ(Xn+1 = xn+1 ∣ Xi = xi , 0 ≤ i ≤ n) = ℙ(Xn+1 = xn+1 ∣ Xn = xn).

(ii) For every n ≥ 0, for any k ≥ 1 and any x0,… , xn+k ∈ X, we have:

ℙ(Xn+1 = xn+1,… , Xn+k = xn+k ∣ Xi = xi , 0 ≤ i ≤ n) = ℙ(Xn+1 = xn+1,… , Xn+k = xn+k ∣ Xn = xn).

(iii) For every n ≥ 1, for any k ≥ 1 and any x0,… , xn+k ∈ X, we have:

ℙ(X0 = x0,… , Xn−1 = xn−1, Xn+1 = xn+1,… , Xn+k = xn+k ∣ Xn = xn)

= ℙ(X0 = x0,… , Xn−1 = xn−1 ∣ Xn = xn) × ℙ(Xn+1 = xn+1,… , Xn+k = xn+k ∣ Xn = xn).

These properties are each called the Markov property and such a process is called a Markov chain.

In words, a Markov chain is a process in which the random evolution at the next step Xn+1 (Property (i)),
or all next steps (Xp)p≥n (Property (ii)) only depends only the current position Xn, and all the rest of
information from the past is irrelevant. Property (iii) is often stated as “the future and the past are
conditionally independent given the present”.

Proof. Let us �rst prove that (ii) is equivalent to (iii). Indeed (ii) reads by de�nition of the conditional
expectation:

ℙ(Xi = xi , 0 ≤ i ≤ n + k)
ℙ(Xi = xi , 0 ≤ i ≤ n)

=
ℙ(Xi = xi , n ≤ i ≤ n + k)

ℙ(Xn = xn)
.

After multiplying both sides by ℙ(Xi = xi , 0 ≤ i ≤ n)/ℙ(Xn = xn), this is equivalent to:

ℙ(Xi = xi , 0 ≤ i ≤ n + k)
ℙ(Xn = xn)

=
ℙ(Xi = xi , 0 ≤ i ≤ n)

ℙ(Xn = xn)
ℙ(Xi = xi , n ≤ i ≤ n + k)

ℙ(Xn = xn)
,

which is the claim (iii).
Next notice that (i) is weaker than (ii) since it corresponds to the case k = 1 in the latter. This therefore

provides the base case to prove that (i) implies (ii) by induction on k. Suppose thus that the claim (ii) holds
for some k ≥ 1. By applying (i) at time n + k, we get:

ℙ(Xn+k+1 = xn+k+1 ∣ Xi = xi , 0 ≤ i ≤ n + k) = ℙ(Xn+k+1 = xn+k+1 ∣ Xn+k = xn+k),

which we can rewrite as:

ℙ(Xi = xi , 0 ≤ i ≤ n + k + 1) = ℙ(Xi = xi , 0 ≤ i ≤ n + k)ℙ(Xn+k+1 = xn+k+1 ∣ Xn+k = xn+k).

On the one hand, if we divide both sides by ℙ(Xi = xi , 0 ≤ i ≤ n), then we get:

ℙ(Xi = xi , n + 1 ≤ i ≤ n + k + 1 ∣ Xi = xi , 0 ≤ i ≤ n)

= ℙ(Xi = xi , n + 1 ≤ i ≤ n + k ∣ Xi = xi , 0 ≤ i ≤ n)ℙ(Xn+k+1 = xn+k+1 ∣ Xn+k = xn+k)

= ℙ(Xi = xi , n + 1 ≤ i ≤ n + k ∣ Xn = xn)ℙ(Xn+k+1 = xn+k+1 ∣ Xn+k = xn+k)
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by the induction hypothesis. On the other hand, if we go back to the preceding display and sum over all
values of x0,… , xn−1, then we get:

ℙ(Xi = xi , n ≤ i ≤ n + k + 1) = ℙ(Xi = xi , n ≤ i ≤ n + k)ℙ(Xn+k+1 = xn+k+1 ∣ Xn+k = xn+k),

so, after dividing by ℙ(Xn = xn),

ℙ(Xi = xi , n + 1 ≤ i ≤ n + k + 1 ∣ Xn = xn)

= ℙ(Xi = xi , n + 1 ≤ i ≤ n + k ∣ Xn = xn)ℙ(Xn+k+1 = xn+k+1 ∣ Xn+k = xn+k),

and we prove that this equals ℙ(Xi = xi , n + 1 ≤ i ≤ n + k + 1 ∣ Xi = xi , 0 ≤ i ≤ n).

One can actually drop some indices in the Markov property, except the last one.

Proposition 3.1.3. If (Xn)n≥0 is a Markov chain, then for every n ≥ 1 and every subset of indices {i1,… , ik} ⊂
{0,… , n − 1} we have for any xn, xn+1 ∈ X,

ℙ(Xn+1 = xn+1 ∣ Xi1 = xi1 ,… , Xik = xik , Xn = xn) = ℙ(Xn+1 = xn+1 ∣ Xn = xn).

Proof. By the Markov property we have for all x0,… , xn+1 ∈ X:

ℙ(Xj = xj , 0 ≤ j ≤ n + 1) =
ℙ(Xn = xn, Xn+1 = xn+1)

ℙ(Xn = xn)
ℙ(Xj = xj , 0 ≤ j ≤ n).

By summing over all values xj for j ∈ {0,… , n − 1} ⧵ {i1,… , ik}, we obtain:

ℙ(Xi1 = xi1 ,… , Xik = xik , Xn = xn, Xn+1 = xn+1) =
ℙ(Xn = xn, Xn+1 = xn+1)

ℙ(Xn = xn)
ℙ(Xi1 = xi1 ,… , Xik = xik , Xn = xn),

and the claim follows.

3.2 Transition matrices

The key tool to study Markov chains and the central object in this theory is the transition matrix associated
with it.

De�nition 3.2.1. A transition matrix (or stochastic matrix, or transition kernel) is a measurable function
P ∶ X ×X → [0, 1] such that P (x, ⋅) is a probability on X for every x ∈ X.

Recall that a measure � on a countable setX is simply a nonnegative sequence (�(x), x ∈ X). A probability
is a measure with ∑x∈X �(x) = 1. Hence, P is simply a (possibly in�nite) matrix with nonnegative entries,
such that the sum over each row equals 1.

Theorem 3.2.2 (Chapman–Kolmogorov Equation). A stochastic process (Xn)n≥0 is a Markov chain if and
only if there exist transition matrices (Pk)k≥1 such that for every n ≥ 0 and every x0,… , xn ∈ X, we have:

ℙ(X0 = x0,… , Xn = xn) = ℙ(X0 = x0)
n

∏
k=1

Pk(xk−1, xk).

Proof. Suppose �rst that (Xn)n≥0 is a Markov chain and let us prove the identity by induction. The latter is
trivial for n = 0, further, we have by the Markov property:

ℙ(X0 = x0,… , Xn+1 = xn+1) = ℙ(X0 = x0,… , Xn = xn)ℙ(Xn+1 = xn+1 ∣ X0 = x0,… , Xn = xn)

= ℙ(X0 = x0,… , Xn = xn)ℙ(Xn+1 = xn+1 ∣ Xn = xn).
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Note that ℙ(Xn+1 = xn+1 ∣ Xn = xn) only depends on the joint law of Xn and Xn+1 as well as on xn and xn+1.
Further, for xn �xed, it de�nes a probability, thus as a function of both xn and xn+1, it de�nes a transition
matrix Pn+1 and the claim follows by induction.

Suppose conversely that there exist transition matrices (Pk)k≥1 such that for every n ≥ 0 and every
x0,… , xn ∈ X, we have:

ℙ(X0 = x0,… , Xn = xn) = ℙ(X0 = x0)
n

∏
k=1

Pk(xk−1, xk).

Then
ℙ(X0 = x0,… , Xn = xn, Xn+1 = xn+1) = ℙ(X0 = x0,… , Xn = xn)Pn+1(xn, xn+1).

Let us sum over all values x0,… , xn−1 to obtain:

ℙ(Xn = xn, Xn+1 = xn+1) = ℙ(Xn = xn)Pn+1(xn, xn+1).

Combining the last two displays, we infer that:

ℙ(Xn+1 = xn+1 ∣ X0 = x0,… , Xn = xn) = Pn+1(xn, xn+1) = ℙ(Xn+1 = xn+1 ∣ Xn = xn),

hence (Xn)n≥0 is a Markov chain.

From now on, one should view a function f on X as a column vector and a measure � as a row vector.
Then we can de�ne what, when X is �nite, is simply the matrix multiplication as follows.

De�nition 3.2.3. Let P, Q be transition matrices, let f ∶ X → ℝ be a function, and let � be a measure on
X. Let us de�ne three operations:

• When it makes sense, let Pf be the function given by:

Pf (x) = ∑
y∈X

P (x, y)f (y) for all x ∈ X,

which is the expectation of f (Yx ) when Yx has the law P (x, ⋅).

• Let �P be the measure given by:

�P (y) = ∑
x∈X

�(x)P (x, y) for all y ∈ X.

When � is a probability, say the law of a random variable Z , then �P (y) is the expectation of P (Z, y).

• Let PQ be the matrix given by:

PQ(x, z) = ∑
y∈X

P (x, y)Q(y, z) for all x, z ∈ X.

Exercise 3.2.4. If P is a transition matrix and � is a probability, then so is �P . If Q is another transition
matrix, then so is PQ. Consequently ∏n

k=1 Pk is a transition matrix if the Pk ’s are.

Remark 3.2.5. A consequence of Theorem 3.2.2 is that the law of a Markov chain (Xn)n is entirely
characterised by the transition matrices

Pn(xn−1, xn) = ℙ(Xn = xn ∣ Xn−1 = xn−1)
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for every n ≥ 1 and the initial distribution, that is: the law of X0. In particular, for every n ≥ 1 and x0, xn ∈ X,

ℙ(Xn = xn ∣ X0 = x0) = ∑
x1,…,xn−1

ℙ(X1 = x1,… , Xn = xn ∣ X0 = x0)

= ∑
x1,…,xn−1

n
∏
k=1

Pk(xk−1, xk)

= (
n

∏
k=1

Pk)(x0, xk),

where the product of transition matrices is that de�ned above. Consequently, if � is a probability on X,
then for all x ∈ X, we have

(�
n

∏
k=1

Pk)(x) = ∑
x0∈X

� (x0)(
n

∏
k=1

Pk)(x0, xk) = ∑
x0∈X

� (x0)ℙ(Xn = x ∣ X0 = x0),

which equals the probability that Xn = x when X0 has the law � .

De�nition 3.2.6. A homogeneous Markov chain is a Markov chain in which all the transitions matrices
are equal, say Pn = P for all n. We then speak of a P-Markov chain.

From now on we only consider homogeneous Markov chains. The general case is not more complicated
in this chapter and mostly adds more notation, but it becomes intractable in the next chapters. For x ∈ X,
we shall write ℙx to mean that the Markov chain starts from X0 = x and more generally if � is a distribution
on X, then we shall write ℙ� to mean that the Markov chain starts from X0 with the law � . We then write
Ex and E� for the associated expectation. Note that in a P-Markov chain, we have for every n ≥ 1 and
every initial distribution � , for every x, y ∈ X:

ℙ� (Xn+1 = y ∣ Xn = x) = P (x, y) and ℙ� (Xn = x) = (�Pn)(x)

Also, for every function f ∶ X → ℝ for which the expectations are well-de�ned, we have

E� [f (Xn+1) ∣ Xn = xn] = (Pf )(xn) and E� [f (Xn)] = �Pnf .

Theorem 3.2.2 allows to see any P-Markov chain as a random walk on a weighted graph, as in Figure 3.1:
draw elements of X as points, and draw an arrow from x to y with the weight P (x, y) if the latter is nonzero.
By Theorem 3.2.2, the probability that the Markov chain follows a given trajectory, conditionally on its
starting point, is simply the product of the weights on the arrows along this path.
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Figure 3.1: A weighted graph on the le� and the corresponding transition matrix on the right.
The probability of any given trajectory is the product of the weights on the corresponding edges.

Theorem 3.2.2 also allows to extend the third formulation of the Markov property in Theorem 3.1.2.
Precisely: a P-Markov chain is a process such that at any time n, conditionally on the value of Xn, the futur
process (Xn+k)k≥0 is also a P-Markov chain, started afresh at position Xn, independently of the past.
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Corollary 3.2.7 (Restarted process). Let (Xn)n≥0 be a P-Markov chain, n ≥ 1, and x ∈ X. Then conditionally
on {Xn = x} the process given by Yk = Xn+k for k ≥ 0 is a P-Markov chain started from Y0 = x and is
independent from (X0,… , Xn−1).

Proof. The conditional independence was proved in Theorem 3.1.2, it only remains to check that (Yk)k≥0 is
a P-Markov chain starting from x . By Theorem 3.2.2, for every y1,… , yk ∈ X, we have:

ℙ(Y0 = x, Y1 = y1,… , Yk = yk) = ℙ(Xn = x, Xn+1 = y1,… , Xn+k = yk)

= ∑
x0,…,xn−1

ℙ(X0 = x0,… , Xn = x, Xn+1 = y1,… , Xn+k = yk)

= ∑
x0,…,xn−1

ℙ(X0 = x0)
n−1
∏
i=1

P (xi−1, xi)P (xn−1, x)P (x, y1)
k

∏
j=2

P (yj−1, yj).

Next notice that Theorem 3.2.2 also yields:

∑
x0,…,xn−1

ℙ(X0 = x0)
n−1
∏
i=1

P (xi−1, xi)P (xn−1, x) = ∑
x0,…,xn−1

ℙ(X0 = x0,… , Xn = xn) = ℙ(Xn = x) = ℙ(Y0 = x).

We have thus proved that

ℙ(Y0 = x, Y1 = y1,… , Yk = yk) = ℙ(Y0 = x)P (x, y1)
k

∏
j=2

P (yj−1, yj),

and we conclude from Theorem 3.2.2 again.

3.3 Markov chains as random recursive sequences

Markov chains are in some sense the random analogue of recursive sequences, de�ned iteratively by
xn+1 = f (xn), as shown in the next result. This provides a natural motivation to study Markov chains as
well as an easy way to prove that a given process is indeed a Markov chain; it also helps to simulate them
in practice.

Proposition 3.3.1 (Random recursion). For any X0, any sequence (�n)n≥1 of i.i.d r.v.’s with values in some
space (E, E) and independent of X0, and for any measurable function f ∶ X × E → X, the process de�ned
iteratively by:

Xn+1 = f (Xn, �n+1)

is a homogeneous Markov chain started from X0, with transition matrix given by P ∶ (x, y)↦ ℙ(f (x, �1) = y).
Conversely for any transition matrix P and any random variable X0 in X, there exist such a sequence (�n)n≥1
and such a measurable function f ∶ X × E → X such that the corresponding Markov chain has transition
matrix P .

Proof. For every x0,… , xn, since the variables X0, �1,… , �n are independent and �1,… , �n have the same law,
then we have:

ℙ(X0 = x0,… , Xn = xn) = ℙ(X0 = x0, f (x0, �1) = x1,… , f (xn−1, �n) = xn)

= ℙ(X0 = x0)
n

∏
k=1

ℙ(f (xk−1, �k) = xk)

= ℙ(X0 = x0)
n

∏
k=1

P (xk−1, xk).

We conclude from Theorem 3.2.2 that (Xn)n is a P-Markov chain.
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Now suppose that we are given a transition matrix P . Let us enumerate the state space as X = {x0, x1…}
and for any k ≥ 0, let us decompose the interval [0, 1) as the disjoint union:

[0, 1) = ⋃
�≥0

[
�−1
∑
i=0

P (xk , xi),
�
∑
i=0

P (xk , xi)).

Further for u ∈ [0, 1), let f (xk , u) = x� where � ≥ 0 is the unique index such that

u ∈ [
�−1
∑
i=0

P (xk , xi),
�
∑
i=0

P (xk , xi)).

Let (Un)n≥1 be i.i.d. with the uniform distribution on [0, 1) and independent of X0. By the �rst part of
the proof, the sequence de�ned recursively by Xn+1 = f (Xn, Un+1) is a homogeneous Markov chain with
transition matrix given for every k, � ≥ 0 by:

ℙ(f (xk , U1) = x� ) = ℙ(U1 ∈ [
�−1
∑
i=0

P (xk , xi),
�
∑
i=0

P (xk , xi))) = P (xk , x� ),

hence its transition matrix is indeed P .

In the next chapters, we will be interested in the asymptotic behaviour of a Markov chain. Recall that
recursive sequences, of the form xn+1 = f (xn), say with f continuous, if convergent, necessarily converge to
a �xed point of the function f . The analogue here is given by the notion of stationary measure.

De�nition 3.3.2. A measure � on X is said to be stationary or invariant for the transition matrix P when
for every y ∈ X,

�(y) = ∑
x∈X

�(x)P (x, y),

which we shall simply write in the matrix form � = �P .

Every measure � on X will be implicitly assumed to be � -�nite and non identically equal to zero, which
means �(x) < ∞ for every x ∈ X and �(x) > 0 for at least one x ∈ X.

Notation. We will denote by � a stationary measure, and by � and stationary probability, that is a stationary
measure with � (X) = 1.

The adjective ‘stationary’ comes from the following observation: if � is stationary, that is � = �P , then
by iterating this identity we have more generally � = �Pn for every n ≥ 1, which is the law of Xn when X0
has the law � . Hence, we start from a stationary law, then at every time, the Markov chain is distributed as
this law. This can actually be strengthened as follows.

Proposition 3.3.3. Let (Xn)n≥0 be a P-Markov chain and suppose that X0 has the law � . Then � is stationary
if and only if for any k ≥ 1, the process (Xn+k)n≥0 has the same law as (Xn)n≥0.

Proof. Suppose �rst that � is stationary, that is � = �P = �Pk for every k ≥ 1. Then for every xk+1,… , xk+n ∈
X, we have by Theorem 3.2.2:

ℙ� (Xk = xk ,… , Xk+n = xk+n) = ∑
x1,…,xk−1

ℙ� (X1 = x1,… , Xk+n = xk+n)

= ∑
x0,…,xk−1

� (x0)
k

∏
i=1

P (xi−1, xi)
k+n
∏
i=k+1

P (xi−1, xi)

= �Pk(xk)
k+n
∏
i=k+1

P (xi−1, xi)

= � (xk)
n

∏
i=1

P (xk+i−1, xk+i).
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Theorem 3.2.2 then shows that (Xn+k)n≥0 is a P-Markov chain with initial distribution � , exactly as (Xn)n≥0.
Conversely, if (Xn+1)n≥0 has the same law as (Xn)n≥0, then in particular X1, which has law �P , has the

same law as X0, which is � .

The next result shows that, as �xed points for recursive sequences, stationary distributions are in some
sense the only possible limits of a Markov chain.

Proposition 3.3.4. Let (Xn)n≥0 be a P-Markov chain with any initial distribution and let � be a probability
on X. Suppose that for every x ∈ X, it holds:

1
n

n−1
∑
k=0

ℙ(Xk = x) ⟶
n→∞

� (x).

Then � is stationary.

Proof. Let �n(x) = n−1∑n−1
k=0 ℙ(Xk = x), which de�nes a probability as a convex sum of probabilities. Fix

y ∈ X and let us prove that �nP (y) converges both to �P (y) and to � (y) so these quantities are equal.
First, �x " > 0; since � is a probability, then there exists a �nite set A ⊂ X such that � (Ac) = 1−� (A) < ".

It follows that �n(Ac) = 1 − �n(A)→ 1 − � (A) < ". Suppose that n is large enough so �n(Ac) < 2", then:

|�nP (y) − �P (y)| ≤ ∑
x∈A

|�n(x) − � (x)|P (x, y) + ∑
x∈Ac

�n(x)P (x, y) + ∑
x∈Ac

� (x)P (x, y)

≤ ∑
x∈A

|�n(x) − � (x)|P (x, y) + 3".

The last sum converges to 0 as n → ∞ since A is �nite. Since " is arbitrary, then we conclude that
�nP (y)→ �P (y).

Next, we use the precise form of �n. Recall that P (x, y) = ℙ(Xk+1 = y ∣ Xk = x) for any k, then

�nP (y) =
1
n

n−1
∑
k=0

∑
x∈X

ℙ(Xk = x)P (x, y) =
1
n

n−1
∑
k=0

∑
x∈X

ℙ(Xk = x, Xk+1 = y) =
1
n

n−1
∑
k=0

ℙ(Xk+1 = y).

The right-hand side equals precisely

n + 1
n

�n+1(y) −
ℙ(X0 = y)

n
=
n + 1
n

�n+1(y) −
ℙ(X0 = y)

n

which converges to � (y) as n → ∞, so indeed �nP (y)→ � (y).

Let us note that the assumption is satis�ed in each of the following two cases:

(i) If for every x ∈ X, we have the convergence in probability of the proportion of time spent at x ,
namely:

1
n

n−1
∑
k=0

1Xk=x
ℙ

⟶
n→∞

� (x).

Then n−1∑n−1
k=0 ℙ(Xk = x) → � (x) follows from dominated convergence (the sequence is clearly

dominated by 1).

(ii) If the law of Xn converges to � , namely for every x ∈ X,

ℙ(Xn = x) ⟶
n→∞

� (x).

Then n−1∑n−1
k=0 ℙ(Xk = x)→ � (x) follows from basic calculus.

In the next chapters, we shall provide conditions under which the stationary probability exists and is unique
(Corollary 4.2.11), and under which these two cases occur (Corollary 5.1.2 and Theorem 5.2.8 respectively).
Proposition 3.3.4 simply shows that the limit has to be a stationary probability.
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3.4 Stopping times and the strong Markov property

Recall from Corollary 3.2.7 that given a P-Markov chain (Xn)n≥0, for any �xed time N ≥ 1, the futur process
(XN+n)n≥0, conditionally on the value of XN , remains a P-Markov chain, started from position XN and
independent of the past (X0,… , XN−1). Now imagine that we follow the Markov chain until it reaches a
given point x for the �rst time, it is natural to believe that the futur evolution after this random time is
again that of a P-Markov chain, started from position x and independent of the past. The good notion of
random times to extend to the Markov property is the notion of stopping time.

De�nition 3.4.1. A stopping time relative to a stochastic process (Xn)n≥0 is a random variable T taking
values in ℤ+ = {0, 1, 2,… ,∞} such that for any n ≥ 0, the event {T ≤ n} is completely characterised by the
random variables X0,… , Xn. Formally, for any n ≥ 0, there exists a measurable function 'n ∶ Xn+1 → ℤ+

such that
1T≤n = 'n(X0,… , Xn).

In words, a stopping time is a random time which is determined by the past: the trajectory up to the
present time is su�cient to tell wether is has already occurred or not yet.

Exercise 3.4.2. Prove that if we replace {T ≤ n} by {T = n} then the two de�nitions coincide.

One can notice that constant random variables T = N for any given N ∈ ℤ+ are stopping times: simply
take 'n to be equal to 0 for n < N and to 1 for n ≥ N .

Example 3.4.3. Important stopping times are given by the �rst entry time of the process: �x A a subset of
X, then

T = inf{n ≥ 0∶ Xn ∈ A}

is a stopping time, with the convention that inf ∅ = ∞. Indeed, we have simply:

{T ≤ n} = ⋃
k≤n
{Xk ∈ A},

which only depends on X0,… , Xn.

It is important to be able to deal with multiple stopping times and we encourage the reader to prove the
following elementary results.

Exercise 3.4.4. Let (Tk)k≥1 be stopping times relative to the same stochastic process. Then ∑k Tk , infk Tk ,
supk Tk , lim infk Tk , lim supk Tk are all stopping times. In general, the di�erence is not, even in the case
T − 1 where T ≥ 1 a.s.

The next extension of the Markov property is very useful since it allows to restart the process afresh at
any random stopping time.

Theorem 3.4.5 (Strong Markov property). Let (Xn)n≥0 be a P-Markov chain and let T be a stopping time.
Fix x ∈ X. Then conditionally on {T < ∞}∩{XT = x} the process given by Yn = XT+n for n ≥ 0 is a P-Markov
chain started from Y0 = x and is independent from (X0,… , XT−1).

Proof. Recall that if T = N is a deterministic time, then the claim corresponds to Corollary 3.2.7. Now let
us split according to these events:

ℙ(T = N , X0 = x0,… , XN−1 = xN−1, XN = x, XN+1 = y1,… , XN+n = yn)

= ℙ(T = N , X0 = x0,… , XN−1 = xN−1, XN = x)ℙ(XN+1 = y1,… , XN+n = yn ∣ XN = x)

= ℙ(T = N , X0 = x0,… , XN−1 = xN−1, XN = x)ℙ(X1 = y1,… , Xn = yn ∣ X0 = x).
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Summing over all values of N , we obtain for every (xk)k≥0 and (yk)k≥0,

ℙ(T < ∞, X0 = x0,… , XT−1 = xT−1, XT = x, XT+1 = y1,… , XT+n = yn)

= ℙ(T < ∞, X0 = x0,… , XT−1 = xT−1, XT = x)ℙ(X1 = y1,… , Xn = yn ∣ X0 = x),

and the result follows by dividing by ℙ(T < ∞, XT = x).

Remark 3.4.6. The extension of Corollary 3.2.7 to stopping times may seem unnecessary since in each
case one can always condition on the value of T and use the simple Markov property, when the time is
�xed. However if this is true for discrete-time Markov chains, it is no longer for continuous-time Markov
processes (studied next semester).

3.5 Harmonic functions and the Dirichlet problem (⋆)

This section relates Markov chains and discrete harmonic functions. We use probabilistic tools to solve the
so-called discrete Dirichlet problem. In the same spirit, one can solve partial di�erential equations using
random processes that evolve in continuous time and space. This is a very active topic of research, for
its own sake but also for application to physics, biology, epidemiology, �nance, etc. that allows to derive
theoretical results but also provides numerical schemes for simulations.

De�nition 3.5.1. Given a transition matrix P , a function ℎ∶ X → ℝ is said to be harmonic at x when
Pℎ(x) = ℎ(x). It said to be harmonic on A ⊂ X if it is so at every x ∈ A.

We can also de�ne similarly subharmonic (Pℎ(x) ≥ ℎ(x)) and superharmonic (Pℎ(x) ≤ ℎ(x)) functions,
but we shall only consider harmonic functions.

Remark 3.5.2. Recall that if (Xn)n≥0 is a P-Markov chain on X, then Pℎ(x) = Ex [ℎ(X1)]. A function ℎ is
thus harmonic at x when the average value after one step from x is again ℎ(x).

Let A ⊂ X be nonempty and let g ∶ X ⧵A→ ℝ be a function. The Dirichlet problem raises the question:
does there exist a function ℎ∶ X → ℝ which coincides with g on X ⧵ A and which is harmonic on A? if so,
is it unique? The harmonicity of such a function ℎ can be rewritten as (P − I )ℎ = 0 where I is the identity
matrix. This can be in many cases seen as a discretised di�erential equation (as in the �nite di�erence
method), as shown in the following example (see also the exercise sheet).

Example 3.5.3. Let X = ℤ and let P (i, j) = 1
2 1|i−j |=1. This corresponds to the case where the increments of

the Markov chain are i.i.d. with ℙ(Xn+1 = Xn + 1) = ℙ(Xn+1 = Xn − 1) = 1/2. Then (P − I )ℎ = 0 if and only if

−
1
2
(ℎ(x + 1) − 2ℎ(x) + ℎ(x − 1)) = 0,

which is the discretised heat equation −Δℎ = 0. The condition ℎ = g on X ⧵ A is interpreted as a boundary
condition (here a source of heat) of the equation and we aim at �nding the solution in A. See Figure 3.2 for
a representation.

Although the Dirichlet problem is deterministic, we may solve it using Markov chain theory. Recall
indeed from Proposition 3.3.1 that there exists a Markov chain with transition matrix P . We shall follow its
trajectory until it exits A for the �rst time. Let us start with the easy case g = 0.

Lemma 3.5.4. Let A ⊂ X be nonempty and �nite and let TA = inf{n ≥ 0∶ Xn ∈ X ⧵ A} be its �rst exit time.
Suppose that for every x ∈ A, we have ℙx (TA < ∞) = 1. Then the only function which is P-harmonic on A and
null on X ⧵ A is the constant null function.
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Figure 3.2: The Dirichlet problem consists in finding the values of a harmonic function in the
domain A with the given boundary value in X ⧵ A.

Proof. Clearly the null function is a solution to the problem. Suppose that ℎ is also a solution. We only
assume thatA is �nite to infer that ℎ admits a maximum onA: let x0 ∈ A be such that ℎ(x0) = maxy∈A ℎ(y) and
suppose that ℎ(x0) > 0. Then ℎ(x0) = maxy∈X ℎ(y) and since it is harmonic, then ∑y∈X P (x0, y)(ℎ(y)−ℎ(x0)) =
0 which yields ℎ(y) = ℎ(x0) = max ℎ for every y ∈ X such that P (x0, y) > 0.

Recall that we assume that ℙx0(TA < ∞) = 1, which is equivalent to ℙx0(TA ≤ n) → 1; in particular
this probability is not 0 for some (deterministic) n and thus there exists a path x0, x1,… , xn such that
x1,… , xn−1 ∈ A and xn ∈ X ⧵A and which has P (xi−1, xi) > 0 for every 1 ≤ i ≤ n. But the previous point then
implies by induction that 0 < ℎ(x0) = ℎ(x1) = ⋯ = ℎ(xn) = 0.

We conclude by contradiction that ℎ(x0) = 0 and so ℎ(x) ≤ 0 for every x ∈ A. Notice �nally that if ℎ is a
solution, then so is −ℎ, so the same argument implies ℎ(x) ≥ 0 for every x ∈ A.

Let us next turn to the general case; this lemma shall provide the uniqueness argument.

Theorem 3.5.5. Let A ⊂ X be nonempty and �nite and let TA = inf{n ≥ 0∶ Xn ∈ X ⧵A} be its �rst exit time.
Suppose that for every x ∈ A, we have ℙx (TA < ∞) = 1. Let g ∶ X ⧵ A → ℝ+ be a bounded function. Then
there exists a unique bounded function ℎ on X that is P-harmonic on A and coincides with g on X ⧵ A. It is
given by the formula:

ℎ(x) = Ex [g(XTA)]

for every x ∈ X.

From a numerical point of view, the trajectory of a Markov chain is usually easy to implement (recall
Proposition 3.3.1); let us simulate a large number, say K , of P-Markov chains all started at some x ∈ A
and until they �rst leave A, and let us evaluate for each one the function g at their terminal value. Then
the Law of Large Numbers shows that the average over these K trajectories converges as K → ∞ to
Ex [g(XTA)] = ℎ(x). Let us note that if we assume that Ex [TA] < ∞, then the Law of Large Numbers also
shows that the sum of the length of these K trajectories, i.e. the total number of iterations of the K random
recursions, is close to K × Ex [TA] when K is large. The key point that explains the success of this approach
is that, as opposed to algebraic schemes, the complexity of the algorithm is quite insensible to the dimension
of the space.

Proof. Let us start with the uniqueness of the solution: if ℎ1 and ℎ2 are two solution, then ℎ = ℎ1 − ℎ2 is
P-harmonic on A and null on X ⧵ A, so it is the constant null function by the previous lemma.

Let us next prove that the function ℎ is harmonic on A. Fix x ∈ A, and start from X0 = x . There are two
possibilities for X1: either X1 ∈ A, and then the process after time 1 starts from this value and is stopped
when exiting A, or X1 ∉ A and the process is stopped here. Formally, we infer from applying the Markov

65



property at time 1 that:

ℎ(x) = Ex [g(XTA)]

= Ex [g(XTA)1X1∈A] + Ex [g(XTA)1X1∉A]

= Ex [EX1[g(XTA)]1X1∈A] + Ex [g(X1)1X1∉A]

= Ex [ℎ(X1)1X1∈A] + Ex [g(X1)1X1∉A]

= Ex [ℎ(X1)]

= Pℎ(x).

Thus ℎ is indeed harmonic on A. It is also clear that ℎ = g on X ⧵ A.

Let us next present an application of the previous theorem to the so-called �rst exit side problem.
Imagine that we are given two subsets B and C , which do not intersect, starting from an arbitrary point x ,
what is the probability that a P-Markov chain reaches B before C?

Corollary 3.5.6. Let B, C ⊂ X be two sets such that B ∩ C = ∅ and (B ∪ C)c is �nite and nonempty. Let
�B = inf{n ≥ 0∶ Xn ∈ B}, de�ne �C similarly and assume that at least one of them is almost surely �nite for
every starting point. Let g(x) = 1 for every x ∈ B and g(x) = 0 for every x ∈ C . Then

ℙx (�B < �C ) = ℎ(x),

where ℎ is the unique bounded extension of g that is harmonic on (B ∪ C)c , given in the previous theorem.

Proof. Since B ∩ C = ∅ then �B ≠ �C . Then either �B < �C and then g(X�B∧�C ) = 1, or �B > �C and then
g(X�B∧�C ) = 0. Thus

ℙx (�B < �C ) = Ex [g(X�B∧�C )].

This indeed equals ℎ(x) by the previous theorem, where A = (B ∪ C)c , so �B ∧ �C = TA.

A concrete example, known as the ruin problem, is detailed in the exercise sheet. In this problem the
Markov chain is simply a random walk on ℤ, with i.i.d. increments equal to +1 with some �xed probability
p ∈ (0, 1) and equal to −1 with probability −1. We take B = [K,∞) for some �xed K ≥ 2 and C = (−∞, 0],
and we let the chain start from some k ∈ {1,… , K − 1}. We imagine this random walk as the fortune of a
player betting repeatedly on Head or Tails and who wonders if starting with an initial fortune k, they can
reach K before getting ruined, see Figure 3.3.

or

K

0

K

0
k k

Figure 3.3: The ruin problem: does the player reach the top boundary before the bottom one?

For p = 1/2, we mentioned that the harmonicity condition is equivalent to solving:

−
1
2
(ℎ(i + 1) − 2ℎ(i) + ℎ(i − 1)) = 0, equivalently: ℎ(i + 1) − ℎ(i) = ℎ(i) − ℎ(i − 1),

that is, the increments are all constant. Suppose furthermore that ℎ(i) = 1 for i ≥ K and ℎ(i) = 0 for i ≤ 0,
then the increments ℎ(i) − ℎ(i − 1) for 1 ≤ i ≤ K are all equal to 1/K , that is:

ℎ(i) =
i
K

0 ≤ i ≤ K.

Finally, by the previous corollary, for each 1 ≤ k < K , we have:

ruin probability = ℙk(�0 < �K ) = 1 −
k
K
.
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Chapter 4

Classi�cation of states

In this chapter, we consider the following questions: How many times does a (discrete) Markov chain visit
a given point? does it always come back to its starting point or not? if so, how long does it take? We
shall relate the answer to the problem of existence and uniqueness of a stationary measure or stationary
probability which describes the asymptotic behaviour of the chain as shown in the next chapter. We shall
also prove a famous result of Pólya: wandering randomly on the ground will always get you back home,
but you may get lost in space!

Contents
4.1 Recurrence and Transience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2 Stationary measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3 The Simple Random Walk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

In Section 4.1 we present a �rst dichotomy: recurrence vs. transience, that is wether a Markov chain
always comes back to its starting point or it escapes and leaves forever. This makes an extensive use of
the strong Markov property from the previous chapter. Then in Section 4.2 we discuss the existence and
uniqueness of the stationary measures and distributions and we distinguish further between two di�erent
behaviours for recurrent points. Section 4.3 �nally presents an application in the case of the simple random
walk in the discrete d-dimensional space ℤd : the walk always comes back to its starting point in dimension
d = 1 or d = 2, but not in dimension d ≥ 3.

4.1 Recurrence and Transience

Let us start by introducing the notation we shall use throughout this chapter and the next one.

Notation. For each x ∈ X, let us de�ne inductively the hitting times of x by H 0
x = 0 and for k ≥ 0:

H k+1
x = inf{n ≥ H k

x + 1∶ Xn = x}.

For k = 1, simply write Hx for H 1
x = inf{n ≥ 1∶ Xn = x}. Note that the starting point does not count and

Hx ≥ 1. Also,
H k
x = inf{n ≥ 1∶ #{i ∈ {1,… , n}∶ Xi = x} = k}.

Let also
Vx = ∑

n≥0
1Xn=x

denote the number of visits of x . Finally, for x, y ∈ X, let us denote by

�xy = ℙx (Hy < ∞) = ℙx (∃n ≥ 1 ∶ Xn = y)
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the probability to reach y when starting from x . When �xy > 0, we say that x leads to y and we denote this
by x → y . When a Markov chain is described as a walk on a graph, x → y means that there exists a path
of arrows from x to y. Note that x may not lead to itself.

4.1.1 Number of visits

A point is called ‘recurrent’ when the Markov chain always comes back to it when starting from it and
‘transient’ otherwise.

De�nition 4.1.1. For every x ∈ X, we have the dichotomy:

• either �xx = 1, then x is said to be recurrent,

• or �xx < 1, then x is said to be transient.

The next result shows that the recurrent/transience dichotomy is quite strong: if x is recurrent, then the
chain visits x in�nitely many times whereas if it is transient, it only visits it a random geometric number of
times.

Proposition 4.1.2. The following holds according as wether x is recurrent or transient:

(i) If �xx = 1, then ℙx (Vx = ∞) = 1.

(ii) If �xx < 1, then ℙx (Vx < ∞) = 1, and precisely Vx has under ℙx the geometric law with mean

Ex [Vx ] =
1

1 − �xx
=

1
ℙx (Hx = ∞)

.

The proof is based on the following idea: In order to visit k times the point y when starting from x , one
�rst has to reach y and then come back to it k − 1 times. The next lemma formalises this idea thanks to the
strong Markov property.

Lemma 4.1.3. For every x, y ∈ X and k ≥ 1, it holds:

ℙx (H k
y < ∞) = ℙx (Hy < ∞)ℙy (Hy < ∞)k−1 = �xy�k−1yy .

In particular ℙx (H k
x < ∞) = �kxx .

Proof. According to Theorem 3.4.5, under ℙx , conditionally on {Hy < ∞} and since XHy = y a.s. the process
given by Yn = XHy+n for n ≥ 0 has the same law as (Xn)n≥0 started from Y0 = y . Moreover, the quantity H k

y
for the chain (Xn)n equals the quantity H k−1

y for the chain (Yn)n and thus:

ℙx (H k
y < ∞) = ℙx (Hy < ∞, H k

y < ∞)

= ℙx (Hy < ∞)ℙx (H k
y < ∞ ∣ Hy < ∞)

= ℙx (Hy < ∞)ℙy (H k−1
y < ∞).

Taking x = y and k − 1 instead of k, we then get ℙy (H k−1
y < ∞) = ℙy (Hy < ∞)ℙy (H k−2

y < ∞) and the claim
follows by induction.

Proposition 4.1.2 then easily follows.

Proof of Proposition 4.1.2. According to Lemma 4.1.3 we have for every k ≥ 1:

ℙx (Vx ≥ k + 1) = ℙx (H k
x < ∞) = ℙx (Hx < ∞)k = �kxx .

(i) Letting k → ∞ in the previous equation, by monotonicity, we conclude that

ℙx (Vx = ∞) = ↓ lim
k→∞

ℙx (Vx ≥ k + 1) = 1.
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(ii) In this case, the identity ℙx (Vx ≥ k + 1) = �kxx for every k ≥ 1, with �xx < 1 shows that Vx has the
geometric distribution with parameter 1 − �xx > 0.

Remark 4.1.4. Since x has to be either recurrent or transient, then we see that it is recurrent if and only if

Ex [Vx ] = ∑
n≥0

ℙx (Xn = x) = ∑
n≥0

Pn(x, x) = ∞,

and in this case we actually have ℙx (Vx = ∞) = 1. This criterion is often easy to check in practice given the
matrix P .

Remark 4.1.5. Notice that if y is transient then for any x ≠ y, we have since 1Hy=∞Vy = 0:

Ex [Vy] = Ex [1Hy<∞Vy] = ℙx (Hy < ∞)Ex [Vy ∣ Hy < ∞].

By the strong Markov property, since XHy = y, then the last conditional expectation equals Ey[Vy]. We
thus have:

Ex [Vy] = ℙx (Hy < ∞)Ey[Vy] ≤ Ey[Vy] < ∞.

Hence, whatever the starting point X0 = x , the number of visits of a transient point y has �nite expectation
(in particular it is �nite almost surely).

Let us turn our attention to recurrent points.

Proposition 4.1.6. If x is recurrent and �xy > 0, then y is recurrent as well and we have ℙx (Vy = ∞) =
ℙy (Vx = ∞) = 1.

Proof. Fix x ≠ y . Let us �rst prove that �xy = 1. Since x is recurrent, then a.s. we have H k
x < ∞ for all k ≥ 1

so we may write:

ℙx (Hy = ∞) = ℙx(⋂
i≥1
{H i

x < ∞} ∩ {y ∉ {XH i−1
x +1,… , XH i

x
}})

= ↓ lim
k→∞

ℙx(
k
⋂
i=1

({H
i
x < ∞} ∩ {y ∉ {XH i−1

x +1,… , XH i
x
}})).

By induction, applying the strong Markov property at time H k−1
x , then H k−2

x , etc. since XH i
x
= x , we see that

the last probability equals

ℙx ({Hx < ∞} ∩ {Hy > Hx})k = ℙx (Hy > Hx )k .

By letting k → ∞, we obtain that

ℙx (Hy = ∞) = ↓ lim
k→∞

ℙx (Hy > Hx )k ,

which equals either 0, when ℙx (Hy > Hx ) < 1, or 1, when ℙx (Hy > Hx ) = 1. Since we assume that
�xy = 1 − ℙx (Hy = ∞) > 0, then �xy = 1.

Let next us prove that ℙy (Vx = ∞) = 1. Indeed, recall that ℙx (Vx = ∞) = 1 from Proposition 4.1.2. Since
ℙx (Hy < ∞) = 1, then

1 = ℙx (Hy < ∞, Vx = ∞) = ℙx(Hy < ∞, ∑
n≥Hy

1Xn=x = ∞) = ℙx(∑
n≥0

1XHy+n=x = ∞ ∣ Hy < ∞).

Let Yn = XHy+n for every n ≥ 0. Then Theorem 3.4.5 states that conditionally on {Hy < ∞}, since XHy = y,
then (Yn)n is another Markov chain with the same law as (Xn)n but started from y. Hence the right-hand
side above equals ℙy (Vx = ∞) = 1.
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As a consequence, letting Hx,y = inf{n ≥ Hx + 1∶ Xn = y} denote the �rst return time to y after visiting
x , we have:

ℙy (Hy < ∞) ≥ ℙy (Hx < ∞, Hx,y < ∞) = ℙy (Hx < ∞)ℙy (Hx,y < ∞ ∣ Hx < ∞).

First note that
ℙy (Hx < ∞) ≥ ℙy (Vx = ∞) = 1.

Next, by Theorem 3.4.5,
ℙy (Hx,y < ∞ ∣ Hx < ∞) = ℙx (Hy < ∞) = 1.

Thus ℙy (Hy < ∞) = 1 and y is recurrent. The identity ℙx (Vy = ∞) = 1 then follows by exchanging the role
of x and y.

4.1.2 Communicating classes

Recall the notation x → y when �xy = ℙx (Hy < ∞) > 0. If both x → y and y → x , we write x ↔ y
and say that x and y communicate with each other. We then set x ∼ y if x = y or x ↔ y. As the notation
suggests, the relation ∼ is an equivalence relation.

Lemma 4.1.7. For every x, y ∈ X we have x → y if and only if there exists n ≥ 1 such that ℙ(Xn = y) > 0.
Moreover the relation ∼ is an equivalence relation.

Proof. We simply write for n ≥ 1:

ℙx (Xn = y) ≤ ℙx(⋃
n≥1
{Xn = y}) ≤ ∑

n≥1
ℙx (Xn = y).

Therefore if x → y, that is, the probability in the middle is nonzero, then there necessarily exists n ≥ 1
such that ℙx (Xn = y) > 0. The �rst inequality shows that this is an equivalence. Consequently, if x → y
and y → z, then there exist n,m ≥ 1 such that ℙx (Xn = y) > 0 and ℙy (Xm = z) > 0. We then infer from the
Markov property that

ℙx (Xn+m = z) ≥ ℙx (Xn = y, Xn+m = z) = ℙx (Xn = y)ℙy (Xm = z) > 0,

hence x → z. This su�ces to conclude that ∼ is indeed an equivalence relation.

We may then partition X into the equivalence classes, which we call the communicating classes. Pro-
position 4.1.6 shows that starting from a recurrent position we can only visit recurrent states. This leads to
the following classi�cation.

Theorem 4.1.8. There exists a partition of the space into disjoint subsets:

X = T∪⋃
i∈I

Ri

such that:

• For every i ∈ I and every x ∈ Ri , we have ℙx -a.s.

Vy = ∞ for all y ∈ Ri and Vy = 0 for all y ∈ X ⧵Ri .

• For every x ∈ T, if � = inf{n ≥ 1∶ Xn ∈ ⋃i∈I Ri}, then ℙx -a.s.

– either � = ∞ and Vy < ∞ for all y ∈ X,

– or � < ∞ and there exists a random index i ∈ I such that Xn ∈ Ri for every n ≥ � .
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Proof. The set T is that of all transient states, whereas R = ⋃i∈I Ri is that of recurrent states. By
Proposition 4.1.6, the relation de�ned on R by x ∼ y if and only if �xy > 0 is an equivalence relation, then
the Ri’s are the corresponding equivalence classes.

Fix such an equivalence class Ri and x ∈ Ri . Then Proposition 4.1.6 shows that ℙx (Vy = ∞) = 1 for all
y ∈ Ri . On the other hand if y ∉ Ri , i.e. if �xy = 0, then clearly ℙx (Vy = 0) = 1. Finally �x x ∈ T. If � = ∞
then Vy = 0 for every y ∈ R; also Vy < ∞ for all y ∈ Tby Proposition 4.1.2. Suppose next that � < ∞, then
there exists a random index i ∈ I such that X� ∈ Ri and by the strong Markov property (Theorem 3.4.5), we
are back in the �rst case where the chain starts from a point in Ri .

De�nition 4.1.9. If �xy > 0 for every x, y ∈ X then we say that the Markov chain is irreducible.

In what follows we will always assume that our chains are irreducible, otherwise we can study each
class separately.

Corollary 4.1.10. If the chain is irreducible, then we are in one of the two following situations:

• Either every x ∈ X is recurrent and ℙx (Vy = ∞) = 1 for all x, y ∈ X,

• Or every x ∈ X is transient and Ex [Vy] < ∞ for all x, y ∈ X.

Note that if X is a �nite set, then we are necessarily in the �rst case.

Proof. If there exists x ∈ X which is recurrent, then by Proposition 4.1.6 so is every other y ∈ X so indeed
either every state is recurrent or every state is transient. In the latter case we have then Ex [Vy] < ∞ for all
y ∈ X by Remark 4.1.5, whereas in the �rst case we have Vy = ∞ for all y ∈ X by Proposition 4.1.6 again.
Finally,

∞ = ∑
n≥0

∑
x∈X

1Xn=x = ∑
x∈X

∑
n≥0

1Xn=x = ∑
x∈X

Vx .

Therefore, if X is a �nite set, then Vx has to be in�nite for at least one x ∈ X.

De�nition 4.1.11. If the chain is irreducible, then we say that it is recurrent or transient according as
wether every state is recurrent or transient.

4.2 Stationary measures

Recall that Markov chains are random analogues of recursive sequences of the form xn+1 = f (xn), which
converge (when they do) to a �xed point of the function f (if the latter is continuous). The analogue of �xed
points is given by the notion of stationary measures de�ned in Section 3.3, that is, a measure � solution to

� = �P.

In this section we analyse the existence and uniqueness of such measures in general, a more precisely of
such probabilities � = �P .

Every measure � on X will be implicitly assumed to be � -�nite and non identically equal to zero, which
means �(x) < ∞ for every x ∈ X and �(x) > 0 for at least one x ∈ X.

4.2.1 An easy subcase: reversibility

The stationarity property will be very important, but in practice it can be hard to check: one has to solve
the equation � = �P , that is �nd a eigenvector associated with the eigenvalue 1 for the transpose matrix P t .
Even in a �nite set X, but with a large cardinal, this system can be di�cult to solve exactly. A simpler, but
stronger, property is that of reversibility.
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De�nition 4.2.1. A measure � on X is said to be reversible for the transition matrix P when for every
x, y ∈ X,

�(x)P (x, y) = �(y)P (y, x).

This condition is also often called “detailed balance condition”.

Proposition 4.2.2. A reversible measure is stationary.

Proof. Simply sum the reversibility identity over x :

∑
x∈X

�(x)P (x, y) = ∑
x∈X

�(y)P (y, x).

The left-hand side equals �P (y) and the right-hand side �(y).

Example 4.2.3. Fix N ≥ 1 and let (Xn)n be the following process: let p ∈ (0, 1) and q = 1 − p, let X0 = x0 be
a �xed value in X = {0,… , N − 1}, and then iteratively set:

ℙ(Xn+1 = Xn + 1 mod N ∣ Xn) = p, ℙ(Xn+1 = Xn − 1 mod N ∣ Xn) = q.

Then this process is a Markov chain, with transition matrix

P =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 p 0 ⋯ 0 q
q 0 p ⋱ ⋱ 0
0 q 0 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ p 0
0 0 ⋱ q 0 p
p 0 ⋯ 0 q 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Let � (j) = 1/N for every j ∈ X denote the uniform distribution, then

� (j)P (j, k) =
1
N
(p 1k=j+1 mod N + q 1k=j−1 mod N ),

for all j, k ∈ X. Thus on the one hand for any k ∈ X , one has

�P (k) =
N−1
∑
k=0

� (j)P (j, k) =
q + p
N

=
1
N
= � (k),

so � is always stationary. On the other hand, one has � (j)P (j, k) = � (k)P (k, j) only in the case p = q = 1/2
so � is reversible in this case and when p ≠ q, there is no reversible distribution.

Proposition 4.2.4. Suppose that � is stationary for the transition matrix P and de�ne for every x, y ∈ X:

P ∗(x, y) =
�(y)
�(x)

P (y, x).

Then P ∗ is a transition matrix and � is also stationary for P ∗. In addition � is reversible for P if and only
if P = P ∗. Suppose moreover that � is a probability and let (Xn)n denote a P−Markov chain with initial
distribution � and (X ∗

n)n a P ∗−Markov chain with initial distribution �. Then for every n ≥ 0, we have the
identity in law:

(X ∗
0 ,… , X ∗

n)
(d)= (Xn,… , X0).

Finally the probability � is reversible for P if and only if we have the identity in law:

(X0,… , Xn)
(d)= (Xn,… , X0)

for every n ≥ 0.
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This explains the name ‘reversible’: if one starts with a reversible initial distribution, then the time-
reversed process at any time has the same law as the original one.

Proof. Clearly P ∗(x, y) ≥ 0 and further, since � = �P , then:

∑
y∈X

P ∗(x, y) = ∑
y∈X

�(y)
�(x)

P (y, x) =
1

�(x)
�P (x) = 1.

Hence P ∗ is indeed a transition matrix. Next,

�P ∗(y) = ∑
x∈X

�(x)P ∗(x, y) = ∑
x∈X

�(y)P (y, x) = �(y),

so � is P ∗-stationary. Finally,

�(x)P ∗(x, y) = �(y)P (y, x) and �(y)P ∗(y, x) = �(x)P (x, y),

so � is P ∗-stationary if and only if it is P-stationary.
Suppose next that � is a probability and let (Xn)n and (X ∗

n)n be Markov chains with initial distribution �
and with transition matrix P and P ∗ respectively. Then by the Chapman–Kolmogorov Equation (twice), we
have:

ℙ(X ∗
0 = x0,… , X ∗

n = xn) = �(x0)
n

∏
k=1

P ∗(xk−1, xk)

= �(x0)
n

∏
k=1

�(xk)
�(xk−1)

P (xk , xk−1)

= �(xn)
n

∏
k=1

P (xk , xk−1)

= ℙ(X0 = xn,… , Xn = x0).

This proves the identity in law: (X ∗
0 ,… , X ∗

n) = (Xn,… , X0). Finally, we have shown that � is reversible if and
only if P = P ∗, which is equivalent by the previous identity to (X0,… , Xn) = (Xn,… , X0) in law.

Example 4.2.5. Let V be a set, either �nite or countable, and let E ⊂ {{u, v}∶ u, v ∈ V , u ≠ v} be a set
of unordered pairs of elements in V . We call V the vertices, E the edges, and the pair G = (V , E) a graph.
Suppose that each edge e = {u, v} ∈ E has a weight ce ∈ (0,∞) and de�ne for every u ∈ V :

�(u) = ∑
v∈V

c{u,v}.

Let us assume that �(u) < ∞ for every u ∈ V and de�ne then for u, v ∈ V :

P (u, v) =
1

�(u)
c{u,v}.

This is a transition matrix, and the corresponding Markov chain is called the random walk on the weighted
graph G. In words, at every step, the walk moves from its position u to a neighbour v in G with a probability
proportional to the weight c{u,v}. Since the edges are undirected, then c{u,v} = c{v,u} and thus:

�(u)P (u, v) = c{u,v} = c{v,u} = �(v)P (v, u),

so � is reversible.
Conversely, given a transition matrix P and a reversible measure �, one can consider the graphG = (V , E)

with V = X, E = {{x, y}∶ P (x, y) > 0}, and with the weights c{x,y} = �(x)P (x, y). Then the random walk
on this weighted graph is exactly the P-Markov chain.
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4.2.2 Existence and uniqueness

Recall that we exclude the trivial measure �(x) = 0 for every x ∈ X from the stationary measures. Our �rst
result shows then that if a stationary measure gives a nonzero mass to some point x , then it also gives a
nonzero mass to any point y where x leads. In particular, in an irreducible chain, any stationary measure
gives nonzero mass to every state.

Lemma 4.2.6. Let � be a stationary measure, let x, y ∈ X be such that �(x) > 0 and �xy > 0, then �(y) > 0.

Proof. Recall that writing:

ℙx (Hy < ∞) = ℙx(⋃
n
{Xn = y}) ≤ ∑

n
Pn(x, y),

we infer that if ℙx (Hy < ∞) > 0, then there exists n ≥ 1 such that Pn(x, y) > 0. Then for such an index n,
assuming that �(x) > 0, we have

�(y) = �Pn(y) = ∑
z∈X

�(z)Pn(z, y) ≥ �(x)Pn(x, y),

and the right-hand side is nonzero.

In the exercise sheet, we shall see examples of transient Markov chains which have no stationary
measure, or have in�nitely many of them. Then next result shows however that it can never have a
stationary probability measure (with total mass 1).

Lemma 4.2.7. Let � be a stationary measure with �nite total mass: �(X) = ∑x �(x) < ∞. If x ∈ X is transient,
then �(x) = 0.

Proof. Let us write:

∑
n≥0

�(x) = ∑
n≥0

∑
y∈X

�(y)Pn(y, x) = ∑
y∈X

�(y)∑
n≥0

Pn(y, x) = ∑
y∈X

�(y)Ey[Vx ].

By the strong Markov property, we have:

Ey[Vx ] = �yx Ex [Vx ] ≤ Ex [Vx ].

Now recall from Proposition 4.1.2 that if x is transient, then

∑
n≥0

�(x) ≤ ∑
y∈X

�(y)Ex [Vx ] < ∞.

This implies that �(x) = 0.

As mentioned above, if the chain is irreducible and transient, nothing can be said in general on the
existence and uniqueness of stationary measure. This problem can however be solved for recurrent chains.
The main theorem of this subsection is the following.

Theorem 4.2.8. If the chain is irreducible and recurrent, then all stationary measures are proportional to
each other and they all give nonzero and �nite mass to every state.

The proof takes several intermediate steps and is based on the following key observation: for every
k ≥ 1, for every x, y ∈ X,

ℙx (Hx ≥ k, Xk−1 = z, Xk = y) = ℙx (Hx ≥ k, Xk−1 = z)P (z, y). (4.1)

Indeed, this follows by applying the Markov property at time k − 1 since the event {Hx ≥ k, Xk−1 = z} only
depends on X0,… , Xk−1.

First, given one recurrent state, we can construct explicitly one stationary measure. Note that if the
chain is not irreducible and has several recurrent classes (recall Theorem 4.1.8), then Lemma 4.2.9 provides
invariant measures which are supported by each disjoint class.
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Lemma 4.2.9. Let x ∈ X be recurrent, then the measure de�ned by

�x (y) = Ex[

Hx−1
∑
k=0

1Xk=y] = Ex[

Hx
∑
k=1

1Xk=y] (4.2)

is stationary. Moreover it has �x (x) = 1, �x (X) = Ex [Hx ], and �nally �x (y) > 0 if and only if �xy > 0, and in
this case �x (y) < ∞.

Proof. To prove that �x is stationary, let us write:

�x (y) = Ex[∑
k≥1

1k≤Hx ∑
z∈X

1Xk−1=z 1Xk=y] = ∑
k≥1

∑
z∈X

ℙx (k ≤ Hx , Xk−1 = z, Xk = y).

Then by (4.1),

�x (y) = ∑
k≥1

∑
z∈X

Ex [1k≤Hx 1Xk−1=z]P (z, y) = ∑
z∈X

Ex[

Hx
∑
k=1

1Xk−1=z]P (z, y) = ∑
z∈X

�x (z)P (z, y).

Thus �x is indeed stationary and so �x = �xPn for every n ≥ 1.
The properties �x (x) = 1 and �x (X) = Ex [Hx ] are clear, and so is the fact that if �xy = 0, then

�x (y) ≤ Ex [Vy] = 0 since in this case ℙx (Vy = 0) = 1. Suppose now that �xy > 0, then there exists n ≥ 1 such
that Pn(x, y) > 0. We infer for this n that

�x (y) = ∑
z∈X

�x (z)Pn(z, y) ≥ �x (x)Pn(x, y) = Pn(x, y) > 0.

Similarly, we have
1 = �x (x) ≥ �x (y)Pn(y, x).

Recall from Proposition 4.1.6 that if x is recurrent and �xy > 0, then �xy = 1 and �yx = 1, so again there
exists n ≥ 1 with Pn(y, x) > 0, which shows that �x (y) < ∞.

We next prove that this particular stationary measure �x is the smallest one that assigns mass 1 to x .

Lemma 4.2.10. Let x ∈ X be recurrent and let �x be the stationary measure de�ned in (4.2). If � is another
stationary measure, then for any y ∈ X, we have:

�(y) ≥ �(x)�x (y).

Proof. Let us �rst prove by induction that for any n ≥ 0 and any y ≠ x , we have

�(y) ≥ �(x)
n
∑
k=0

ℙx (Hx > k, Xk = y) = �(x)
n
∑
k=0

ℙx (X1 ≠ x,… , Xk ≠ x, Xk = y).

For n = 0 the right-hand side vanishes for any y ≠ x . Suppose the identity holds for some n, then we can
write since � is stationary:

�(y) = ∑
z∈X

�(z)P (z, y) ≥ ∑
z∈X

(�(x)
n
∑
k=0

ℙx (Hx > k, Xk = z))P (z, y).

On the other hand, by (4.1), we have for each 0 ≤ k ≤ n:

ℙx (Hx > k, Xk+1 = y) = ∑
z∈X

ℙx (Hx > k, Xk = z, Xk+1 = y) = ∑
z∈X

ℙx (Hx > k, Xk = z)P (z, y).
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Since y ≠ x , then ℙx (Hx > k, Xk+1 = y) = ℙx (Hx > k + 1, Xk+1 = y), so we conclude from the two displays
that

�(y) ≥ �(x)
n
∑
k=0

∑
z∈X

ℙx (Hx > k, Xk = z)P (z, y)

= �(x)
n
∑
k=0

ℙx (Hx > k + 1, Xk+1 = y)

= �(x)
n+1
∑
k=1

ℙx (Hx > k, Xk = y).

The sum could as well start from k = 0 since the probability vanishes in this case. This completes the
induction. Letting n → ∞, we conclude that

�(y) ≥ �(x)
∞
∑
k=0

Ex [1Hx>k 1Xk=y] = �(x)Ex[
Hx−1
∑
k=0

1Xk=y],

and the expectation equals precisely �x (y).

We can now prove our main result.

Proof of Theorem 4.2.8. Let � be a stationary measure and let x ∈ X be such that �(x) > 0. For every y ∈ X,
we have �xy > 0, so Lemma 4.2.6 implies that �(y) > 0. Recall that Formula (4.2) provides one stationary
measure �x , which satis�es moreover 0 < �x (y) < ∞ for every y ∈ X. By the previous lemma, we have

�(y) ≥ �(x)�x (y),

for every y ≠ x , and equality for y = x since �x (x) = 1. Then using that both � and �x are stationary, we
obtain for every n ≥ 1:

�(x) = ∑
y∈X

�(y)Pn(y, x) ≥ ∑
y∈X

�(x)�x (y)Pn(y, x) = �(x)�x (x) = �(x).

This implies that the inequality must be an equality and so

∑
y∈X

(�(y) − �(x)�x (y))Pn(y, x) = 0,

for every n ≥ 1. Recall that the chain is irreducible, so for any y ∈ X, there exists n ≥ 1 such that Pn(y, x) > 0,
then we must have

�(y) = �(x)�x (y)

for the previous sum to vanish. Recall that we chose x so that �(x) > 0, hence � is indeed proportional to
�x , and since 0 < �x (y) < ∞ for every y, then 0 < �(y) < ∞ for every y.

4.2.3 Positive recurrence and null recurrence

By Theorem 4.2.8, in an irreducible and recurrent chain, all stationary measures are proportional so a
stationary probability is necessarily unique. We now investigate wether it exists or not.

Corollary 4.2.11. Suppose that the chain is irreducible and recurrent, we have a further dichotomy:

• Either all stationary measures have �nite total mass and there exists a unique stationary probability � .
The latter never vanishes and moreover for any x ∈ X, we have the identity:

Ex [Hx ] =
1

� (x)
< ∞.
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• Or all stationary measures have in�nite total mass and moreover for any x ∈ X, we have:

Ex [Hx ] = ∞.

When X is a �nite set, we are necessarily in the �rst case.

Proof. By Theorem 4.2.8, all stationary measures are proportional so either they all have in�nite mass, or
there exists one with �nite mass and then they all do. In the latter case, by rescaling any of them by its total
mass we obtain a probability. The latter is necessarily unique since two di�erent probabilities cannot be
proportional since they both sum up to 1. Precisely, this unique probability � is given for every x, y ∈ X by:

� (y) =
�x (y)
�x (X)

=
1

Ex [Hx ]
Ex[

Hx−1
∑
k=0

1Xk=y].

In particular, since �x (x) = 1, then

� (x) =
1

�x (X)
=

1
Ex [Hx ]

.

On the other hand, if all stationary measures have in�nite mass, then for every x ∈ X we have similarly

Ex [Hx ] = �x (X) = ∞.

Finally, since we assume that each measure only gives �nite mass to every x ∈ X, then if the latter is a
�nite set, then each stationary measure must have �nite total mass.

De�nition 4.2.12. A recurrent irreducible chain is said to be:

• positive recurrent if Ex [Hx ] < ∞ for all x ∈ X,

• null recurrent if Ex [Hx ] = ∞, but still ℙx (Hx < ∞) = 1, for all x ∈ X.

This denomination will be explained by Corollary 5.1.2, we can observe already that a positive recurrent
chain has 1/Ex [Hx ] > 0 for all x ∈ X whereas a null recurrent chain has 1/Ex [Hx ] = 0 for all x ∈ X.

Proposition 4.2.13. If the chain is irreducible and positive recurrent, then Ey[Hx ] < ∞ for all x, y ∈ X.

Proof. Fix x, y ∈ X with x ≠ y . Observe that for every n ≥ 1, we have by the Markov property at time n:

Ex [Hx ] ≥ Ex [Hx 1Hx>n,Xn=y] = ℙx (Hx > n, Xn = y)(n + Ey[Hx ]).

Since Ex [Hx ] < ∞, then it su�ces to prove that there exists n with ℙx (Hx > n, Xn = y) > 0. Recall from the
proof of Proposition 4.1.6 that

ℙx (Hy > Hx )k = ℙx (Hy > H k
x ) ≤ ℙx (Hy > k) ⟶

k→∞
ℙx (Hy = ∞) = 0.

Therefore ℙx (Hy > Hx ) < 1. By taking the complement, we conclude that:

0 < ℙx (Hy < Hx ) = ℙx(⋃
n
{Hx > n, Xn = y}) ≤ ∑

n
ℙx (Hx > n, Xn = y),

and so at least one term in the sum must be nonzero.
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Figure 4.1: The first 1 000 steps of a walk in dimension 2 and in dimension 3.

4.3 The Simple Random Walk

The simple random walk in dimension d ≥ 1 is the Markov chain (Xn)n on ℤd started from 0 and with
transition matrix P given by:

P (x, y) =
1
2d

1|x−y |=1,

for every x, y ∈ ℤd . In words, at every step, we move from the current position by one in a uniform random
direction. The following famous result characterises the asymptotic behaviour of the walk.

Theorem 4.3.1 (Pólya). The simple random walk is null recurrent in dimension d = 1 and d = 2 whereas it
is transient in dimension d ≥ 3.

Proof. It is clear that in any dimension the walk is irreducible. Moreover, for every x, y ∈ ℤd , we have
P (x, y) = P (y, x) so the measure given by �(x) = 1 for every x ∈ ℤd is reversible, hence stationary by
Proposition 4.2.2. Since � has in�nite total mass, then Corollary 4.2.11 implies that the walk cannot be
positive recurrent: it is either null recurrent or transient, and this behaviour is dictated by the expected
number of visits of 0: according to Proposition 4.1.2, the walk is null recurrent if this expectation is in�nite,
and it is transient otherwise. By parity, we starting from 0, the walk can only be at 0 at even times, so we
may write:

E0[V0] = E0[∑
n≥0

1X2n=0] = ∑
n≥0

ℙ0(X2n = 0).

The claim then reduces to check wether this series converges or not.
Let us start with d = 1. For every n ≥ 1 we have X2n = 0 if and only if there are n increments equal to

+1 and n increments equal to −1, so, according to Stirling’s formula, we have:

ℙ0(X2n = 0) =
1
22n(

2n
n ) =

1
22n

(2n)!
n!n!

∼
1
22n

√
4�n(2n/ e)2n

(
√
2�n(n/ e)n)2

=
1

√
�n

.

The corresponding series diverges, so the walk is (null) recurrent.
In dimension d = 2, the same reasoning applies: here, X2n = 0 if and only if there exists 0 ≤ k ≤ n such

that the walk has k increments to the right, k increments to the left, n − k up and n − k down, so now:

ℙ0(X2n = 0) =
1
42n

n
∑
k=0

(2n)!
k!k!(n − k)!(n − k)!

=
1
42n(

2n
n )

n
∑
k=0

(
n
k)(

n
n − k)

=
1
42n(

2n
n )

2

,
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where the last identity is easily understood: choosing n objects among 2n possibilities amounts to choosing
k in half of them and n − k in the other half for some k. We see that ℙ0(X2n = 0) in dimension 2 is the square
of the same probability in dimension 1! This can easily be seen by rotating the trajectory by 45°: if the
walks moves along the diagonals, then we easily see that the two coordinates evolve like two independent
walks in dimension 1; moreover the walk in dimension 2 lies at 0 if and only if both coordinate lie at 0
simultaneously. More importantly here, we have ∑n ℙ0(X2n = 0) = ∞ again so again E0[V0] = ∞ and the
walk is recurrent.

In dimension 3, we now have:

ℙ0(X2n = 0) =
1
62n

∑
i+j+k=n

(2n)!
i!2j!2k!2

=
1
12n(

2n
n ) ∑

i+j+k=n
(

n!
i!j!k!)

2 1
3n
.

Roughly speaking, we expect this quantity to be of order n−3/2, which is now a convergent series so the
walk is now transient. However exact calculations become harder and we will only upper bound this
probability (which is su�cient). Let us start by considering the case where n is a multiple of 3. We shall use
the following input:

∑
i+j+k=n

n!
i!j!k!

= 3n and
(3� )!
i!j!k!

≤
(3� )!
� !3

for any i + j + k = 3� .

Indeed for the �rst one, each summand counts the number of ways to put n objects in three boxes with
respectively i, j, and k in each box, so summing over all possibilities, each object can be put in any box. For
the second one, suppose that i ≤ j ≤ k, otherwise rename them; if i ≤ � − 1, then k ≥ � + 1 so i + 1 < k and
thus (i + 1)!j!(k − 1)! < i!j!k!, therefore the denominator is maximal at i = j = k = � . Applying Stirling’s
formula again, we read that:

ℙ0(X6� = 0) ≤
1
123� (

6�
3�)

(3� )!
� !3

=
1
123�

(6� )!
(3� )!� !3

∼
1

2(�� )3/2
.

It remains to deal with the cases n = 3� + 1 and = 3� + 2. Notice that if the walk is at 0 at some time 2k,
then makes any move and immediately after its opposite (which has probability 1/6), then it is back at 0 at
time 2k + 2. This implies that:

ℙ0(X6� = 0) ≥
1
6
ℙ0(X6�−2 = 0) and ℙ0(X6� = 0) ≥

1
62

ℙ0(X6�−4 = 0).

Thus for any value n, the probability ℙ0(X2n = 0) is asymptotically bounded by some constant times n−3/2

so indeed 0 is transient.
Finally in dimension d ≥ 4, one could extend the previous reasoning. We propose another approach by

comparison with the case d = 3. Let Xn = (X1,n,… , Xd,n) and let Yn = (X1,n, X2,n, X3,n) denote the path that
follows only the �rst three coordinates. At each step, one coordinate of Xn chosen uniformly at random
changes by either +1 of −1 uniformly at random and independently of the choice of the coordinate. If this
coordinate is one of the �rst three, then the corresponding coordinate of Yn changes accordingly, as for
the walk in dimension 3. However if the coordinate of Xn that changes is not one of the �rst three, then
Yn+1 = Yn. Hence (Yn)n has the law of the walk in dimension 3 with additional independent random delays,
that is time-intervals during which it stays constant. The lengths of these intervals are i.i.d. geometric
distributed (on ℤ+) with parameter 3/d . Since we know that the three dimensional walk only visits 0 �nitely
many times, and since the delays are all �nite, then (Yn)n also only visits 0 �nitely many times. This implies
that (Xn)n only visits 0 �nitely many times.
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Chapter 5

Convergence of Markov Chains

We study more speci�cally in this chapter the asymptotic behaviour of Markov chains. One of the reason
to introduce them was to extend the Law of Large Numbers and the Central Limit Theorem when the
increments are not independent or identically distributed. The so-called ergodic theorem stipulates that
under suitable assumptions the Markov chain forgets its starting point and it also describes the limit, in
several di�erent senses, in terms of the transition matrix. We shall describe precisely this type of result and
�nish with some applications to numerical simulations.

Contents
5.1 Law of Large Numbers & Central Limit Theorem . . . . . . . . . . . . . . . . . . . 80
5.2 Convergence to the equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.3 Monte–Carlo simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

In Section 5.1 we present analogues of the Law of Large Numbers and the Central Limit Theorem for a
sequence (f (Xn))n≥0 where f is a real-valued function. We shall see that the empirical average of f along the
trajectory of the chain converges almost surely to its expectation with respect to the stationary distribution
(when it exists), and with Gaussian �uctuations. Then Section 5.2 discusses another aspect of the ergodic
theorem, which shows that the stationary distribution is indeed the limit law of Xn as n → ∞; we also
discuss there the speed of the convergence. Finally Section 5.3 presents some numerical applications and
introduces the Monte Carlo method.

5.1 Law of Large Numbers & Central Limit Theorem

Recall from Remark 4.1.5 that if x ∈ X is transient, then whatever the starting point, the chain a.s. will
never visit x again after a long time. We then ask about the behaviour when x is recurrent. Thanks to
Theorem 4.1.8 we may assume that the chain is irreducible, otherwise we work in the class that contains x
and we ignore the other states. We will be interested in two di�erent aspects. Here we �rst consider the
average of a real-valued function along the trajectory of the chain, and extend in this context the LLN and
CLT. In the next section, we shall discuss the convergence of the law of Xn.

Recall that for a measure � on X and a function f for which the integral is well-de�ned, we write �(f )
for the integral ∫ f d� = ∑x∈X f (x)�(x).

5.1.1 Almost sure convergence

Let us state straight away the main result of this section. Recall from Theorem 4.2.8 that all stationary
measure are proportional to each other, so the limit below is unique and does not depend on the choice of �.

Theorem 5.1.1. Suppose that the chain is irreducible and recurrent and let � be any stationary measure. Let
g ∶ X → [0,∞) with 0 < �(g) < ∞ and let f ∶ X → ℝ with either f ≥ 0 or �(|f |) < ∞. Then for any initial
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distribution, we have:
∑n−1
k=0 f (Xk)

∑n−1
k=0 g(Xk)

a.s.
⟶
n→∞

�(f )
�(g)

.

Before proving this result, let us derive an immediate corollary that shows that the stationary distribution
arises as the asymptotic proportion of time spent at each state.

Corollary 5.1.2. Suppose that the chain is irreducible and recurrent and let f and g be as above.

(i) If the chain is positive recurrent and if � denotes its unique stationary probability, then for every x ∈ X,
we have ℙx -a.s.

1
n

n−1
∑
k=0

f (Xk) ⟶
n→∞

� (f ).

In particular, for every x, y ∈ X, we have ℙx -a.s.

1
n

n−1
∑
k=0

1Xk=y ⟶
n→∞

� (y) =
1

Ey[Hy]
.

(ii) If the chain is null recurrent then any stationary measure necessarily has in�nite mass and for every
x ∈ X, we have ℙx -a.s.

1
n

n−1
∑
k=0

g(Xk) ⟶
n→∞

0.

In particular, for every x, y ∈ X, we have ℙx -a.s.

1
n

n−1
∑
k=0

1Xk=y ⟶
n→∞

0.

Proof. Simply apply Theorem 5.1.1 to g = 1 or f = 1 respectively.

Remark 5.1.3. More generally, if the chain is not irreducible and if y is positive recurrent, then we have:

1
n

n−1
∑
k=0

1Xk=y
a.s.
⟶
n→∞

1
Ey[Hy]

1Hy<∞.

Moreover, the left-hand side always lies between 0 and 1 so we can take the expectation by dominated
convergence, which reads:

1
n

n−1
∑
k=0

ℙx (Xk = y) ⟶
n→∞

ℙx (Hy < ∞)
Ey[Hy]

.

With the convention that 1/∞ = 0/∞ = 0, this still holds for null recurrent y’s, as well as for transient ones
since then Ey[Hy] = ∞ and we have seen that ∑∞

k=0 ℙx (Xk = y) < ∞.

Proof of Theorem 5.1.1. Let us �x the starting point X0 = x . If X0 is random, then we simply apply the result
to any �xed x and then average with respect to the law of X0.

The idea is to cut the trajectory at every visit of x . By successive applications of the strong Markov
property at each time H j

x , the random variables de�ned by:

Yk =
H k
x −1

∑
i=H k−1

x

g(Xi)

for k ≥ 1 are i.i.d. Recall from Theorem 4.2.8 that all stationary measures are proportional, and precisely
every such measure � takes the form �(y) = �(x)�x (y), where �x is the only stationary measure that has
�x (x) = 1 and is given by (4.2). Then

Ex [Y1] = Ex[
Hx−1
∑
i=0

g(Xi)] = Ex[
Hx−1
∑
i=0

∑
y∈X

g(y)1Xi=y] = ∑
y∈X

g(y)�x (y) = ∑
y∈X

g(y)
�(y)
�(x)

=
�(g)
�(x)

.
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Recall that �(x) > 0 and that we assume that �(g) < ∞, then the Yk ’s are integrable and by the usual Law of
Large Numbers we have under ℙx :

1
n

H n
x −1

∑
i=0

g(Xi) =
1
n

n
∑
k=1

Yk
a.s.
⟶
n→∞

�(g)
�(x)

.

We aim at comparing the sum on the left with that up to a �x number of steps. Let us denote by Vx (n) =
∑n
i=0 1Xi=x the number of visits of x up to time n and observe that:

HVx (n)−1
x ≤ n < HVx (n)

x .

Since g ≥ 0, then we infer that

1
Vx (n)

HVx (n)−1
x −1
∑
i=0

g(Xi) ≤
1

Vx (n)

n−1
∑
i=0

g(Xi) ≤
1

Vx (n)

HVx (n)
x −1
∑
i=0

g(Xi).

Recall that x is recurrent, so Vx (n) ↑n Vx = ∞ a.s. Then combined with the above LLN for the Yk ’s, we infer
that both the lower and upper bound converge a.s. to �(g)/�(x) and so

1
Vx (n)

n−1
∑
i=0

g(Xi)
a.s.
⟶
n→∞

�(g)
�(x)

.

If f is a nonnegative function with �(f ) < ∞, then the same holds with f in place of g, from which we
conclude that

∑n−1
k=0 f (Xk)

∑n−1
k=0 g(Xk)

a.s.
⟶
n→∞

�(f )
�(g)

.

If f is not necessarily nonnegative but has �(|f |) < ∞, we may decomposing as f = f + − f −, apply the above
convergence to f + and to f − separately, and conclude by linearity.

Finally, if f ≥ 0 and �(f ) = ∞, then we can apply the previous result to a sequence (fN )N≥1 of nonnegative
functions that satisfy �(fN ) < ∞ and fN ↑N f and conclude by comparison. Such functions can be explicitly
given e.g. by taking (xi)i≥1 an enumeration of X and setting fN (xi) = (f (xi) ∧ N )1i≤N (recall indeed that
�(x) < ∞ for every given x so �(fN ) < ∞ for each N ).

5.1.2 A Central Limit Theorem

Recall from Corollary 5.1.2 that when the chain is irreducible and admits a stationary probability � , for any
function f ∶ X → ℝ integrable for � , it holds whatever the starting point X0:

1
n

n−1
∑
k=0

f (Xk)
a.s.
⟶
n→∞

� (f ).

The CLT below shows that the deviations away from this limit are asymptotically Gaussian. For simplicity,
we restrict here to �nite state spaces. In this case, any irreducible chain has a unique stationary probability
� and any function f is �-integrable.

Theorem 5.1.4 (Markov chain’s CLT). Suppose that X is a �nite set and that the chain is irreducible, with
stationary probability � . Let f ∶ X → ℝ and de�ne

u(x) = ∑
k≥0

Pkf (x) and then �2 = �(Pu2 − (Pu)2).

Then for any starting point of the chain, we have the convergence in distribution:

1
√
n�2

n
∑
k=0

(f (Xk) − � (f ))
(d)
⟶
n→∞

N(0, 1).
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The proof of this CLT relies on a CLT for martingales, proved in Chapter 9. It is therefore di�ered to
Section 9.7.2. Let us here only discuss the variance �2 which appears in the statement.

Recall that Pu(x) = E[u(X1) ∣ X0 = x]; de�ne then the conditional variance by:

Var(u(X1) ∣ X0 = x) = E[(u(X1) − E[u(X1) ∣ X0 = x])2 ∣ X0 = x]

= E[u(X1)2 ∣ X0 = x] − E[u(X1) ∣ X0 = x]2

= Pu2(x) − (Pu(x))2.

Then the constant �2 in the theorem equals

�2 = ∑
x∈X

� (x) Var(u(X1) ∣ X0 = x),

that is, the expectation of this conditional variance when X0 has the law � . Beware that this is not equal to
the variance of u(X1), for which we need to add Var� (Pu(X0)), which corresponds to the variance of the
conditional expectation E[u(X1) ∣ X0 = x] when X0 has law � . Notice that if the Xk ’s are i.i.d. with law � ,
then this additional term vanishes and indeed �2 = Var(u(X1)). Let us mention that expressing �2 is not
simple in general, and one often approximates it numerically.

5.2 Convergence to the equilibrium

As we observed in Remark 5.1.3, if the chain is irreducible and positive recurrent with stationary distribution
� , then we have the convergence in Cesàro mean: for every x ∈ X,

1
n

n−1
∑
k=0

ℙ(Xk = x) ⟶
n→∞

� (x),

for any initial distribution. We now aim at the convergence of ℙ(Xn = x) for every x , that is the convergence
in distribution of Xn to the law � . There is however a simple technical issue that can prevent such a
convergence called periodic behaviour that we �rst discuss.

5.2.1 Aperiodicity

Take a simple random walk on a cycle of length 4, that is Xn+1 = Xn ± 1 mod 4 with probability 1/2 and
1/2. If X0 = 0, then X2n ∈ {0, 2} and X2n+1 ∈ {1, 3} so the sequence cannot converge in distribution. In this
example, the chain can only come back to its starting point after an even number of steps. This motivates
the next de�nition.

De�nition 5.2.1. A Markov chain or a transition matrix is said to be aperiodic when for every x, y ∈ X,
there exists m ≥ 1 such that for every n ≥ m, we have Pn(x, y) = ℙx (Xn = y) > 0.

The aperiodicity condition is stronger than irreducibility which only asks the existence for each pair
x, y of one index n with Pn(x, y) > 0. Here we require that they all work except �nitely many. When the
chain is irreducible, it su�ces to check the de�nition above with a single point x for it to be aperiodic.

Lemma 5.2.2. A Markov chain is aperiodic if and only if it is irreducible and there exists x ∈ X such that
there exists m ≥ 1 with Pn(x, x) = ℙx (Xn = x) > 0 for every n ≥ m.

Proof. The direct implication is clear, let us only prove the converse one. Let y, z ∈ X. Since the chain is
irreducible, then there exist i, k ≥ 1 such that P i(y, x) > 0 and Pk(x, z) > 0. Moreover for any j ≥ m we have
P j(x, x) > 0. We infer from the Markov property applied at time i + j �rst and then at time i that:

ℙy (Xi+j+k = z) ≥ ℙy (Xi = x, Xi+j = x, Xi+j+k = z)

= ℙy (Xi = x, Xi+j = x)ℙx (Xk = z)

= ℙy (Xi = x)ℙx (Xj = x)ℙx (Xk = z),

which equals P i(y, x)P j(x, x)Pk(x, z) > 0.
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Remark 5.2.3. A simple case is when the assumption holds with m = 1, that is P (x, x) > 0 for some x ∈ X.
A way to force such a behaviour consists in adding random ‘delays’, for example, suppose that at each
time with probability 1/2 we move according to the chain, and with probability 1/2 we stay at the current
position. This de�nes a new Markov chain, whose transition matrix is (P + I )/2, where I is the identity
matrix. Note that a measure is stationary for (P + I )/2 if and only if it is for P so the new chain has the
same asymptotic behaviour as the original one, simply slowed down roughly by a factor 2.

Our de�nition of aperiodicity is not the usual one but is the one that is useful here. The link between
the two de�nitions uses some arithmetics. Recall that if A ⊂ ℕ is a nonempty and �nite set, we let GCDA
denote the greatest integer d ≥ 1 such that each element of A is a multiple of d . If A ⊂ ℕ is in�nite, then let
dn = GCD(A ∩ {1,… , n}) for every n ≥ minA and observe that dn+1 ≤ dn. Hence (dn)n converges to some
d ≥ 1 and, since they are integers, we have actually dn = d for every n large enough; we set GCDA = d .

De�nition 5.2.4. For each x ∈ X, let

I (x) = {n ≥ 1∶ Pn(x, x) > 0} and d(x) = GCD I (x).

If I (x) ≠ ∅, then d(x) ≥ 1 is called the period of x .

In our simple example with four states, each point has period 2.

Proposition 5.2.5. Suppose that the chain is irreducible. First for every x, y ∈ X, we have d(x) = d(y).
Moreover, the chain is aperiodic if and only if d(x) = 1.

Proof. Fix x, y ∈ X. Since the chain is irreducible, then there exists n1, n2 ≥ 1 such that both Pn1(x, y) > 0
and Pn2(y, x) > 0. As in the previous proof, we infer from the Markov property that

Pn2+n1(y, y) ≥ Pn2(y, x)Pn1(x, y) > 0

so n2 + n1 ∈ I (y). Similarly, for every n ∈ I (x), we have

Pn2+n+n1(y, y) ≥ Pn2(y, x)Pn(x, x)Pn1(x, y) > 0

so n2 + n + n1 ∈ I (y). Thus d(y) divides both n2 + n1 and n2 + n + n1 and thus divides n for every n ∈ I (x).
Therefore d(y) divides d(x). By a symmetric argument, d(x) divides d(y) and so d(x) = d(y).

Next, if the chain is aperiodic, then for every x ∈ X there exists n(x, x) such that n ∈ I (x) for every
n ≥ n(x, x), which implies that d(x) = 1 (since for example I (x) contains two prime numbers). Suppose
�nally that d(x) = 1. With the same argument as above, I (x) is stable under addition, namely if n,m ∈ I (x),
then n +m ∈ I (x) since Pn+m(x, x) ≥ Pn(x, x)Pm(x, x). Thus the claim follows by combining Lemma 5.2.2
above and Lemma 5.2.6 below.

Lemma 5.2.6. Suppose that A ⊂ ℕ is an in�nite set stable under addition: if n,m ∈ A, then n +m ∈ A.

(i) If A contains two consecutive integers, say a, a + 1 ∈ A, then A contains all the integers n ≥ a2.

(ii) If A has GCDA = 1 then it contains two consecutive integers.

Hence, if A is stable under addition and has GCDA = 1, then it contains all the integers but �nitely many.

Proof. (i) Suppose a, a + 1 ∈ A. Since A is stable under addition, then every multiple of a belongs to A;
in particular ka2 + �a ∈ A for all k ≥ 1 and � ≥ 0. More generally, any integer n ≥ a2 can be written
uniquely as

n = ka2 + r = ka2 + �a + s = (ka + � − s)a + s(a + 1)

with k ≥ 1, 0 ≤ � ≤ a − 1, and 0 ≤ s ≤ a − 1. Indeed take �rst the Euclidean division of n by a2 and
then that of the rest r by a. Notice then that ka + � − s ≥ 1; since a, a + 1 ∈ A and A is stable under
addition, then the right-hand side belongs to A which therefore contains all the integers n ≥ a2.
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(ii) SupposeGCDA = 1 and take two elements a < b inA. If b = a+1we are done so suppose k = b−a ≥ 2.
Since GCDA = 1, then there necessarily exists c ∈ A which is not a multiple of k, as otherwise k
divides A. Write the Euclidean division c = ik + r with i ≥ 1 and 1 ≤ r ≤ k − 1. Since A is stable under
addition and b ∈ A, then b′ = (i + 1)b ∈ A, and since both a, c ∈ A, then a′ = (i + 1)a + c ∈ A so we
found two elements a′ < b′ in A whose di�erence is:

b′ − a′ = (i + 1)k − c = k − r ≤ k − 1.

If k−r ≥ 2we can iterate this argument and construct a′′ < b′′ inAwhose di�erence is b′′−a′′ ≤ k−r−1.
After at most k − 1 iterations, we �nd two consecutive elements of A.

5.2.2 Periodic chains (⋆)

Recall that for any d ≥ 2, the process (Xnd )n≥0 is a Markov chain with transition matrix Pd . If the original
chain is irreducible and has period d , then (Xnd )n≥0 is almost aperiodic. Actually it may not be irreducible
so the precise statement is the following. To ease notation, if d ≥ 2 and k ∈ {0,… , d − 1}, we let kd =
(k + 1) mod d , that is precisely kd = k + 1 when 0 ≤ k ≤ d − 2 and kd = 0 when k = d − 1.

Proposition 5.2.7. Let d ≥ 2 and let P be the transition matrix of an irreducible and d-periodic chain. Then
there exists a partition X = X0 ∪ ⋯ ∪ Xd−1 such that for every k ∈ {0,… , d − 1}, for every y ∈ X, we have
y ∈ Xkd if and only if there exists x ∈ Xk such that P (x, y) > 0. Moreover for every k ∈ {0,… , d − 1}, the
matrix (Pd (x, y))x,y∈Xk is irreducible and aperiodic.

Proof. Step 1: the partition. Fix x ∈ X and for every k ∈ {0,… , d − 1}, let

Xk = {y ∈ X∶ ∃n ≥ 0 such that Pk+nd (x, y) > 0}.

Since P is irreducible, then for every y ∈ X, there exists m ≥ 1 such that Pm(x, y) > 0. Writing the Euclidean
divisionm = nd +n, we obtain that ⋃d−1

k=1Xk = X. We then claim that these sets are disjoint. Indeed, suppose
that there exists y ∈ Xk ∩X� . Then there exist nk , n� ≥ 0 such that both Pk+nkd (x, y) > 0 and P �+n�d (x, y) > 0.
By irreducibility, there also exists m ≥ 0 such that Pm(y, x) > 0 so by concatenating the paths, we infer
from the Chapman–Kolmogorov equations that both k + nkd + m ∈ I (x) and � + n�d + m ∈ I (x). Recall
that d = GCD I (x) so both k + nkd + m and � + n�d + m are multiple of d and thus so is their di�erence
k−� +(nk −n� )d so �nally k−� is a multiple of d . However recall that k, � ∈ {0,… , d −1} so 0 ≤ |k−� | ≤ d −1
and the only possibility that this is a multiple of d is k − � = 0. Thus Xk ∩X� ≠ ∅ ⟹ k = � .

Step 2: the equivalence. Fix 0 ≤ k ≤ d − 1 and �x z ∈ X. We aim at proving that there exists ∃y ∈ Xk

such that P (y, z) > 0 if and only if z ∈ Xkd . Recall the de�nition of kd and Xj , then z ∈ Xkd means that
there exists n ≥ 0 such that Pk+1+nd (x, z) > 0. Notice then that for every 0 ≤ k ≤ d − 1 and n ≥ 0, we have:

Pk+1+nd (x, z) = (Pk+ndP )(x, z) = ∑
y∈X

Pk+nd (x, y)P (y, z).

Hence Pk+1+nd (x, z) > 0 if and only if there exists y ∈ X such that both Pk+nd (x, y) > 0 and P (y, z) > 0,
namely if and only if there exists y ∈ Xk such that P (y, z) > 0.

Step 3: the position at time n. Fix 0 ≤ k ≤ d − 1, y ∈ Xk , and z ∈ X, we show by induction that for
every n ≥ 0,

Pn(y, z) > 0 ⟹ z ∈ X(n+k) mod d . (5.1)

Hence, starting from X0 ∈ Xk , we have Xn ∈ X(n+k) mod d almost surely for every n ≥ 0. Indeed, for
n = 0 we have Pn(y, z) = 1y=z , so this is clear. For n = 1, this is also a consequence of the previous step
since (1 + k) mod d = kd . Suppose that this holds for some n ≥ 0, then as before, we have Pn+1(y, z) =
∑v∈X Pn(y, v)P (v, z) which is positive if and only if there exists v ∈ X such that both Pn(y, v) > 0 and
P (v, z) > 0. By the induction hypothesis Pn(y, v) > 0 implies that v ∈ X(n+k) mod d . Then by Step 2, the fact
that there exists v ∈ Xn mod d such that P (v, z) > 0 is equivalent to z ∈ X(n+k mod d)+1 mod d = X(n+k+1) mod d .
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Step 4: the restricted matrices. Fix 0 ≤ k ≤ d − 1 and let us prove that the matrix (Pd (y, z))y,z∈Xk is an
irreducible and aperiodic transition matrix. Obviously the entries are nonnegative. For every y ∈ Xk , we
infer from the previous step that Pd (y, z) = 0 for every z ∉ Xk , thus:

∑
z∈Xk

Pd (y, z) = ∑
y∈X

Pd (x, z) = 1.

Hence (Pd (y, z))y,z∈Xk is a transition matrix.
Next �x y, z ∈ Xk , since P is irreducible then there exists n ≥ 1 such that Pn(y, z) > 0. Let us write the

Euclidean division n = md + r with 0 ≤ r ≤ d − 1. Then by the Chapman–Kolmogorov equations, we have

Pmd+r (y, z) = ∑
u1,…,um∈X

Pd (y, u1)
m−1
∏
i=1

Pd (ui , ui+1)P r (um, z).

Since the left-hand side is positive, then there exist u1,… , um ∈ X such that each matrix entry on the right
is positive. By the previous step, since y ∈ Xk then Pd (y, u1) > 0 implies u1 ∈ Xk as well and this further
implies by induction that ui ∈ Xk for each 1 ≤ i ≤ m. Hence um ∈ Xk and P r (um, z) > 0 which implies
that z ∈ X(k+r) mod d . But since z ∈ Xk and these sets are disjoint, then necessarily (k + r) mod d = k,
namely r is a multiple of d and since 0 ≤ r ≤ d − 1 then r = 0. We have thus proved that n = md satis�es
Pn(y, z) = (Pd )m(y, z) > 0 so indeed (Pd (y, z))y,z∈Xk is irreducible.

It remains to prove that it is aperiodic. Fix y ∈ Xk and recall that P is d-periodic, that is d = GCD I (y).
The latter is de�ned as limN GCD(I (y) ∩ N ), where, since GCD(I (y) ∩ N ) is integer-valued, the limit is
achieved and d = GCD(I (y) ∩ N ) for every N large enough. Therefore there exist j ≥ 1 and integers
n1,… , nj ∈ I (y) such that GCD(n1,… , nj) = d . Let us write ni = mid for each 1 ≤ i ≤ n, then (Pd )mi (y, y) > 0
and GCD(m1,… , mj) = 1, hence y has period 1 for Pd .

X0

X1

X2

X3

X4

Figure 5.1: Illustration of an irreducible 5-periodic chain: the space X is partitioned into 5 dis-
joint subspaces along which the chain rotates as shown in (5.1). If we flash the chain every 5
steps, it always falls into the same subspace and it defines an irreducible and aperiodic chain.

5.2.3 Convergence to the stationary distribution

The next theorem proves that periodicity of an (irreducible positive recurrent) chain is the only issue
that can prevent its convergence in distribution. The limit is the stationary probability as we saw in
Proposition 3.3.4.
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Theorem 5.2.8. Suppose that the chain is irreducible, positive recurrent, and aperiodic. Let � denote its
unique stationary probability measure. Then for any initial distribution, we have:

∑
x∈X

|ℙ(Xn = x) − � (x)| ⟶
n→∞

0.

In particular, whatever the initial distribution, (Xn)n converges in distribution to � .

Remark 5.2.9. The convergence above is stronger than convergence in distribution, it is called convergence
in total variation. The total variation is a notion of distance between two probability measures on X, say �
and � ′, given by 1

2 ∑x∈X |� (x) − � ′(x)|.

The proof of Theorem 5.2.8 is based on the coupling of two independent Markov chains. Let us refer to
Section 5.2.6 for some discussion relating this notion and the total variation distance. Let us split the proof
into several intermediate results.

Lemma 5.2.10. Let (Xn)n≥0 and (Yn)n≥0 be two independent Markov chains, with transition matrix PX and
PY respectively.

(i) The pair ((Xn, Yn))n≥0 is a Markov chain on X2.

(ii) If (Xn)n and (Yn)n are both irreducible and aperiodic, then so is (Xn, Yn)n.

(iii) If moreover (Xn)n and (Yn)n are both positive recurrent, then so is (Xn, Yn)n.

Proof. (i) Fix any possible trajectories x0,… , xn and y0,… , yn, then by independence:

ℙx0,y0(
n
⋂
i=1
{(Xi , Yi) = (xi , yi)}) = ℙx0(

n
⋂
i=1
{Xi = xi})ℙy0(

n
⋂
i=1
{Yi = yi})

=
n

∏
i=1

PX (xi−1, xi)
n

∏
i=1

PY (yi−1, yi)

=
n

∏
i=1

(PX (xi−1, xi)PY (yi−1, yi)).

One easily checks that
(PX ⊗ PY )((x, y), (x ′, y′)) = PX (x, x ′)PY (y, y′)

is a transition matrix on X2, so indeed the pair ((Xn, Yn))n≥0 is a PX ⊗ PY -Markov chain.

(ii) Suppose PX and PY irreducible and aperiodic, then for any x1, x2, y1, y2, there exist i, j ≥ 1 such that
for any n ≥ i, we have PnX (x1, x2) > 0 and for any n ≥ j, we have PnY (y1, y2) > 0, therefore for any
n ≥ max(i, j), we have (PX ⊗ PY )n((x1, y1)(x2, y2)) > 0 and PX ⊗ PY is thus irreducible and aperiodic.

(iii) If the chains are positive recurrent, then there exist a PX -stationary probability measure �X and a
PY -stationary probability measure �Y and one easily checks that the product probability measure
(�X ⊗ �Y )(x, y) = �X (x)�Y (y) is then PX ⊗ PY -stationary so the pair is positive recurrent.

Observe that the fact that each chain is aperiodic is crucial to deduce that the pair is even irreducible,
as otherwise it may be the case that {Xn = x} ∩ {Yn = y} = ∅ for all n. For a concrete example, take again
two independent walks on the cycle of length 4, started at (1, 1), it will never reach (1, 2).

Lemma 5.2.11. Let (Xn)n≥0 and (Yn)n≥0 be two independent P-Markov chains and de�ne their coupling time:

T = inf{n ≥ 0∶ Xn = Yn}. (5.2)

De�ne also for every n ≥ 0,
Zn = Xn 1n<T + Yn 1n≥T .

Then (Zn)n≥0 is a P-Markov chain with same initial position as (Xn)n≥0, so they have the same law.

87



Proof. By the previous lemma the pair (Xn, Yn)n is a Markov chain. Observe that

T = inf{n ≥ 0∶ (Xn, Yn) ∈ {(x, x), x ∈ X}}

is a stopping time for this process. Fix n ≥ 1 and z0,… , zn ∈ X and let us write:

ℙ(Z0 = z0,… , Zn = zn) = ℙ(Z0 = z0,… , Zn = zn, T ≥ n) +
n−1
∑
k=0

ℙ(Z0 = z0,… , Zn = zn, T = k).

When T ≥ n we have Zi = Xi for every i ≤ n, including i = n so the �rst probability on the right equals
ℙ(X0 = z0,… , Xn = zn, T ≥ n). Next, for 0 ≤ k ≤ n − 1 �xed, the summand on the right equals:

ℙ(X0 = z0,… , Xk = zk , Y0 ≠ z0,… , Yk−1 ≠ zk−1, Yk = zk ,… , Yn = zn),

which, by independence of the chains, can be split as:

ℙ(X0 = z0,… , Xk = zk)ℙ(Y0 ≠ z0,… , Yk−1 ≠ zk−1, Yk = zk ,… , Yn = zn).

By applying the Markov property to the chain (Yn)n at time k, the very last probability equals

ℙ(Y0 ≠ z0,… , Yk−1 ≠ zk−1, Yk = zk)ℙzk (Y1 = zk+1,… , Yn−k = zn)

and since the chains (Xn)n and (Yn)n have the same transition matrix P , then appealing e.g. to Theorem 3.2.2,
we have:

ℙzk (Y1 = zk+1,… , Yn−k = zn) = ℙzk (X1 = zk+1,… , Xn−k = zn).

Wrapping up, we infer that

ℙ(Z0 = z0,… , Zn = zn, T = k)

= ℙ(X0 = z0,… , Xk = zk)ℙ(Y0 ≠ z0,… , Yk−1 ≠ zk−1, Yk = zk)ℙzk (X1 = zk+1,… , Xn−k = zn)

= ℙ(X0 = z0,… , Xn = zn)ℙ(Y0 ≠ z0,… , Yk−1 ≠ zk−1, Yk = zk)

= ℙ(X0 = z0,… , Xn = zn, Y0 ≠ z0,… , Yk−1 ≠ zk−1, Yk = zk)

= ℙ(X0 = z0,… , Xn = zn, T = k).

Gathering our �ndings, we conclude that

ℙ(Z0 = z0,… , Zn = zn) = ℙ(Z0 = z0,… , Zn = zn, T ≥ n) +
n−1
∑
k=0

ℙ(Z0 = z0,… , Zn = zn, T = k)

= ℙ(X0 = z0,… , Xn = zn, T ≥ n) +
n−1
∑
k=0

ℙ(X0 = z0,… , Xn = zn, T = k)

= ℙ(X0 = z0,… , Xn = zn),

and the claim follows from Theorem 3.2.2.

We can now easily derive Theorem 5.2.8.

Proof of Theorem 5.2.8. Suppose the chain is aperiodic and positive recurrent, with stationary probability
� . Let us use the previous notation. Let (Xn)n≥0 start from an arbitrary distribution and independently let
(Yn)n≥0 start from the stationary distribution � . Then Yn has the law � for every n ≥ 0. Since Zn has the
same law as Xn for every n ≥ 0, then

|ℙ(Xn = x) − � (x)| = |ℙ(Zn = x) − ℙ(Yn = x)|

= |ℙ(Xn = x, T > n) + ℙ(Yn = x, T ≤ n) − ℙ(Yn = x)|

= |ℙ(Xn = x, T > n) − ℙ(Yn = x, T > n)|

≤ ℙ(Xn = x, T > n) + ℙ(Yn = x, T > n).
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Then summing over all possible values of x , we obtain:

∑
x∈X

|ℙ(Xn = x) − � (x)| ≤ 2ℙ(T > n).

Now recall that the chain (Xn, Yn)n is irreducible and recurrent, so a.s. for every initial distribution, we have
T = inf{n ≥ 0∶ (Xn, Yn) ∈ {(x, x), x ∈ X}} < ∞ and thus ℙ(T > n)→ 0 as n → ∞.

5.2.4 Null recurrent chains (⋆)

In the transient or null recurrent case, the limit in the previous theorem is simply 0.

Proposition 5.2.12. If (Xn)n is aperiodic and either transient or null recurrent, then for every x, y ∈ X we
have ℙx (Xn = y)→ 0 as n → ∞.

Proof. First if the chain is transient, then we know from Remark 4.1.5 that the expected number of visit of
any point is �nite, namely, for all x, y ∈ X,

∑
n≥0

ℙx (Xn = y) = Ex [Vy] < ∞,

so in particular ℙx (Xn = y)→ 0 as n → ∞.
Suppose henceforth that the chain (Xn)n is null recurrent. From the previous proof, we know that if

we start another independent chain (Yn)n with the same transition matrix P , then the pair (Xn, Yn) has
transition matrix P ⊗ P which is irreducible but now can be either transient or recurrent. Let us note that it
cannot be positive recurrent. Indeed since (Xn)n is null recurrent than it admits stationary measures and
they all have in�nite total mass. Now if � is such a measure, then � ⊗ � is stationary for P ⊗ P , and it also
have in�nite mass so the claim follows from Corollary 4.2.11.

If the pair is transient, then we infer as above that

ℙ(x,x)((Xn, Yn) = (y, y)) ⟶
n→∞

0.

On the other hand, by independence, the left-hand side equals ℙx (Xn = y)2 which therefore converges to 0.
Suppose henceforth that both P and P ⊗ P are null recurrent. Then exactly as in the previous proof,

whatever the initial distribution of (X0, Y0), the coupling time T = inf{n ≥ 0∶ (Xn, Yn) ∈ {(x, x), x ∈ X}} is
�nite almost surely (by recurrence of the pair) and thus

|ℙ(Xn = y) − ℙ(Yn = y)| ≤ 2ℙ(T > n) ⟶
n→∞

0

for all initial distributions of (X0, Y0). Taking X0 = x0 and Y0 = y0, we read:

Pn(x0, y) − Pn(y0, y) ⟶
n→∞

0. (5.3)

Recall that our aim is to prove that Pn(x, y)→ 0 for every x, y ∈ X. Fix x ∈ X and let us enumerate X as
{y1, y2,…}. Notice that Pn(x, y1) ∈ [0, 1] so there exists a subsequence (nk)k such that Pnk (x, y1)→ �(y1) ∈
[0, 1] as k → ∞. Similarly we can then extract from (nk)k a subsequence (nkj )j such that Pnkj (x, y2) →
�(y2) ∈ [0, 1] as j → ∞, and of course Pnkj (x, y1)→ �(y1). By induction (this is Cantor’s diagonal extraction
argument), we obtain that there exists a subsequence, say, (mi)i such that Pmi (x, y) converges to a limit
�(y) ∈ [0, 1] for all y ∈ X. Combined with (5.3) we may replace x by any other point, namely

Pmi (u, y)→ �(y)

for every u, y ∈ X.
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We claim that � is a �nite stationary measure. Indeed:

�P (z) = ∑
y∈X

�(y)P (y, z)

= ∑
y∈X

( limi→∞
Pmi (x, y))P (y, z)

≤ lim inf
i→∞

∑
y∈X

Pmi (x, y)P (y, z),

where the inequality follows from Fatou’s lemma (Theorem 1.3.12) applied to the measure P (⋅, z). Now
observe that

∑
y∈X

Pmi (x, y)P (y, z) = Pmi+1(x, z) = ∑
y∈X

P (x, y)Pmi (y, z).

Recall that Pmi (y, z)→ �(z) for every y, z ∈ X so by dominated convergence, for every z ∈ X, we have:

�P (z) ≤ lim inf
i→∞

∑
y∈X

P (x, y)Pmi (y, z) = ∑
y∈X

P (x, y)�(z) = �(z).

Let us next sum over z the left-hand side:

∑
z∈X

�P (z) = ∑
z∈X

∑
y∈X

�(y)P (y, z) = ∑
y∈X

∑
z∈X

�(y)P (y, z) = ∑
y∈X

�(y).

Hence �P (z) ≤ �(z) for every z ∈ X and the sum over z of both sides are equal. This implies that �P (z) = �(z)
for every z ∈ X so � is indeed stationary. By Fatou’s lemma again, the total mass of � is:

∑
y∈X

�(y) = ∑
y∈X

( limi→∞
Pmi (x, y)) ≤ lim inf

i→∞
∑
y∈X

Pmi (x, y) = 1.

Hence � is a stationary measure with �nite mass. Note that it could be the constant null measure.
To conclude, if there exists y ∈ X such that Pn(x, y) does not converge to 0, then it has a subsequence

with a positive limit. Then by starting our diagonal argument with this one, we get �(y) > 0 for this
particular value, and hence � is a nontrivial stationary measure with �nite mass, which contradicts the fact
that P is null recurrent. Hence � is the constant null measure and Pn(x, y) → 0 along any subsequence,
hence Pn(x, y)→ 0 as we claimed.

5.2.5 Speed of convergence

As always, in practice, a convergence result such as in Theorem 5.2.8 is not enough since n will not tend to
in�nity, and quantifying how far from the limit we are at a given n is crucial. This is not an easy question
and often there are no universal response. Let us give a criterion due to Döblin which implies an exponential
rate of convergence; notice the power of this result which provides an explicit bound that applies uniformly
over all starting points and any time n.

Theorem 5.2.13. Suppose that the chain is irreducible and aperiodic and that it satis�es the Döblin condition:
there exist an integer k ≥ 1, a real number � > 0, as well as a probability measure � on X such that:

ℙx (Xk = y) ≥ ��(y) for every x, y ∈ X. (5.4)

Then the chain has a stationary probability � and it satis�es: for every n ≥ 1,

sup
x0∈X

∑
x∈X

|ℙx0(Xn = x) − � (x)| ≤ 2(1 − �)
⌊n/k⌋.
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Since the chain is irreducible, then for every pair x, y ∈ X, there exists k ≥ 1 such that ℙx (Xk = y) > 0;
in (5.4) we require a uniform lower bound on this probability. Notice that if X is �nite, then this condition
always holds for an irreducible and aperiodic chain. Indeed in this case, there exists k ≥ 1 such that
ℙx (Xk = y) > 0 for all pairs x, y ∈ X and we may set:

� = ∑
y∈X

min
x∈X

ℙx (Xk = y) > 0 and then �(y) =
1
�
min
x∈X

ℙx (Xk = y).

This provides a good starting point, but in practice the rate of convergence is often obtained by a speci�c
analysis of the model which often allows to obtain a better bound than in Theorem 5.2.13.

The proof of Theorem 5.2.13 takes three steps that we separate: we �rst prove the existence of � , then
we prove that it su�ces to consider the case k = 1, and �nally we prove the upper bound when k = 1.

Proof of existence of � . Let us �rst prove that the assumptions ensure the existence of a stationary probability.
Recall that this is equivalent to the existence of a positive recurrent state. Fix henceforth y ∈ X such
that �(y) > 0, which exists since ∑x �(x) = 1, and let us prove that Ey[Hy] < ∞. This is an application of
the “what can happen will happen” principle discussed in the exercises: since the Döblin condition (5.4)
stipulates that, whatever the current position, there is a probability at least ��(y) to lie at y k steps later,
then this will occur after at most a renom geometric number of trials.

Precisaly, by applying the Markov property at time (n − 1)k, we have:

ℙy (Hy > nk) ≤ ∑
x≠y

ℙy (Hy > (n − 1)k, X(n−1)k = x, Hy > nk)

= ∑
x≠y

ℙy (Hy > (n − 1)k, X(n−1)k = x)ℙx (Hy > k)

≤ ∑
x≠y

ℙy (Hy > (n − 1)k, X(n−1)k = x)ℙx (Xk ≠ y)

≤ ∑
x≠y

ℙy (Hy > (n − 1)k, X(n−1)k = x) ⋅ (1 − ��(y)) by (5.4)

= ℙy (Hy > (n − 1)k) ⋅ (1 − ��(y)).

We infer by induction that ℙy (Hy > nk) ≤ (1 − ��(y))n for every n ≥ 1 and thus:

Ey[Hy] = ∑
n≥0

ℙy (Hy > n) ≤ k∑
n≥0

ℙy (Hy > nk) < ∞.

Therefore y is positive recurrent and so is the entire chain by irreducibility, so it admits a unique stationary
distribution � .

Proof of the exponential bound. Fix any distribution �0 on X, let X0 be distributed as �0, and then let us
denote by �n the law of Xn for every n ≥ 1. By the Markov property at time nk, we have:

�(n+1)k(x) = ∑
z∈X

�nk(z)ℙz(Xk = x).

In the particular case �0 = � is the stationary distribution, we know that �n = � for every n ≥ 1 so

� (x) = ∑
z∈X

� (z)ℙz(Xk = x).

Notice that since both �nk and � are probability measures, then

∑
z∈X

(�nk(z) − � (z))��(x) = (∑
z∈X

�nk(z) −∑
z∈X

� (z))��(x) = (1 − 1)��(x) = 0.
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Combining these remarks, we infer that

∑
x∈X

|�(n+1)k(x) − � (x)| = ∑
x∈X

|||∑
z∈X

(�nk(z) − � (z))(ℙz(Xk = x) − ��(x))
|||

≤ ∑
x,z∈X

|�nk(z) − � (z)| ⋅ |ℙz(Xk = x) − ��(x)|

= ∑
x,z∈X

|�nk(z) − � (z)| ⋅ (ℙz(Xk = x) − ��(x)) by (5.4)

= ∑
z∈X

|�nk(z) − � (z)| ∑
x∈X

(ℙz(Xk = x) − ��(x))

= ∑
z∈X

|�nk(z) − � (z)| ⋅ (1 − �).

We infer by induction that

∑
x∈X

|�nk(x) − � (x)| ≤ (1 − �)n ∑
x∈X

|�k(x) − � (x)| ≤ 2(1 − �)n,

since ∑x∈X |�k(x) − � (x)| ≤ ∑x∈X(�k(x) − � (x)) = 2.
Finally, if m ≥ 1 is any integer, then we may write the Euclidean division m = nk + r with 0 ≤ r ≤ k − 1,

and the similarly as above:

∑
x∈X

|�m(x) − � (x)| = ∑
x∈X

|||∑
z∈X

(�nk(z) − � (z))ℙz(Xr = x)
|||

≤ ∑
x,z∈X

|�nk(z) − � (z)| ⋅ ℙz(Xr = x)

= ∑
z∈X

|�nk(z) − � (z)|.

We conclude from the previous case.

5.2.6 Coupling and total variation distance (⋆)

As we mentioned already, Theorem 5.2.8 and Theorem 5.2.13 control the total variation distance between
the law of Xn and the stationary distribution � and the proof relies on a coupling argument. Let us here
discuss more the relation between these two notions.

De�nition 5.2.14. Let � and � be two probability measures on X, we de�ne

‖� − �‖TV =
1
2
∑
x∈X

|� (x) − �(x)|,

which is called the total variation distance between � and � .

Exercise 5.2.15. Prove that the total variation distance is a distance between probability measures on X.

This notion of distance is stronger than the convergence in distribution: if one thinks of a probability as
a function from the subsets of X to [0, 1], then the convergence in distribution is a pointwise convergence,
whereas the convergence for the total variation distance is a uniform convergence as we next prove.

Proposition 5.2.16. Let � and � be two probability measures on X, then

‖� − �‖TV = sup
A⊂X

|� (A) − �(A)|,

where we recall that � (A) = ∑x∈A � (x).
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Proof. Let us �rst prove that the left-hand side is smaller than or equal to the right-hand side by providing
one subset A which realises the total variation distance. Precisely, let A = {x ∈ X∶ � (x) ≥ �(x)}, then

‖� − �‖TV =
1
2
∑
x∈A

|� (x) − �(x)| +
1
2
∑
x∈Ac

|� (x) − �(x)|

=
1
2
∑
x∈A

(� (x) − �(x)) −
1
2
∑
x∈Ac

(� (x) − �(x))

=
� (A) − � (Ac) − �(A) + �(Ac)

2
.

Since � and � are probability measures, then we have � (A) + � (Ac) = �(A) + �(Ac) = 1 and thus

� (A) − � (Ac) − �(A) + �(Ac)
2

= � (A) − �(A) −
1
2
(� (A) + � (Ac) − �(A) − �(Ac)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

= 0

),

and similarly:

� (A) − � (Ac) − �(A) + �(Ac)
2

= �(Ac) − � (Ac) +
1
2
(� (A) + � (Ac) − �(A) − �(Ac)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

= 0

).

Thus, for this choice of A, we have

‖� − �‖TV = � (A) − �(A) = �(Ac) − � (Ac). (5.5)

Next for any subset B ⊂ X, we have since � ≤ � on Ac and � ≥ � on A:

� (B) − �(B) = � (B ∩ A) + � (B ∩ Ac) − �(B ∩ A) − �(B ∩ Ac)

≤ � (B ∩ A) − �(B ∩ A)

≤ � (B ∩ A) + � (Bc ∩ A) − �(B ∩ A) − �(Bc ∩ A)

= � (A) − �(A),

and similarly �(B) − � (B) ≤ �(Ac) − � (Ac) so

|� (B) − �(B)| ≤ � (A) − �(A) = �(Ac) − � (Ac) = ‖� − �‖TV

for all B ⊂ X.

Let us turn to the notion of coupling.

De�nition 5.2.17. Let � and � be two probability measures on X. A coupling of � and � is a probability
measure � on X2 such that if (X, Y ) has the law �, then X has the law � and Y has the law � . We shall
denote by C(�, �) the set of all their couplings.

Example 5.2.18. If � = � is the Bernoulli law with parameter 1/2, we can take either X and Y independent
with this law, or X = Y , or X = 1 − Y . This provides three di�erent couplings.

Couplings relate to the total variation distance as follows.

Proposition 5.2.19. Let � and � be two probability measures on X. Then

‖� − �‖TV = min
�∈C(�,�)

�(X ≠ Y ),

where �(X ≠ Y ) is the probability that X di�ers from Y when the pair (X, Y ) has the law �.
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Proof. Again, let us �rst prove that the left-hand side is smaller than or equal to the right-hand side. If X
has the law � and Y the law � , then for any coupling and any subset A ⊂ X it holds

ℙ(X ≠ Y ) ≥ ℙ(X ∈ A, Y ∈ Ac)

≥ ℙ(X ∈ A, Y ∈ Ac) − ℙ(X ∈ Ac , Y ∈ A)

= ℙ(X ∈ A, Y ∈ A) + ℙ(X ∈ A, Y ∈ Ac) − ℙ(X ∈ A, Y ∈ A) − ℙ(X ∈ Ac , Y ∈ A)

= ℙ(X ∈ A) − ℙ(Y ∈ A)

= � (A) − �(A).

Recall from the previous proposition that ‖� − �‖TV is the supremum over A of these quantities, hence

ℙ(X ≠ Y ) ≥ ‖� − �‖TV

for every coupling. To prove the equality, it remains to �nd one optimal coupling. Let A = {x ∈ X∶ � (x) ≥
�(x)} and then

p = 1 − ∑
x∈X

min(� (x), �(x)) = 1 − (�(A) + � (Ac)) = � (A) − �(A) = ‖� − �‖TV ,

by (5.5). Let then � have the Bernoulli law with parameter p. If � = 0, then let X = Y be distributed
according to

ℙ(X = x ∣ � = 0) =
1

1 − p
min(� (x), �(x)) =

1
1 − p

(� (x)1x∈Ac + �(x)1x∈A).

If � = 1, then let X and Y be independent and sampled respectively from:

ℙ(X = x ∣ � = 1) =
� (x) − �(x)
‖� − �‖TV

1x∈A and ℙ(Y = y ∣ � = 1) =
�(y) − � (y)
‖� − �‖TV

1y∈Ac ,

which are indeed probabilities by (5.5).
Let us check that this de�nes a coupling in that X has the law � and Y the law � : since p = ‖� − �‖TV ,

then simply

ℙ(X = x) = p ℙ(X = x ∣ � = 1) + (1 − p) ℙ(X = x ∣ � = 0)

= (� (x) − �(x))1x∈A + (� (x)1x∈Ac + �(x)1x∈A)

= � (x),

and similarly

ℙ(Y = y) = p ℙ(Y = y ∣ � = 1) + (1 − p) ℙ(Y = y ∣ � = 0)

= (�(y) − � (y))1y∈Ac + (� (y)1y∈Ac + �(y)1y∈A)

= �(y).

Finally, if � = 0 then X = Y and if � = 1, then X ∈ A and Y ∈ Ac so X ≠ Y if and only if � = 1, which
occurs with probability p = ‖� − �‖TV .

5.3 Monte–Carlo simulations

Up to now, we assumed in this chapter that we had a Markov chain, coming from a modelisation, and we
studied its behaviour. One can conversely use Markov chains to study, and precisely here simulate, exactly
or approximately, a given distribution. This concept is called MCMC for “Markov chain Monte–Carlo”.
Indeed, suppose we have a �nite, but large, set X and a probability measure � on this set. Even in a simple
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setting, say if � is the uniform distribution on X, it may not be easy to simulate in practice a random
variable with the law � , or close to it.

However in many cases we are able to construct a Markov chain (Xn)n≥0 on X that has � as stationary
probability and we are able to simulate it, using e.g. the representation as a random recursion. According
to Corollary 5.1.2, if we simulate one trajectory X0,… , Xn for a large n, then the average amount of time
n−1∑n−1

k=0 1Xk=x spent at a given x approximates � (x). More generally, the average n−1∑n−1
k=0 f (Xk) of a

function converges to its integral � (f ) = ∑x∈X f (x)� (x), and Theorem 5.1.4 provides asymptotic con�dent
intervals, just in the same way we use the CLT for i.i.d. random variables. If one is interested in numerically
computing this limit integral, then this can provide a more e�cient way than deterministic schemes
whose complexity grows with the dimension. In another direction, one can sample a large number N
of i.i.d. trajectories (X i

0,… , X i
n) for 1 ≤ i ≤ N , and then by the usual Law of Large Numbers, the average

N −1∑N
i=1 1X i

n=x approximates ℙ(Xn = x) which itself approximates � (x) by Theorem 5.2.8, and with an
exponential speed of convergence as shown by Theorem 5.2.13.

In the next subsection we describe an algorithm to run such a Markov chain, which we �rst apply to
particular laws called Gibbs measures. Finally we relate these measures to the problem of minimising a
cost function.

Throughout this section, we assume that X is a �nite (but very large) set. One can think of a discretised
compact subset in ℝd with a small mesh size, or to a large �nite network for example.

5.3.1 The Metropolis–Hastings algorithm

Let � denote a probability measure on a �nite set X and assume that � (x) > 0 for every x ∈ X (otherwise
simply remove all the points x where � (x) = 0). Let ℎ∶ (0,∞)→ (0, 1] be a nondecreasing function that
satis�es ℎ(u) = uℎ(1/u) for every u > 0; two usual examples are:

ℎ(u) = min{u, 1} as well as ℎ(u) =
u

u + 1
.

Let P0 be an irreducible transition matrix on X that has for any x, y ∈ X:

P0(x, y) > 0 ⟺ P0(y, x) > 0.

This transition matrix is called a proposal matrix. Let us then de�ne the rejection probability:

R(x, y) = ℎ(
� (y)P0(y, x)
� (x)P0(x, y))

,

which is well-de�ned for x ≠ y such that P0(x, y) ≠ 0; when P0(x, y) = 0, we simply put R(x, y) = 0. Finally
let us set:

P (x, y) = P0(x, y)R(x, y) for x ≠ y and then P (x, x) = 1 −∑
y≠x

P (x, y). (5.6)

Recall the notion of reversibility from De�nition 4.2.1.

Theorem 5.3.1. The matrix P from (5.6) is an irreducible transition matrix and the law � is reversible for P .
Finally P is aperiodic as soon as either ℎ < 1 or P0 is aperiodic.

Proof. Clearly ∑y P (x, y) = 1 and P (x, y) ≥ 0 if x ≠ y. For x = y, we have since ℎ ≤ 1:

P (x, x) = 1 −∑
y≠x

P0(x, y)R(x, y) ≥ 1 −∑
y≠x

P0(x, y) = P0(x, x) ≥ 0

since P0 is a transition matrix. Also, since ℎ > 0, then irreducibility of P is inherited from that of P0: for
every x, y ∈ X, there exists n ≥ 1 such that Pn0 (x, y), and thus Pn(x, y) > 0. The reversibility of � follows by
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the property ℎ(u) = uℎ(1/u), namely for x ≠ y:

� (x)P (x, y) = � (x)P0(x, y)ℎ(
� (y)P0(y, x)
� (x)P0(x, y))

= � (x)P0(x, y)
� (y)P0(y, x)
� (x)P0(x, y)

ℎ(
� (x)P0(x, y)
� (y)P0(y, x))

= � (y)P0(y, x)ℎ(
� (x)P0(x, y)
� (y)P0(y, x))

= � (y)P (y, x).

Let us �nally focus on aperiodicity of P . Recall from Remark 5.2.3 that an easy case is when there exists
x ∈ X such that P (x, x) > 0. Writing again P (x, x) = 1 −∑y≠x P0(x, y)R(x, y), this is the case as soon as
there exists y ≠ x , such that both P0(x, y) > 0 and R(x, y) < 1. In particular this holds as soon as ℎ < 1.
Next, if R(x, y) = 1 for every x ≠ y such that P0(x, y) > 0, then P (x, y) = P0(x, y) > 0 for all such pairs, and
P (x, y) = 0 = P0(x, y) for the other pairs, so �nally P = P0 which is thus aperiodic if we suppose that P0 is
aperiodic (!).

Suppose that we are able to generate a Markov chain with transition matrix P0, say using the represent-
ation P0(x, y) = ℙ(f (x, � ) = y), then we can generate a Markov chain (Xn)n≥0 with transition matrix P by
running the following algorithm:

• Initialise with some X0

• For k from 0 to n − 1, do:

– Sample Y from ℙ(Y = y) = ℙ(f (Xk , � ) = y)

– Sample U with the uniform distribution on [0, 1]

– If U < R(Xk , Y ), then set Xk+1 = Y , else set Xk+1 = Xk

• Return (X0,… , Xn)

According to Theorem 5.3.1 this Markov chain (Xn)n≥0 has stationary distribution � and since the state
space X is �nite, then Theorem 5.2.13 applies so there exist � > 0 and k ≥ 1 such that for every n ≥ 1, it
holds:

∑
x∈X

|ℙ(Xn = x) − � (x)| ≤ 2(1 − �)⌊n/k⌋,

uniformly for all initial distributions. Hence this algorithm allows to generate Xn with a law close to � ,
with a control of the error, which decays exponentially fast to 0.

Remark 5.3.2. In the �rst version of this algorithm, the function ℎ was precisely ℎ(u) = min{u, 1} and the
matrix P0 was symmetric in that P0(x, y) = P0(y, x) for all x, y. In this case we have simply:

R(x, y) =

{
1 when � (y) ≥ � (x),
� (y)
� (x) when � (y) < � (x).

Remark 5.3.3. It may be interesting in some cases to take a transition matrix of the form P0(x, y) = P0(y),
that is, sample a proposal move Yn+1 at every step that is independent of Xn. But then the acceptance of
this proposal still depends on Xn through the function R.

5.3.2 Gibbs measures

A very useful particularity of the previous algorithm is that it only depends on � through ratios of the
form � (y)/� (x). In particular this can be used to approximate � when the latter is only known up to a
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multiplicative constant. This is very well suited to study Gibbs measures which come from statistical physics.
Let again X be a large but �nite set and let V ∶ X → ℝ be a function which we call a potential. For any
T > 0, we de�ne a probability measure on X by setting for every x ∈ X:

�T (x) =
1
ZT

exp(−
V (x)
T ) where ZT = ∑

x∈X
exp(−

V (x)
T ). (5.7)

In many cases the potential V (x) can be computed for any given x ∈ X, but computing ZT requires to
compute V (x) for all x ∈ X, which cannot be done in practice when X is too large. The Metropolis–Hastings
algorithm allows to approximate �T without computing ZT !

Let us describe here one historical example of application to the Ising model, which is a simpli�ed
version of a magnetic system. Take a large number N of particles placed on a regular grid, say for example
a rectangle in ℤ2, which represents a piece of metal; each particle i possesses a spin si ∈ {−1, +1}, which
corresponds to its orientation. A con�guration of spins is then an element s = (si)1≤i≤N ∈ {−1, +1}N . Let us
write i ∼ j when the particles i and j are neighbours in the grid. We then consider the potential:

V (s) = −∑
i∼j

sisj .

Two con�gurations minimise the energy (the “fundamental states”): si = +1 for every i and si = −1 for
every i. More generally, the potential is small when the spins of neighbours tend to align with each other,
and therefore these con�gurations are given a higher probability in the corresponding Gibbs measure �T .

Computing V (s) for any given con�guration s takes a linear complexity, of order N , but computing the
normalising constant ZT requires to compute V (s) for all the 2N con�gurations! However the Metropolis–
Hastings algorithm can be easily implemented here. As proposal P0, given a spin con�guration, choose
one particle uniformly at random and replace its spin by its opposite. Formally: for s ∈ {−1, +1}N and
i ∈ {1,… , N}, let s(i) ∈ {−1, +1}N be given by s(i)j = sj for j ≠ i and s(i)i = −si . Then set

P0(s, s(i)) =
1
N

for every 1 ≤ i ≤ N .

For two such con�gurations s and s(i), we have

V (s(i)) − V (s) = 2si ∑
j∼i

sj and so
�T (s(i))
�T (s)

= exp(−
2
T
si ∑

j∼i
sj).

Note that P0(s(i), s) = P0(s, s(i)); take ℎ(u) = min{u, 1}, then by Remark 5.3.2, the Metropolis–Hastings
algorithm works as follows:

• Initialise with some X0 = s

• For k from 0 to n − 1, do:

– Let Xk+1 = Xk

– Sample I uniformly at random in {1,… , N} and compute Z = 2Xk(I )∑j∼I Xk(j)

– If Z ≤ 0, then set Xk+1(I ) ∶= −Xk+1(I ),

– Else, sample U uniformly at random in [0, 1], if U < exp(−2Z /T ), then set Xk+1(I ) ∶= −Xk+1(I )

• Return (X0,… , Xn)

We see in the loop that every time changing the random spin by its opposite reduces the total energy, we
accept this change so we tend to decrease the energy as time goes by. On the other hand we also allow
randomly to move to a state with higher energy, so we do not get trapped in a local minimum of energy.
Let us push further this idea in the next problem.
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5.3.3 Optimisation problem and simulated annealing

Let V be a general potential on a large �nite set X. Our aim is to �nd, algorithmically, a way to minimise V .
If V is a convex function, there is a well-known method, called the gradient descent, which is described in
Section 9.8, which de�nes a recursive sequence that converges to the unique minimiser. However if V has
several local minima which are not global minima, then this algorithm may converge to one of them and
completely miss the global minimum.

We shall circumvent this issue by means of the Gibbs measure �T associated with V , which can be
approximated by the Metropolis–Hastings algorithm. The parameter T > 0 is interpreted as the temperature.
When T is high, then so are the random �uctuations: in the previous algorithm, the threshold exp(−2Z /T )
when Z > 0 is close to 1 so we accept most of the proposals. However when T is small, proposals which
increase the energy are more often rejected so the con�gurations with minimal energy are preferred (in the
Ising model, the spins tend to align more with each other). Formally, given any potential V on X, let

M(V ) = argminV = {x ∈ X∶ V (x) = min
y∈X

V (y)}

denote the set of minimisers of V .

Lemma 5.3.4. The Gibbs measure �T converges to the uniform distribution on M(V ) as T → 0, namely for
every x ∈ X, we have:

lim
T→0

�T (x) =

{
Card(M(V ))−1 if x ∈M(V ),

0 if x ∉M(V ).

Proof. Let V ∗ = minV denote the minimum value of V , then for every x ∈ X, we have after multiplying
the numerator and denominator by exp(V ∗/T ):

�T (x) =
1

∑y∈X exp(−(V (y) − V ∗)/T )
exp(−

V (x) − V ∗

T ).

Now on the right-hand side, the term in the exponential vanishes when x ∈M(V ), whereas it tends to −∞
as T → 0 when x ∉M(V ). Thus indeed:

lim
T→0

�T (x) = 1x∈M(V )( ∑
y∈M(V )

1y∈M(V ))

−1

= 1x∈M(V )
1

Card(M(V ))
,

and the proof is complete.

We can then use this property to solve our optimisation problem. The simulated annealing consists in
running the Metropolis–Hastings algorithm to approximate �T but letting T = Tn vary at each step. Notice
that the Markov chain is then inhomogeneous in time. The idea is to have Tn relatively large at �rst, so �Tn
�uctuates a lot and the Markov chain moves a lot and visits many states, and slowly let Tn tend to 0 so the
Markov chain stabilises on the minimum. The speed of convergence of Tn to 0 is then crucial. We will not
prove the following result.

Theorem 5.3.5. For any potential V on a �nite set X and any proposal transition matrix P0, there exists
a constant C > 0 which depends on both V and P0 such that the Metropolis–Hastings algorithm run with
Tn = C(log n)−1 satis�es

ℙ(Xn ∈M(V )) ⟶
n→∞

1.

In words the algorithm stabilises on a minimiser of V with arbitrarily high probability.

As a last example of application, let us consider the travelling salesman problem. Let N points z1,… , zN
in ℝ2 which we think as locations that our salesman has to visit while minimising the total travel distance.
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A con�guration is here an order on the zi’s, or equivalently a permutation � of {1,… , N}, and the potential
of a permutation � = (� (1),… , � (N )) is the total length:

V (� ) =
N
∑
i=1

‖z� (i+1) − z� (i)‖,

where we put � (N + 1) = � (1) so the salesman ends the journey by coming back to the starting point. Here
again the size N ! of the set of con�gurations does not allow to compute V (� ) for every permutation � , but
we can use the simulated annealing. Indeed, for a permutation � and two indices i ≠ j, let � (i,j) denote the
permutation obtained from � by simply exchanging � (i) and � (j). Then we can use as proposal transitions
the matrix:

∀i ≠ j, P0(�, � (i,j)) =
1

N (N − 1)
and otherwise P0(�, � ′) = 0.

In words, similarly to the Ising model, we pick two di�erent locations uniformly at random and exchange
their order in the tour.
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Part III

Martingales
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Chapter 6

Conditional Expectation

This chapter introduces the notion of conditional expectation of a random variable given any other one,
which generalises the supposedly known case of conditioning with respect to a discrete random variable,
or when the pair has a joint density. This short and technical chapter is the foundation of the theory of
martingales (and Markov chains in continuous spaces) developed subsequently.
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We start by presenting in Section 6.1 with a probabilistic vocabulary an actually general notion of
orthogonal projection in a Hilbert space, which we �rst apply to the so-called linear regression, namely
solving the problem to �nd the a�ne combination of known random variables that best approximates in
the least mean square sense an unknown one. Then in Section 6.2 we construct the conditional expectation
by roughly speaking extending the orthogonal projection from L2 to L1. In Section 6.3 we relate this new
abstract notion to the two familiar cases of conditioning a real random variable with respect to another one
when either the latter is discrete, or when the pair has a joint density. In Section 6.4 we present all basic key
properties of the conditional expectation that are used all the time: �rst, properties that extend the usual
ones of the expectation, then some speci�c ones such as the tower property, and then the relation with
independence. Section 6.6 discusses the case of Gaussian vectors for which conditional expectation actually
coincides with the linear regression problem and can be easily calculated. Finally Section 6.7 mentions
some developments that the curious reader may have in mind about the notion of conditional probability
but which are beyond the scope of this course.

6.1 Orthogonal projection in L2

Recall from Section 2.2 for p ≥ 1 the spaces Lp of random variables X de�ned on a common probability space
(Ω,F,ℙ) with values in ℝ and such that E[|X |p] < ∞, in which two random variables that are equal almost
surely are seen as the same object. This space when p = 2 is equipped with a scalar product: X ⋅ Y = E[XY ],
whose associated norm ‖ ⋅ ‖2 is complete, hence it is a Hilbert space. Such spaces are very close to Euclidean
spaces. The next theorem considers the orthogonal projection on a complete subspace.
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Theorem 6.1.1 (Orthogonal projection). Let K be a complete vector subspace of L2 and let X ∈ L2. Then
there exists X̂ ∈ Kwhich satis�es the following two equivalent properties:

(i) ‖X − X̂ ‖2 = inf{‖X − Z ‖2∶ Z ∈ K}.

(ii) X − X̂ ⟂ Z , i.e. E[(X − X̂ )Z ] = 0, for every Z ∈ K.

Moreover, if X̂ ′ ∈ K is another random variable satisfying these properties, then ‖X̂ − X̂ ′‖2 = 0 so X̂ = X̂ ′ a.s.
Finally, the projection is linear in the sense that for X, Y ∈ L2, if X̂ and Ŷ denote respectively their orthogonal
projection, then the orthogonal projection of X + Y equals X̂ + Ŷ a.s.

Proof. Let Δ = inf{‖X − Z ‖2∶ Z ∈ K} and let (Zn)n≥1 be a sequence in K such that ‖X − Zn‖2 → Δ. Note
the parallelogram identity:

‖X − Zn‖22 + ‖X − Zm‖22
= E[(X − Zn)2] + E[(X − Zm)2]

= E[((X −
Zn + Zm

2 ) −(
Zn − Zm

2 ))

2

] + E[((X −
Zn + Zm

2 ) +(
Zn − Zm

2 ))

2

]

= 2E[(X −
Zn + Zm

2 )

2

] + 2E[(
Zn − Zm

2 )

2

]

≥ 2Δ2 +
1
2
‖Zn − Zm‖22,

since (Zn + Zm)/2 ∈ K. Hence

‖Zn − Zm‖22 ≤ 2(‖X − Zn‖22 + ‖X − Zm‖22 − 2Δ
2) ⟶

n,m→∞
0,

so (Zn)n≥1 is a Cauchy sequence. Since K is a complete then (Zn)n≥1 converges in L2 to some X̂ ∈ K. Now
by the Minkowski inequality, we have

Δ ≤ ‖X − X̂ ‖2 ≤ ‖X − Zn‖2 + ‖Zn − X̂ ‖2 ⟶
n→∞

Δ,

thus (i) holds.
For every Z ∈ Kand t ∈ ℝ we have:

E[(X − X̂ − tZ )2] = E[(X − X̂ )2] + t2 E[Z 2] − 2t E[(X − X̂ )Z ].

Therefore, for every Z ∈ K,

min
t∈ℝ

E[(X − X̂ − tZ )2] = E[(X − X̂ )2] −
E[(X − X̂ )Z ]2

E[Z 2]
.

Since every element of K can be written as X̂ + tZ , then X̂ satis�es (i) if and only if it satis�es (ii).
Next, if X̂ ′ ∈ K satis�es (ii), then by expanding the expectations, we infer that E[X̂Z ] = E[X̂ ′Z ] for

any Z ∈ K; in particular, ‖X̂ − X̂ ′‖22 = E[X̂ 2] + E[(X̂ ′)2] − 2E[X̂ X̂ ′] = 0.
Finally, for any Z ∈ Kwe have

E[(X + X ′ − (X̂ + X̂ ′))Z ] = E[(X − X̂ )Z ] + E[(X ′ − X̂ ′)Z ] = 0

so X̂ + X̂ ′ ∈ K satis�es (ii) for X + X ′ so it must be a.s. equal to its orthogonal projection.

Let us apply Theorem 6.1.1 to a particular space K. Let X, Y1,… , Yn be real random variables in L2.
The linear regression of X over Y = (Y1,… , Yn) is the a�ne combination of the Yk ’s that minimises the L2

distance to X , that is, provided it exists, the vector (�0,… , �n) ∈ ℝn+1 such that:

E[(X − �0 −
n
∑
k=1

�kYk)
2

] = min
(�0,…,�n)∈ℝn

E[(X − �0 −
n
∑
k=1

�kYk)
2

]. (6.1)
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We shall assume that no Yk is an a�ne combination of the other ones, which is equivalent to assuming that
their covariance matrix CY = (Cov(Yi , Yj))1≤i,j≤n is invertible.

One can solve the case n = 0 and n = 1 by hand.

Exercise 6.1.2. Suppose that X ∈ L2. Prove that E[X ] is the best approximation of X by a constant in the
sense:

E[(X − E[X ])2 = min
c∈ℝ

E[(X − c)2].

You may simply expend E[(X − c)2] to get a simple function of c that you now very well.

Exercise 6.1.3. Suppose that X, Y ∈ L2 with Var(Y ) > 0. Prove that the best approximation of X of the
form a + bY with a, b ∈ ℝ is given by:

a = E[X ] − b E[Y ], and then b =
E[XY ] − E[X ]E[Y ]

E[Y 2] − E[Y ]2
=
Cov(X, Y )
Var(Y )

.

Thus the minimiser a + bY is given by:

E[X ] +
Cov(X, Y )
Var(Y )

(Y − E[Y ]).

As previously you may simply expend E[(X − a − bY )2] to get a quadratic function of a and b.

The general problem can be solved using the orthogonal projection.

Corollary 6.1.4. When CY = (Cov(Yi , Yj))1≤i,j≤n is invertible there is a unique solution to (6.1), which is given
by �0 = E[X ] −∑n

k=1 �k E[Yk] and � = (�1,… , �n) is � = C−1Y Cov(X, Y ). The best a�ne approximation of X
by the Yk ’s is thus given by:

�0 +
n
∑
k=1

�kYk = E[X ] + (C−1Y Cov(X, Y ))
t (Y − E[Y ]).

Proof of Corollary 6.1.4. Let Kdenote the linear space spanned by 1, Y1,… , Yn and let X̂ denote the ortho-
gonal projection of X on K. Since X̂ ∈ K then there exists �0,… , �n such that:

X̂ = �0 +
n
∑
k=1

�k(Yk − E[Yk]),

and we know from Theorem 6.1.1 that it solves (6.1). By orthogonality, we have E[(X − X̂ )Z ] = 0 for any
Z ∈ K. In particular, for Z = 1, we infer that

E[X ] = E[X̂ ] = �0.

Further, for any 1 ≤ � ≤ n, we have E[(X − X̂ )(Y� − E[Y� ])] = 0 which is equivalent to

Cov(X, Y� ) = Cov(X̂ , Y� ) =
n
∑
k=1

�k Cov(Yk , Y� ).

Conversely, if the �k ’s form such a solution, then the random variable X̂ = �0 +∑n
k=1 �k(Yk −E[Yk]) belongs

to K and one easily shows that E[(X − X̂ )Z ] = 0 for any Z ∈ K so it coincides with the orthogonal
projection which minimises the square distance.
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6.2 The conditional expectation

The previous result provides the best approximation of a random variable X as an a�ne combination of
another one Y = (Y1,… , Yn). However it may exist better approximations, that use non linear functions.
If E[X 2] < ∞, this relies on a more abstract orthogonal projection. It can actually be extended assuming
only E[|X |] and this is formalised in the notion of conditional expectation. Below we try to give both the
picture of orthogonal projection and that of prediction of X given the information provided by the random
variable Y .

Notation. Throughout this chapter, we denote by X a random variable with values either in [0,∞] or in ℝ
with E[|X |] < ∞ in the latter case, and we denote by Y a random variable with values in a general measured
space.

Theorem 6.2.1 (Conditional Expectation). Let X be a random variable with values in (ℝ,B(ℝ)) and let Y
be any random variable. Suppose that either X ∈ [0,∞] a.s. or E[|X |] < ∞. Then there exists a measurable
real-valued function Ψ satisfying the following properties:

(i) Ψ(Y ) ∈ [0,∞] a.s. or E[|Ψ(Y )|] < ∞ respectively,

(ii) For any function ℎ either nonnegative or bounded respectively, we have:

E[Xℎ(Y )] = E[Ψ(Y )ℎ(Y )].

Moreover, if Φ is another such function, then Ψ(Y ) = Φ(Y ) a.s.

We call Ψ(Y ) a version of the conditional expectation of X given Y and denote it by E[X ∣ Y ]. In everyday
use we do not distinguish several almost surely equal versions and speak of the conditional expectation.

Proof. Existence in the L2 case. Let us suppose �rst that E[|X |2] < ∞. Let L2(Y ) denote the space of
random variables of the form g(Y ) with E[|g(Y )|2] < ∞. This subspace of L2 is complete so by Theorem 6.1.1
there exists an a.s. unique orthogonal projection of X onto L2(Y ), which takes the form X̂ = Ψ(Y ) with
E[|Ψ(Y )|2] < ∞ and satis�es the orthogonality property:

E[(X − Ψ(Y ))ℎ(Y )] = 0, equivalently E[Xℎ(Y )] = E[Ψ(Y )ℎ(Y )],

for every measurable function ℎ such that E[|ℎ(Y )|2] < ∞.
Existence in the nonnegative case. Suppose next that X ≥ 0 a.s. For any n ≥ 1, let Xn = min{X, n} ∈

L2 and let X̂n = Ψn(Y ) denote its orthogonal projection on L2(Y ). Then 1{Ψn(Y )<0} ∈ L
2(Y ) as well, so by the

above orthogonality property, we have:

0 ≤ E[Xn 1{Ψn(Y )<0}] = E[Ψn(Y )1{Ψn(Y )<0}] ≤ 0.

Thus the nonnegative random variableΨn(Y )1{Ψn(Y )<0} has expectation 0, so it equals 0 a.s. and soΨn(Y ) ≥ 0
a.s. The same argument applied to Xn+1 − Xn ≥ 0 combined with linearity of the projection shows that
0 ≤ Ψn(Y ) ≤ Ψn+1(Y ) a.s. so we can de�ne its a.s. limit Ψ(Y ) = ↑ limn Ψn(Y ) ∈ [0,∞]. Now �x any measurable
function ℎ ≥ 0 and let ℎn = min{ℎ, n} so E[ℎn(Y )2] < ∞. Then we have by monotone convergence:

E[Xℎ(Y )] = ↑ lim
n→∞

E[Xnℎn(Y )] = ↑ limn→∞
E[Ψn(Y )ℎn(Y )] = E[Ψ(Y )ℎ(Y )].

Note that by taking ℎ = 1 we infer that E[Ψ(Y )] = E[X ].
Existence in the integrable case. Finally, if E[|X |] < ∞ but X is not necessarily nonnegative, write

X = X + − X − with X + = max(X, 0) ≥ 0 and X − = −min(X, 0) = max(−X, 0) ≥ 0, so that |X | = |X +| + |X −|.
Construct Ψ+(Y ) and Ψ−(Y ) as above, which have E[Ψ+(Y )] = E[X +] < ∞ and E[Ψ−(Y )] = E[X −] < ∞.
De�ne then Ψ = Ψ+(Y ) − Ψ−(Y ), which has E[|Ψ(Y )|] ≤ E[Ψ+(Y )] + E[Ψ−(Y )] < ∞. Let ℎ be a bounded
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function and decompose similarly ℎ(Y ) = ℎ(Y )+ − ℎ(Y )−. By linearity, we infer from the case of nonnegative
random variables that

E[Ψ(Y )ℎ(Y )] = E[Ψ+(Y )ℎ(Y )+] − E[X̂ −(Y )ℎ(Y )+] − E[Ψ+(Y )ℎ(Y )−] + E[Ψ−(Y )ℎ(Y )−]

= E[X +ℎ(Y )+] − E[X −ℎ(Y )+] − E[X +ℎ(Y )−] + E[X −ℎ(Y )−]

= E[Xℎ(Y )].

This completes the proof of existence of Ψ(Y ).

Uniqueness. Suppose Ψ(Y ) and Φ(Y ) both satisfy the theorem, then ℎ(Y ) = 1Ψ(Y )>Φ(Y ) is bounded so

E[(Ψ(Y ) − Φ(Y ))1Ψ(Y )>Φ(Y )] = E[Ψ(Y )1Ψ(Y )>Φ(Y )] − E[Φ(Y )1Ψ(Y )>Φ(Y )]

= E[X 1Ψ(Y )>Φ(Y )] − E[X 1Ψ(Y )>Φ(Y )]

= 0.

Hence the nonnegative random variable (Ψ(Y )−Φ(Y ))1Ψ(Y )>Φ(Y ) must be 0 a.s. which means thatΨ(Y ) ≤ Φ(Y )
a.s. By a symmetric argument we also have Ψ(Y ) ≥ Φ(Y ) a.s.

Remark 6.2.2. The restriction to ℎ either nonnegative or bounded ensures that E[Ψ(Y )ℎ(Y )] and E[Xℎ(Y )]
are well-de�ned but the identity E[Ψ(Y )ℎ(Y )] = E[Xℎ(Y )] extends as soon as both sides make sense by
similar approximations as in the proof.

Example 6.2.3. Let us consider a few extreme examples. In both cases, one simply checks that the given
candidate satis�es the properties of the conditional expectation and conclude by uniqueness.

(i) If X = f (Y ) is a measurable function of Y , then E[f (Y ) ∣ Y ] = f (Y ) a.s. In words, if we are given all
the possible information about Y , then X = f (Y ) is determined so the best prediction is f (Y ) itself;
put di�erently, we want to project a vector on a subspace where it already lives, so it doesn’t move
anywhere.

(ii) If Y is constant a.s. then E[X ∣ Y ] = E[X ] a.s. Here we are given no information at all, so our
prediction Ψ(Y ) is a constant, and the best constant is E[X ].

(iii) More generally if X and Y are independent, then E[X ∣ Y ] = E[X ] a.s. Again, here we are given
irrelevant information, so our prediction Ψ(Y ) is a constant.

To be explicit, since we shall frequently condition a random variable X with respect to several random
variables Y1,… , Yn, this amounts to condition with respect to Y = (Y1,… , Yn), namely, when X is either
nonnegative or integrable, we have

E[X ∣ Y1,… , Yn] = Ψ(Y1,… , Yn),

where Ψ is a measurable function characterised by Property (ii), namely:

E[Xℎ(Y1,… , Yn)] = E[Ψ(Y1,… , Yn)ℎ(Y1,… , Yn)]

for any measurable function ℎ either nonnegative (when Ψ is) or bounded (when Ψ is integrable).

6.3 Two familiar cases

Let us compare this notion of conditional expectation with the familiar ones of conditioning X with respect
to Y when either Y is a discrete r.v. or when the pair (X, Y ) has a density.
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6.3.1 Discrete case

Fix an event B ∈ Fwith nonzero probability, then it is well-known that the formula

ℙ(A ∣ B) =
ℙ(A ∩ B)
ℙ(B)

for all A ∈ Fde�nes a probability measure ℙ( ⋅ ∣ B). Then one can construct the expectation with respect to
this probability, which takes the form

E[X ∣ B] =
E[X 1B]
ℙ(B)

for any r.v. either nonnegative or integrable. Indeed by de�nition it holds true for any X of the form 1A

with A ∈ F, and then as usual, it extends to simple r.v.’s by linearity, and further to nonnegative r.v.’s by
monotone convergence, and �nally to integrable r.v.’s by decomposing X = X + − X −.

Let Y be a discrete random variable, taking its values in a countable set {yn ∶ n ≥ 1} and assume that
ℙ(Y = yn) ∈ (0, 1) for all n ≥ 1. Then we can partition Ω into the disjoint subsets {Y = yn} for n ≥ 1. For
each n ≥ 1, one can de�ne E[ ⋅ ∣ Y = yn] as above.

Lemma 6.3.1. For any X either nonnegative or integrable, we have a.s.

E[X ∣ Y ] = Ψ(Y ) where for each n ≥ 1, Ψ(yn) = E[X ∣ Y = yn].

Proof. De�ne the function Ψ as the right-hand side, which is nonnegative if X is and notice that:

|Ψ(yn)| =
|||
E[X 1Y=yn ]
ℙ(Y = yn)

||| ≤
E[|X |1Y=yn ]
ℙ(Y = yn)

,

hence if X is integrable, then

E[|Ψ(Y )|] = ∑
n≥1

|Ψ(yn)|ℙ(Y = yn) ≤ ∑
n≥1

E[|X |1Y=yn ] = E[|X |] < ∞.

Next take any measurable function ℎ either nonnegative if X is or bounded if X is integrable, then similarly,

E[Ψ(Y )ℎ(Y )] = ∑
n≥1

Ψ(yn)ℎ(yn)ℙ(Y = yn)

= ∑
n≥1

E[X 1Y=yn ]ℎ(yn)

= E[∑
n≥1

Xℎ(yn)1Y=yn]

= E[Xℎ(Y )].

The claim then follows by uniqueness in Theorem 6.2.1.

If Y only takes values in {yn ∶ n ≥ 1} a.s. then for de�niteness we set Ψ(y) = 0 or any other arbitrary
value for all y ∉ {yn ∶ ℙ(Y = yn) > 0}.

6.3.2 Density case

Suppose that X ∈ ℝn and Y ∈ ℝm are such that the pair (X, Y ) has a density f(X,Y ) with respect to the
Lebesgue measure in the sense that for any measurable and nonnegative function g ∶ ℝn+m → ℝ,

E[g(X, Y )] = ∫
ℝn×ℝm

g(x, y)f(X,Y )(x, y) dx dy.

Then in particular for g ∶ ℝm → ℝ measurable and nonnegative, by Fubini’s Theorem,

E[g(Y )] = ∫
ℝm

g(y)f(X,Y )(x, y) dx dy = ∫
ℝm

g(y)(∫
ℝn
f(X,Y )(x, y) dx) dy,
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so fY ∶ y ↦ ∫ℝn f(X,Y )(x, y) dx is a density for Y . Note that if fY (y) = 0, then f(X,Y )(x, y) = 0 for almost all x ,
thus, if ℎ∶ ℝn → ℝ is another measurable and nonnegative function, then

E[ℎ(X )g(Y )] = ∫
ℝn×ℝm

ℎ(x)g(y)f(X,Y )(x, y) dx dy

= ∫
ℝm

g(y)(∫
ℝn
ℎ(x)f(X,Y )(x, y) dx 1fY (y)≠0) dy

= ∫
ℝm

g(y)(∫
ℝn
ℎ(x)

f(X,Y )(x, y)
fY (y)

dx 1fY (y)≠0)fY (y) dy.

Let us therefore set

Ψ(y) = ∫
ℝn
ℎ(x)

f(X,Y )(x, y)
fY (y)

1fY (y)≠0 dx,

then we see that
E[ℎ(X )g(Y )] = ∫

ℝm
g(y)Ψ(y)fY (y) dy = E[Ψ(Y )g(y)],

hence Ψ(Y ) is a version of the conditional expectation of ℎ(X ) given Y .
The function de�ned for any y ∈ ℝm �xed by

fX ∣Y=y ∶ x ↦
f(X,Y )(x, y)
fY (y)

1fY (y)≠0

is called the conditional density of X given Y = y . The function Ψ is often denoted by

E[ℎ(X ) ∣ Y = y] = Ψ(y).

This allows to write, analogously to the discrete case,

E[ℎ(X ) ∣ Y ] = Ψ(Y ) a.s. where for y ∈ ℝm, Ψ(y) = ∫
ℝn
ℎ(x)fX ∣Y=y dx.

Beware this is just a notation since ℙ(Y = y) = 0 for any given y!

6.4 Similarities with the usual expectation

Let us start with some easy (but used all the times) properties. Some of them have been partly proved
during the course of the proof of Theorem 6.2.1.

Lemma 6.4.1. The conditional expectation E[ ⋅ ∣ Y ] enjoys the following properties. Assume that either
X, X ′ ∈ L1 or X, X ′ ≥ 0 a.s.

(i) E[E[X ∣ Y ]] = E[X ]. (Very useful!)

(ii) Positivity: If X ≥ 0 then E[X ∣ Y ] ≥ 0 a.s. and moreover if E[X ∣ Y ] = 0 a.s. then X = 0 a.s.

(iii) Linearity: E[aX + bX ′ ∣ Y ] = a E[X ∣ Y ] + b E[X ′ ∣ Y ] a.s. for all a, b ∈ ℝ if X, X ′ ∈ L1 and a, b ≥ 0 if
X, X ′ ≥ 0.

(iv) Monotonicity: If X ≤ X ′ a.s. then E[X ∣ Y ] ≤ E[X ′ ∣ Y ] a.s.

(v) If X = f (Y ), then E[X ∣ Y ] = X a.s. This holds in particular for constants.

(vi) |E[X ∣ Y ]| ≤ E[|X | ∣ Y ] a.s. Consequently E[|E[X ∣ Y ]|] ≤ E[|X |] a.s.

Proof. It mostly is a matter of checking Property (ii) in Theorem 6.2.1 and using uniqueness.

(i) Take ℎ(Y ) = 1 in (ii) of Theorem 6.2.1.
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(ii) We already proved that if X ≥ 0 then E[X ∣ Y ] ≥ 0 a.s. Suppose now that E[X ∣ Y ] = 0 a.s. Then by
the �rst point E[X ] = E[E[X ∣ Y ]] = 0 so X = 0 a.s.

(iii) It is clear that a E[X ∣ Y ] + b E[X ′ ∣ Y ] is integrable, and by linearity of the usual (!) expectation, for
any measurable and bounded function ℎ,

E[(a E[X ∣ Y ] + b E[X ′ ∣ Y ])ℎ(Y )] = a E[E[X ∣ Y ])ℎ(Y )] + b E[E[X ′ ∣ Y ])ℎ(Y )]

= a E[Xℎ(Y )] + b E[X ′ℎ(Y )]

= E[(aX + bX ′)ℎ(Y )].

(iv) Monotonicity follows by linearity and positivity (write X ′ = X + Z with Z ≥ 0).

(v) X veri�es the two properties in Theorem 6.2.1.

(vi) Let X = X + − X − and |X | = X + + X −, then by linearity, and since both E[X ± ∣ Y ] ≥ 0,

|E[X ∣ Y ]| = |E[X + ∣ Y ] − E[X − ∣ Y ]| ≤ E[X + ∣ Y ] + E[X − ∣ Y ] = E[|X | ∣ Y ],

which proves the claim.

Exercise 6.4.2. Suppose E[X 2] < ∞ and de�ne the conditional variance by:

Var(X ∣ Y ) ∶= E[(X − E[X ∣ Y ])2 ∣ Y ] = E[X 2 ∣ Y ] − E[X ∣ Y ]2.

Show the identity:
Var(X ) = E[Var(X ∣ Y )] + Var(E[X ∣ Y ]).

Finally the conditional expectation also satis�es the same convergence theorems (monotone, Fatou,
dominated) and inequalities (Jensen, Hölder) as the usual expectation.

Lemma 6.4.3. The conditional expectation enjoys the following properties.

(i) If 0 ≤ Xn ≤ Xn+1 a.s. then E[↑ limn Xn ∣ Y ] = ↑ limn E[Xn ∣ Y ] a.s.

(ii) If Xn ≥ 0 a.s. for all n, then E[lim infn Xn ∣ Y ] ≤ lim infn E[Xn ∣ Y ] a.s.

(iii) If Xn → X a.s. and there exists Z ∈ L1 such that |Xn | ≤ Z for all n, then X ∈ L1 and E[Xn ∣ Y ] →
E[X ∣ Y ] a.s. and in L1.

(iv) Let � be a convex function from an open interval I to ℝ and let X ∈ L1 be a random variable such that
X ∈ I a.s. Then E[�(X ) ∣ Y ] ≥ �(E[X ∣ Y ]) a.s.

(v) ‖E[X ∣ Y ]‖p ≤ ‖X ‖p for any p ≥ 1.

(vi) If p, q > 1 satisfy 1/p + 1/q = 1, then E[|X1X2| ∣ Y ] ≤ E[|X1|p ∣ Y ]1/p E[|X2|q ∣ Y ]1/q .

Proof. (i) This was somehow proved in the proof of Theorem 6.2.1. By monotonicity, the sequence
Ψn(Y ) = E[Xn ∣ Y ] is a.s. nondecreasing so we can de�ne a.s. 0 ≤ Ψ(Y ) = ↑ limn E[Xn ∣ Y ]. Let ℎ ≥ 0,
then according to Theorem 6.2.1 in the nonnegative case, we have:

E[Ψn(Y )ℎ(Y )] = E[Xnℎ(Y )]

for every n ≥ 0. We then infer from the usual monotone convergence applied to both sides that

E[↑ lim
n→∞

Ψn(Y )ℎ(Y )] = ↑ limn→∞
E[Ψn(Y )ℎ(Y )] = ↑ limn→∞

E[Xnℎ(Y )] = E[↑ lim
n→∞

Xnℎ(Y )].

This characterises E[↑ limn Xn ∣ Y ] as ↑ limn E[Xn ∣ Y ].
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(ii) Apply the previous point to the nondecreasing sequence (infk≥n Xk)n to get

E[lim inf
n→∞

Xn ∣ Y ] = E[↑ lim
n→∞

inf
k≥n

Xk ∣ Y ] = ↑ limn→∞
E[inf

k≥n
Xk ∣ Y ] a.s.

Now for every n, we have by monotonicity, E[infk≥n Xk ∣ Y ] ≤ infk≥n E[Xk ∣ Y ] and the claim follows.

(iii) Apply the previous point to Z + Xn ≥ 0 to get

E[Z ∣ Y ] + E[X ∣ Y ] = E[Z + X ∣ Y ]

= E[lim inf
n→∞

(Z + Xn) ∣ Y ]

≤ lim inf
n→∞

E[Z + Xn ∣ Y ]

≤ E[Z ∣ Y ] + lim inf
n→∞

E[Xn ∣ Y ]

a.s. and similarly, with Z − Xn ≥ 0 instead,

E[Z ∣ Y ] − E[X ∣ Y ] = E[Z − X ∣ Y ]

= E[lim inf
n→∞

(Z − Xn) ∣ Y ]

≤ lim inf
n→∞

E[Z − Xn ∣ Y ]

≤ E[Z ∣ Y ] − lim sup
n→∞

E[Xn ∣ Y ]

a.s. Recall that Z ∈ L1 so E[Z ∣ Y ] ∈ L1 and thus is a.s. �nite, then by subtracting this term, we infer
that

E[X ∣ Y ] ≤ lim inf
n→∞

E[Xn ∣ Y ] ≤ lim sup
n→∞

E[Xn ∣ Y ] ≤ E[X ∣ Y ],

a.s. hence E[Xn ∣ Y ]→ E[X ∣ Y ] a.s.

Moreover, |E[Xn ∣ Y ]| ≤ E[|Xn | ∣ Y ] ≤ E[|Z | ∣ Y ] ∈ L1 so by the usual dominated convergence theorem,
E[Xn ∣ Y ]→ E[X ∣ Y ] in L1.

(iv) Let us recall that � being convex, if we set A� = {(a, b) ∈ ℝ2∶ ax + b ≤ �(x) for all x ∈ I}, then for
any x ∈ ℝ, we have

�(x) = sup{ax + b∶ (a, b) ∈ A�} = sup{ax + b∶ (a, b) ∈ A� ∩ ℚ2}.

For any (a, b) ∈ A� ∩ ℚ2 we have a.s.

E[�(X ) ∣ Y ] ≥ E[aX + b ∣ Y ] = a E[X ∣ Y ] + b.

Since A� ∩ℚ2 is countable, this property actually holds a.s. simultaneously for all pairs (a, b) ∈ A� ∩ℚ2

so we can take the supremum and conclude that a.s.

E[�(X ) ∣ Y ] ≥ sup{a E[X ∣ Y ] + b∶ (a, b) ∈ A� ∩ ℚ2} = �(E[X ∣ Y ]).

(v) By convexity of | ⋅ |p we infer from the previous point that E[|X |p ∣ Y ] ≥ |E[X ∣ Y ]|p a.s. By further
taking the expectation we �nd E[|X |p] ≥ E[|E[X ∣ Y ]|p].

(vi) Recall from the proof of Hölder’s inequality (Theorem 2.2.4) the a.s. inequality (Young): for any
integrable random variables U and V ,

|UV | ≤
|U |p

p
+
|V |q

q
so E[|UV | ∣ Y ] ≤

1
p
E[|U |p ∣ Y ] +

1
q
E[|V |q ∣ Y ].
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For U = X1/E[|X1|p ∣ Y ]1/p and V = X2/E[|X2|q ∣ Y ]1/q , we read

E[
|X1X2|

E[|X1|p ∣ Y ]1/p E[|X2|q ∣ Y ]1/q
||| Y] ≤

1
p
E[

|X1|p

E[|X1|p ∣ Y ]
||| Y] +

1
q
E[

|X2|q

E[|X2|q ∣ Y ]
||| Y]

a.s. We then infer from Lemma 6.5.2 below that a.s.

E[|X1X2| ∣ Y ]
E[|X1|p ∣ Y ]1/p E[|X2|q ∣ Y ]1/q

≤
1
p
+
1
q
= 1,

and the claim follows by rearranging the terms.

6.5 Properties of the conditional expectation

Let us see in this section some speci�c properties of the conditional expectation which are very useful.

6.5.1 Two key tools

The �rst property says that projecting on a subspace and then on a subsubsapce in two steps amounts
to directly project on the smallest one. In terms of quantity of information, it also means that restricting
further the information amounts to directly take the least amount of information.

Lemma 6.5.1 (Tower property). For any nonnegative or integrable random variable X , it holds a.s.

E[E[X ∣ Y1] ∣ Y1, Y2] = E[X ∣ Y1] = E[E[X ∣ Y1, Y2] ∣ Y1].

Proof. The �rst equality follows from Lemma 6.4.1 since E[X ∣ Y1] is a measurable function of Y1 and thus
of the pair (Y1, Y2), a function which only depends on the �rst coordinate. For the second equality, similarly
E[X ∣ Y1, Y2] takes the form Ψ(Y1, Y2), and for ℎ either nonnegative or bounded, we have that ℎ(Y1) is a
function of (Y1, Y2) and thus, using Property (ii) in Theorem 6.2.1 twice,

E[E[E[X ∣ Y1, Y2] ∣ Y1]ℎ(Y1)] = E[E[X ∣ Y1, Y2]ℎ(Y1)] = E[Xℎ(Y1)].

Therefore E[E[X ∣ Y1, Y2] ∣ Y1] is a version of E[X ∣ Y1].

The second lemma extends the well-known property E[cX ] = c E[X ] where c is constant.

Lemma 6.5.2 (Taking out what is known). Let X and f (Y ) be two random variables such that either both
are nonnegative or both X ∈ L1 and Xf (Y ) ∈ L1. Then a.s.

E[Xf (Y ) ∣ Y ] = E[X ∣ Y ]f (Y ).

Proof. Suppose that both X, f (Y ) ≥ 0 a.s. so Xf (Y ) ≥ 0 and then E[X ∣ Y ]f (Y ) ≥ 0 a.s. Also E[X ∣ Y ]f (Y ) is
a measurable function of Y so it remains to prove Property (ii) in Theorem 6.2.1. Fix ℎ ≥ 0 measurable, then
f (Y )ℎ(Y ) ≥ 0 is a measurable function of Y , so by this very property,

E[E[X ∣ Y ]f (Y ) × ℎ(Y )] = E[E[X ∣ Y ] × f (Y )ℎ(Y )] = E[X × f (Y )ℎ(Y )] = E[Xf (Y ) × ℎ(Y )].

Therefore E[X ∣ Y ]f (Y ) is a version of E[Xf (Y ) ∣ Y ].
In the case X, Xf (Y ) ∈ L1, we have E[X ∣ Y ]f (Y ) ∈ L1 since, by Lemma 6.4.1,

E[|E[X ∣ Y ]f (Y )|] ≤ E[E[|X | ∣ Y ] |f (Y )|] = E[|X | |f (Y )|] < ∞.

Let ℎ be bounded, the preceding argument fails here because f (Y )ℎ(Y ) is not necessarily bounded so we
cannot apply Property (ii) as directly. However, decomposing X = X + − X −, f (Y ) = f (Y )+ − f (Y )−, and
ℎ(Y ) = ℎ(Y )+ − ℎ(Y )−, we can deduce the result from the preceding case.
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6.5.2 Conditioning and Independence

We have seen that E[X ∣ Y ] = E[X ] is a constant when X is independent from Y . The next result extends this
identity by showing that adding irrelevant information does not change the prediction. From a geometric
point of view, when projecting a vector on a subspace, one can forget any direction that is orthogonal to
the original vector.

Lemma 6.5.3. Let X be either nonnegative or integrable, let Y and Z be random variables and assume that
Z is independent of the pair (X, Y ). Then a.s.

E[X ∣ Y , Z ] = E[X ∣ Y ].

Proof. Let us suppose that X ≥ 0 and that E[X ] < ∞. The random variable Y takes value in some space
(E1, E1) and Z in (E2, E2). Fix two events A ∈ E1 and B ∈ E2, then by independence twice,

E[E[X ∣ Y ]1Y∈A 1Z∈B] = E[E[X ∣ Y ]1Y∈A]E[1Z∈B] = E[X 1Y∈A]E[1Z∈B] = E[X 1Y∈A 1Z∈B].

De�ne two measures on the product space (E1 × E2, E1 ⊗ E2) by

�(C) = E[E[X ∣ Y ]1(Y ,Z )∈C] and �(C) = E[X 1(Y ,Z )∈C]

respectively. Then we have shown that they agree on the set � = {A ∩ B∶ A ∈ E1, B ∈ E2}. This is a
�-system and the measures have the same �nite total mass E[X ] so they agree on � (� ) = E1 ⊗ E2 by
Theorem 1.1.13. This proves:

E[E[X ∣ Y ]ℎ(Y , Z )] = E[Xℎ(Y , Z )]

for any function ℎ of the form ℎ(Y , Z ) = 1(Y ,Z )∈C with C ∈ E1 ⊗ E2. We then extend the identity to
any measurable nonnegative or integrable functions by the usual approximation by simple functions and
linearity of expectation, see Section 1.4 for details. If X is integrable but can be negative, then apply the result
to X + and X − and us linearity of the conditional expectation. If X ≥ 0 but E[X ] = ∞, then apply this result
to min(X, n) and use the conditional monotone convergence. In any case, we see that E[X ∣ Y ] satis�es the
two properties that characterise E[X ∣ Y , Z ] in Theorem 6.2.1 and we conclude by uniqueness.

Our last result is also very useful for calculations.

Theorem 6.5.4. Let X and Y be two independent random variable, not necessarily real-valued, and let g be
a real-valued measurable function, either nonnegative or integrable. Then a.s.

E[g(X, Y ) ∣ Y ] = Ψg(Y ) where Ψg(y) = E[g(X, y)].

Proof. The random variable Ψg(Y ) is indeed � (Y )-measurable and either nonnegative or integrable. Further,
for any measurable function ℎ, either nonnegative or bounded, we have by independence and then Fubini’s
theorem:

E[g(X, Y )ℎ(Y )] = ∫ g(x, y)ℎ(y)ℙX (dx)ℙY (dy)

= ∫ (∫ g(x, y)ℎ(y)ℙX (dx))ℙY (dy)

= ∫ Ψg(y)ℎ(y)ℙY (dy)

= E[Ψg(Y )ℎ(Y )],

so Ψg(Y ) is a version of E[g(X, Y ) ∣ Y ].
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6.6 Gaussian vectors and linear regression (⋆)

Recall the notion of Gaussian vectors from Section 2.7. We already saw that they naturally appear in the
CLT, and that they simplify the independence by making it equivalent to null covariance. They also simplify
the conditional expectation and allow to explicit compute it.

Indeed, recall the linear regression from Corollary 6.1.4, which is the best approximation of a random
variable X amongst all a�ne combinations of given random variables Y1,… , Yn. It is in general less precise
(in the L2 norm) than the conditional expectation. On the other hand it is much simpler to compute. In the
case of Gaussian vectors it turns out that the conditional expectation matches the linear regression, so we
have the best approximation which is fairly simple to compute!

Theorem 6.6.1. Let (X, Y1,… , Yn) be a Gaussian vector in dimension n+1with mean 0 (which we can always
assume by subtracting the mean). Then there exist real numbers �1,… , �n such that

E[X ∣ Y1,… , Yn] =
n
∑
k=1

�kYk a.s.

Moreover, let

X̂ =
n
∑
k=1

�kYk and �2 = E[(X − X̂ )2],

then for any measurable function ℎ either nonnegative or such that ℎ(X ) is integrable, it holds:

E[ℎ(X ) ∣ Y1,… , Yn] = ∫
ℝ
ℎ(x)

1
√
2��2

exp(−
(x − X̂ )2

2�2 ) dx a.s.

Proof. Note that all random variables belong to the space L2, then let X̂ = ∑n
k=1 �kYk denote the orthogonal

projection of X onto the vector space spanned by (1, Y1,… , Yn). By orthogonality, we have:

Cov(X − X̂ , Yj) = E[(X − X̂ )Yj] = 0,

for every 1 ≤ j ≤ n. Note that the vector (X−X̂ , Y1,… , Yn) is a Gaussian vector since every linear combination
of its coordinates is a linear combination of (X, Y1,… , Yn). Then by Proposition 2.7.13 or rather its extension
in Remark 2.7.14, we infer that X − X̂ is independent from (Y1,… , Yn). Since X̂ m � (Y1,… , Yn) and all the
random variables are centred, then a.s.

E[X ∣ Y1,… , Yn] = E[X − X̂ ∣ Y1,… , Yn]⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
= E[X − X̂ ] = 0

+E[X̂ ∣ Y1,… , Yn]⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
= X̂

,

which proves the �rst claim. For the second one, recall that X − X̂ is independent from (Y1,… , Yn) and has
a Gaussian law with mean 0, and variance �2. Then by Theorem 6.5.4, we have:

E[ℎ(X ) ∣ Y1,… , Yn] = E[ℎ(X − X̂ +
p

∑
k=1

�kyk)
||| Y1,… , Yn] = Ψ(Y1,… , Yn)

a.s. where Ψ is de�ned as follows:

Ψ(y1,… , yn) = ∫
ℝ
ℎ(z +

p

∑
k=1

�kyk)
1

√
2��2

exp(−
z2

2�2)
dz.

The claim then follows by a change of variables.
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6.7 Regular conditional probabilities (⋆)

Let us give here some pointers to a di�cult question that we will not answer. Recall that given an event
B ∈ Fwith nonzero probability, one can de�ne the conditional probability given B by ℙ( ⋅ ∣ B) = ℙ( ⋅∩B)/ℙ(B).
This indeed de�nes a probability measure on F. In the context of conditioning with respect to a random
variable instead, we de�ne conditional probabilities as follows.

De�nition 6.7.1. For any event A ∈ F, set

ℙ(A ∣ Y ) = E[1A ∣ Y ].

Beware that it is a random variable, which takes the form Ψ(Y ) for some measurable function Y .

By linearity and conditional monotone convergence, given any sequence (An)n≥1 of disjoint events, we
have a.s.

ℙ(⋃
n≥1

An
||| Y) = ↑ limN→∞

∑
n≤N

ℙ(An ∣ Y ) = ∑
n≥1

ℙ(An ∣ Y ).

We are thus tempted to believe that ℙ( ⋅ ∣ Y ) de�nes a.s. a random probability measure. However for this,
the above display should hold a.s. simultaneously for all sequences of events (An)n≥1 and in general there
are uncountably many of such sequences. Thus, we may speak in general about the conditional expectation
of an (integrable) random variable, but not about its conditional law. The notion we are looking for is the
following.

De�nition 6.7.2. Let X be a random variable with values in a measurable space (E, E) and let Y be another
random variable. A function � ∶ Ω × E→ [0, 1] is called a regular conditional law of X given Y when it
satis�es:

(i) �(!, ⋅) de�nes a probability measure on (E, E) for ℙ-a.e. ! ∈ Ω,

(ii) �(⋅, B) is a version of ℙ(X ∈ B ∣ Y ) for every B ∈ E.

In particular, when (E, E) = (Ω,F) and X is the identity, then such a map � is called a regular conditional
probability given Y .

The usefulness of regular conditional laws is that they allow to extend the usual expectation in a very
straightforward way. Let us illustrate this.

Proposition 6.7.3. If � is a regular conditional law of X given Y , then for any measurable function f either
nonnegative or integrable, we have a.s.

E[f (X ) ∣ Y ](!) = ∫
ℝ
f (x)�(!, dx).

Proof. If f is the indicator of a set A ∈ F, then this reads a.s.

ℙ(X ∈ A ∣ Y )(!) = �(!, A),

which is the de�nition of the regular conditional law. As usual, this extends to simple functions by linearity,
and further to nonnegative functions by monotone convergence, and �nally to integrable functions by
decomposing f = f + − f −. This also shows that ! ↦ ∫ℝ f (x)�(!, dx) is measurable.

Regular conditional laws is the notion that is needed to consider Markov chains on a general space.
They generalise in this context the transition matrices that we used in countable spaces. Such regular
conditional laws do not always exist, but quite often in practice, and rather explicitly. Indeed, recall the
conditional expectation with respect to a discrete random variable Y , then the map � in De�nition 6.7.2 is
given by:

�(!, B) = Φ(Y (!), B) where Φ(y, B) =
ℙ(X ∈ B, Y = y)

ℙ(Y = y)
.
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Similarly, when the pair (X, Y ) has a density f(X,Y ) with respect to the Lebesgue measure, then one can

de�ne the conditional density fX ∣Y=y (x) =
f(X,Y )(x,y)
fY (y) 1fY (y)≠0 and then, with the previous notation, we have:

�(!, B) = Φ(Y (!), B) where Φ(y, B) = ∫
B
fX ∣Y=y (x) dx.
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Chapter 7

Some generalities on stochastic processes

Recall that the term stochastic process simply refers to a sequence of random variables X = (Xn)n≥0 de�ned
on a common probability space (Ω,F,ℙ) and with values in the same measurable space (E, E), but we shall
think of such a sequence as describing the evolution of a single random variable as time passes. In this very
short chapter, we introduce the notion of �ltrations, which formalise the evolution of time, as well as that
of stopping times, which are random times which do not provide information about the future. We also
present a generalisation of the conditional expectation with respect not to a random variable, but rather a
�-algebra.

Contents
7.1 Filtrations & Stopping times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.2 Stopped �-algebras and stopped processes . . . . . . . . . . . . . . . . . . . . . . . 117
7.3 Conditioning with respect to a �-algebra . . . . . . . . . . . . . . . . . . . . . . . . 119

In Section 7.1 we mainly introduce basic de�nitions about stochastic processes, especially the notion of
�ltrations which formalise the accumulation of information as time goes by, and the notion of stopping
times which is the “correct” notion of random times, which cannot see the future. These generalise the
notions we used for discrete Markov chains and which will be used for martingales. In Section 7.2 we
discuss more precisely the notion of a stochastic process seen up to a stopping time. Finally in Section 7.3
we present the conditional expectation with respect to a �-algebra which will be used in the subsequent
chapters.

Notation. In this chapter, all the random variables are real-valued and de�ned on a probability space
(Ω,F,ℙ). From now on, for two real numbers s and t , we write:

s ∧ t = min(s, t) and s ∨ t = max(s, t).

Also, in order to lighten the notation, we usually drop the “a.s” mention when considering relations between
random variables.

7.1 Filtrations & Stopping times

Recall that a �-algebra Fon Ω is a collection of subsets of Ω that has the following three property:

Ω ∈ F, A ∈ F ⟹ Ac ∈ F, An ∈ F for all n ≥ 1 ⟹ ⋃
n≥1

An ∈ F.

From now on we will be working with several �-algebras on Ω.

De�nition 7.1.1. We say that Gis a sub-� -algebra of F, which we simply write as G⊂ F, if it is a � -algebra
on Ω and if it is contained in F in that A ∈ F for every set A ∈ G.
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In words Fdescribes all the possible events, and G is a sub-collection of events, which we can view as
a quantity of information in the sense that the knowledge of Gallows us to say wether any event A ∈ G

occurs or not. The formal description of the time evolution is then given by a �ltration.

De�nition 7.1.2. A �ltration on Ω is an nondecreasing sequence F0 ⊂ F1 ⊂ ⋯ ⊂ Fof sub-�-algebras. We
also de�ne F∞ = � (⋃n Fn) ⊂ F. The quadruple (Ω,F, (Fn)n,ℙ) is called a �ltered space. When needed, we
agree that F−1 = {∅,Ω} is the trivial �-algebra, with no information.

In the analogy with geometry used in the previous chapter, one can imagine Fas an in�nite dimensional
space like the spaces � 1 or � 2 on real-valued sequences and each Fn as ℝn. From the point of view of
sub-�-algebras as partial information, the �-algebra Fn represents all the information available at time n;
note that we accumulate more and more without forgetting past information.

Recall next that a random variable X with values in some space (E, E) is a measurable function that is,
a function X ∶ Ω→ E which satis�es:

for any B ∈ E, {X ∈ B} ∈ F,

where {X ∈ B} stands for the set X −1(B) = {! ∈ Ω∶ X (!) ∈ B}. The question of measurability with respect
to a sub-�-algebra of Fwill play a crucial role.

De�nition 7.1.3. We say that X is measurable with respect to G⊂ F, or is simply ‘G-measurable’, when
for every B ∈ Ewe have {X ∈ B} ∈ G.

In words X is G-measurable when the information contained in Gcharacterises entirely X . From a
geometric point of view, one can �gure a vector belonging to a subspace.

Notation. Personal notation, not standard outside this course: X m G to mean that X is G-measurable.

Given a random variable X , there usually exist many sub-�-algebras G⊂ Fsuch that X m G. Taking
the intersection of them, we de�ne � (X ) the smallest sub-�-algebra that makes X measurable. More
generally, one de�ne � (X1,… , Xn) as the smallest sub-�-algebra that makes each Xk measurable for k ≤ n.
This �-algebra is said to be “generated by X1,… , Xn”.

The �ltrations we shall encounter in this course will be of this form: we have a certain stochastic
process X = (Xn)n≥0 and we consider the so-called natural �ltration given by:

FX
n = � (Xk , k ≤ n), (7.1)

for every n ≥ 0.

De�nition 7.1.4. A stochastic process (Yn)n≥0 is said to be:

• adapted to the �ltration (Fn)n≥0 when Yn m Fn for every n ≥ 0.

• predictable for the �ltration (Fn)n≥0 when Yn m Fn−1 for every n ≥ 0.

In words, a predictable process is a process in which the value at any given time is completely determined
by the information at the previous step, we shall see it as a parameter that we can tune before the next step.
On the contrary, the issue of an adapted process is not entirely determined at the previous step, and still
remains random, and is only revealed at the next step.

Remark 7.1.5. If Fn = FX
n = � (Xk , k ≤ n) is the natural �ltration of another process (Xn)n, then (Yn)n≥0 is

adapted when it takes the form Yn = g(X0,… , Xn) for some measurable function g; it is predictable when
Yn = g(X0,… , Xn−1).

Recall that we extensively considered Markov chains up to a �nite random time. The general de�nition
of a stopping time extends that used previously, which referred to the natural �ltration of the process.

116



De�nition 7.1.6. A stopping time relative to a �ltration (Fn)n is a random variable T taking values in
ℤ+ = {0, 1, 2,… ,∞} such that:

{T = n} ∈ Fn for any n, or equivalently, {T ≤ n} ∈ Fn for any n.

In other words, T is a stopping time when (1T=n)n≥0 is adapted, or equivalently when (1T≤n)n≥0 is adapted.

The equivalence is easily checked by writing {T ≤ n} = ⋃k≤n{T = k} for one implication and
{T = n} = {T ≤ n} ⧵ {T ≤ n − 1} for the other one. In words, a stopping time is a random time which is
determined by the past: the information of the present is su�cient to tell wether it has already occurred or
not yet. One can notice that constant random variables T = k for any given k ∈ ℤ+ are stopping times.

Example 7.1.7. Important stopping times are given by the �rst entry time of an adapted process: take
X = (Xn)n adapted to (Fn)n and �x any measurable set A, then

T = inf{n∶ Xn ∈ A}

is a stopping time. Indeed,

{T > n} =
n
⋂
k=0
{Xk ∈ Ac} ∈ Fn.

Throughout this course we assume inf ∅ = ∞. It is thus important that T may take value ∞.

Let us observe that the de�nition of a stopping time also applies to n = ∞. Indeed, recall that we set
F∞ = � (⋃n Fn), thus if T is a stopping time, then

{T = ∞} = (⋃
n≥0
{T ≤ n})

c
∈ F∞.

It is important to be able to deal with multiple stopping times and we encourage the reader to prove the
following elementary results.

Exercise 7.1.8. Let (Tk)k≥1 be stopping times, then ∑k Tk , infk Tk , supk Tk , lim infk Tk , lim supk Tk are all
stopping times. In general, the di�erence is not, even in the case T − 1 where T ≥ 1 a.s.

7.2 Stopped �-algebras and stopped processes

Let T be a stopping time relative to a �ltration (Fn)n; the information available at this random time is
encoded into the following collection of subsets:

FT = {A ∈ F∶ A ∩ {T = n} ∈ Fn for all n ≥ 0}. (7.2)

The notation creates no con�ict since if T is constant equal to some �xed k, then for n ≠ k, we have
A ∩ {T = n} = ∅ and for n = k, we have A ∩ {T = k} = A, so FT = {A ∈ F∶ A ∈ Fk} = Fk in this case.

Proposition 7.2.1. For any stopping time T , the collection of sets FT is a sub-� -algebra of F. Moreover, it
can be equivalently de�ned by

FT = {A ∈ F∶ A ∩ {T ≤ n} ∈ Fn for all n ≥ 0}.

Finally, for any real-valued random variable X , we have X m FT if and only if X 1T=n m Fn for every n ≥ 0.
In this case, we have X 1T=∞ m F∞.
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Proof. Clearly ∅ ∩ {T = n} = ∅ ∈ Fn for any n ≥ 0 so ∅ ∈ FT . Also, if Ak ∈ FT for all k ≥ 0, that is if
Ak ∩ {T = n} ∈ Fn for any n, k ≥ 0, then

(⋃
k
Ak) ∩ {T = n} = (⋃

k
Ak ∩ {T = n}) ∈ Fn.

The (slightly) tricky part is to show that if A ∈ FT , then Ac ∈ FT . For this, observe that

Ac ∩ {T = n} = (A ∪ {T ≠ n})c = ((A ∩ {T = n}) ∪ {T ≠ n})c .

If A ∈ FT , then (A ∩ {T = n}) ∈ Fn, also {T ≠ n} ∈ Fn, hence (Ac ∩ {T = n}) ∈ Fn for every n. This
concludes the proof that FT is a sub-�-algebra of F.

Next let us prove that FT = GT , which we de�ne as:

GT = {A ∈ F∶ A ∩ {T ≤ n} ∈ Fn for all n ≥ 0}.

If A ∈ FT , then for every n ≥ k ≥ 0, we have A ∩ {T = k} ∈ Fk ⊂ Fn so

A ∩ {T ≤ n} = A ∩ (⋃
k≤n
{T = k}) = ⋃

k≤n
(A ∩ {T = k}) ∈ Fn.

Thus A ∈ GT and we have shown that FT ⊂ GT . Conversely, let A ∈ GT , then

A ∩ {T = n} = A ∩ ({T ≤ n} ∩ {T ≤ n − 1}c) = (A ∩ {T ≤ n}) ∩ {T ≤ n − 1}c ∈ Fn.

Thus GT ⊂ FT and the proof is complete.
Finally, let X be a random variable and suppose �rst that X m FT . Let us prove that X 1T=n m Fn,

that is {X 1T=n ∈ B} ∈ Fn for any measurable set B. Indeed:

{X 1T=n ∈ B} = ({X ∈ B} ∩ {T = n}) ∪ ({0 ∈ B} ∩ {T ≠ n}).

By de�nition, if X m FT , then {X ∈ B} ∈ FT and so {X ∈ B} ∩ {T = n} ∈ Fn. On the other hand we also
have {T ≠ n} = {T = n}c ∈ Fn and {0 ∈ B} has nothing to do with Fn: it is either Ω of ∅ according as
wether 0 ∈ B or not. Therefore {X 1T=n ∈ B} ∈ Fn as we wanted and thus X 1T=n m Fn.

Suppose conversely that X 1T=n m Fn for every n and let us prove that X m FT , that is {X ∈ B} ∈ FT

for any measurable set B. The latter is equivalent to {X ∈ B} ∩ {T = n} ∈ Fn for any measurable set B and
any n and we write now:

{X ∈ B} ∩ {T = n} = {X 1T=n ∈ B} ∩ {T = n} ∈ Fn

since each term on the right belongs to Fn.
To conclude, notice that for every n ≥ 0, we have X 1T≤n = ∑k≤n X 1X=k m Fn when X 1X=k m Fk for

each k. Further, if X ≥ 0, then X 1T=∞ = ↑ limn X 1T≤n which is then F∞-measurable. In general, we may
write X = X + − X − with X + ≥ 0 and X − ≥ 0 to infer from the nonnegative case that X 1T=∞ m F∞.

Recall from the above exercise that the minimum of two stopping times is again a stopping time. Let us
compare their associated sub-�-algebras. Recall the notation s ∧ t = min(s, t).

Lemma 7.2.2. Let S and T be two stopping times, then so is S ∧ T and we have

FS ∩FT = FS∧T .

The latter contains the events {S ≤ T}, {S ≥ T}, and {S = T}.

It follows that if we know that S ≤ T , then FS ⊂ FT .
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Proof. Let us prove both inclusions. Suppose �rst that A ∈ Fsatis�es for every n both A ∩ {S ≤ n} ∈ Fn

and A ∩ {T ≤ n} ∈ Fn, then

A ∩ {S ∧ T ≤ n} = A ∩ ({S ≤ n} ∪ {T ≤ n}) = (A ∩ {S ≤ n}) ∪ (A ∩ {T ≤ n}) ∈ Fn.

By Proposition 7.2.1, this shows that FS ∩FT ⊂ FS∧T .
Conversely, suppose that A ∈ Fsatis�es A ∩ {S ∧ T ≤ n} ∈ Fn for every n, then

A ∩ {S ≤ n} = (A ∩ ({S ≤ n} ∪ {T ≤ n})) ∩ {S ≤ n} ∈ Fn,

so FS∧T ⊂ FS . The same argument applies to T and so FS∧T ⊂ FS ∩FT .
Finally, let us prove that {S ≤ T} ∈ FS ∩FT , the proof for {S ≥ T} is similar, and the case of {S = T}

follows by taking their intersection. On the one hand, for every n ≥ 0, we have {S ≤ T} ∩ {T = n} = {S ≤
n} ∩ {T = n} ∈ Fn since both {S ≤ n} ∈ Fn and {T = n} ∈ Fn, hence {S ≤ T} ∈ FT . On the other hand,
{S ≤ T} ∩ {S = n} = {T ≥ n} ∩ {S = n} ∈ Fn since {T ≥ n} = {T ≤ n − 1}c ∈ Fn−1 ⊂ Fn and {S = n} ∈ Fn,
hance {S ≤ T} ∈ FS as well.

Recall that we motivated the notion of stopping time by the will to follow a process until such a time.

De�nition 7.2.3. For a process (Xn)n≥0 and a random time T ∈ ℤ+, we de�ne the stopped process X T =
(X T

n )n≥0 by:
X T
n = Xn∧T = Xn 1n≤T + XT 1T<n.

In words, the process X T simply follows the trajectory of X , but if we reach T (on the event {T < ∞},
otherwise we simply continue forever), then it after this time it remains constant. We are next concerned
with this terminal value.

Lemma 7.2.4. Let (Xn)n be an adapted process and let X∞ be some random variable with X∞ m F∞ =
� (⋃n Fn). Let T be a stopping time, then

XT = ∑
n≥0

Xn 1T=n + X∞ 1T=∞

is a random variable and XT m FT . Also, the stopped process (X T
n )n≥0 is adapted.

Proof. The �rst claim follows from Proposition 7.2.1 since XT 1T=n = Xn 1T=n m Fn. For the second claim,
simply observe that for any measurable set and any n ≥ 0, we have since XT m FT :

{Xn∧T ∈ B} = ({Xn ∈ B}⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
∈ Fn

∩ {n < T}
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
∈ Fn

) ∪ ({XT ∈ B} ∩ {T ≤ n})
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

∈ Fn

∈ Fn

and the stopped process (X T
n )n≥0 is therefore adapted as we claimed.

We stress that the notation XT does not make sense if T can be in�nite and X∞ is not de�ned! Usually
when Xn converges a.s. as n → ∞, we let X∞ denote its limit, otherwise we may set X∞ = 0 so XT =
∑n≥0 Xn 1T=n is well-de�ned in any case.

7.3 Conditioning with respect to a �-algebra

Recall the conditional expectation of a real-valued random variable X given any random variable Y de�ned
in Theorem 6.2.1. The good notion of conditional expectation is actually with respect to the �-algebra
generated by Y rather than the random variable itself, in the following sense.

Lemma 7.3.1. If Y and Y ′ are two random variables such that � (Y ) = � (Y ′), then E[X ∣ Y ′] = E[X ∣ Y ]
a.s. for any real-valued random variable X , either nonnegative or integrable.
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Proof. It su�ces to prove that E[X ∣ Y ′] satis�es the two characteristic properties of E[X ∣ Y ] from
Theorem 6.2.1. First, by this very theorem, we have E[X ∣ Y ′] = Ψ(Y ′) for some measurable function Ψ,
either nonnegative or integrable. By Lemma 1.2.8 we infer that E[X ∣ Y ′] is � (Y ′)-measurable, and since
� (Y ) = � (Y ′), then by this lemma again, there exists a measurable function Φ such that E[X ∣ Y ′] = Φ(Y ),
which proves Property (i) of the theorem. Similarly, for every ℎ measurable, the random variable ℎ(Y ) also
takes the form ℎ′(Y ′) for some measurable function ℎ′ and Property (ii) follows.

We can then extend the de�nition of conditional expectation with respect to any sub-�-algebra.

De�nition 7.3.2. Let G⊂ Fbe a sub-� -algebra and let X be a real-valued random variable such that either
X ∈ [0,∞] a.s. or E[|X |] < ∞. Then there exists a real-valued random variable Z satisfying the following
properties:

(i) Z m Gand either Z ∈ [0,∞] a.s. or E[|Z |] < ∞ respectively,

(ii) For any random variable W m Geither nonnegative or bounded respectively, we have:

E[XW ] = E[ZW ].

Moreover, if Z ′ is another such random variable, then Z = Z ′ a.s.

The proof is exactly the same as for Theorem 6.2.1 which, by the previous lemma, considered in fact
the special case G = � (Y ). Actually, this particular case is not restrictive in the sense that if G ⊂ F is a
sub-� -algebra and if one considers the identity random variable Y (!) = ! but seen as a measurable function
Y ∶ (Ω,F)→ (Ω, G), then we have

E[X ∣ G] = E[X ∣ Y ]

a.s. by Lemma 1.2.8 again. All the properties of the conditional expectation from the previous chapter then
extend readily to conditioning with respect to a sub-�-algebra.

Let us consider the particular case when G= FT is the stopped �-algebra.

Proposition 7.3.3. Let X be a random variable, either nonnegative or integrable and let T be a stopping time,
then

E[X ∣ FT ] = ∑
n≥0

E[X ∣ Fn]1T=n + E[X ∣ F∞]1T=∞.

Proof. Let Z denote the right-hand side in the claim. We simply check that it satis�es the two characteristic
properties of E[X ∣ FT ]. Let us �rst consider the case when X ≥ 0, so Z ≥ 0. It follows from Lemma 7.2.4
that Z m FT . Fix then W m FT a nonnegative random variable. Then by Proposition 7.2.1 we have
1T=nW m Fn for every n ∈ {0, 1,…} ∪ {∞}, hence

E[ZW ] = ∑
n≥0

E[E[X ∣ Fn]1T=nW ] + E[E[X ∣ F∞]1T=∞W ]

= ∑
n≥0

E[X 1T=nW ] + E[X 1T=∞W ]

= E[XW ].

This shows that indeed Z = E[X ∣ FT ] when X ≥ 0. In the integrable case, let us write X = X + − X −, where
both X + ≥ 0 and X − ≥ 0, so

E[X + ∣ FT ] = ∑
n≥0

E[X + ∣ Fn]1T=n + E[X + ∣ F∞]1T=∞,

and the same holds with X −. Subtracting these two identities yields our claim.

Recall the tower property from Lemma 6.5.1; combined with Lemma 7.2.2 on stopped �ltrations, we can
extend it as follows.
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Lemma 7.3.4. Let S and T be two stopping times and let X be a random variable, either nonnegative or
integrable. We have:

E[E[X ∣ FS] ∣ FT ] = E[E[X ∣ FT ] ∣ FS] = E[X ∣ FS∧T ].

Proof. Let A ∈ FS∧T = FS ∩FT , then using successively that A ∈ FS and then A ∈ FT , we obtain using the
characteristic property of conditional expectation:

E[E[E[X ∣ FT ] ∣ FS]1A] = E[E[X ∣ FT ]1A] = E[X 1A].

Hence, the random variable Z = E[E[X ∣ FT ] ∣ FS] m FS∧T satis�es

E[XW ] = E[ZW ]

for every random variable W = 1A with A ∈ FS∧T . We extend then this identity to general random variables
W m FS∧T by the usual approximation of measurable functions by simple functions and linearity of
expectation, see Section 1.4 for details.
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Chapter 8

Martingales & Stopping times

Martingales have been introduced as generalisations of sums of independent zero-mean random variables
by only assuming that the increments have a null conditional expectation (in the sense of Chapter 6) given
the past. They are often presented as modeling the evolution of the fortune of player who is betting on
a fair game, and we shall also stick to this picture. It turns out that martingales form a very rich class
of stochastic processes and their seemingly very simple de�nition will actually allow us to derive many
strong results which make them a very important tool in modern probability and statistics. We focus in this
�rst chapter on the stopping problem, that is evaluating a martingale at a random stopping time, which is
particularly useful to study random walks and more generally Markov chains. We shall also discuss the
optimal stopping problem as an application of this theory.
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In Section 8.1 we �rst de�ne (super- and sub-) martingales and study some natural transformations. A
�rst simple but important result proved in Section 8.2 is that a (super- and sub-) martingale stopped at a
random stopping time remains a (super- and sub-) martingale. With some extra argument, this enables us
to compute the expectation of a martingale evaluated at a stopping time, which has important applications.
Section 8.3 presents some decompositions of martingales, the �rst one which will be used in the subsequent
chapter. Section 8.4 discusses the relation between martingales, Markov chains, and harmonic functions.
Finally Section 8.5 considers the optimal stopping problem that is: how can you try to maximise your
(mean) gain in a random game? The question a priori does not concern martingales, but its solution does
(and the stopping theorem).

8.1 Martingales & �rst properties

Let us �x an underlying �ltered space (Ω,F, (Fn)n≥0,ℙ) and an adapted real-valued stochastic process
(Mn)n≥0 as in De�nition 7.1.4. We often consider the natural �ltration Fn = � (Mk , k ≤ n), but sometimes
we may have more information encoded into Fn. The situation is the following: at any time n we have
the information of the past up to time n, encoded in Fn, and we try using this knowledge to predict Mn+1.
Informally, our best guest is given by the conditional expectation:

E[Mn+1 ∣ Fn],
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which exists as soon as E[|Mn+1|] < ∞. If Fn = FM
n = � (M0,… , Mn) is the natural �ltration, then recall that:

E[Mn+1 ∣ M0,… , Mn] = Ψ(M0,… , Mn)

for some measurable (deterministic) function Ψ.

De�nition 8.1.1. A stochastic process (Mn)n≥0 is said to be integrable, or more generally in Lp for some
p ≥ 1 when for each given n, we have E[|Mn |p] < ∞. We stress that no uniformity in n is required and we
may have E[|Mn |p]→ ∞.

Here is the de�nition of a martingale.

De�nition 8.1.2. An adapted and integrable stochastic process (Mn)n is called a (sub/super-)martingale
when it satis�es the characteristic property: For every n ≥ 0,

E[Mn+1 ∣ Fn] ≥ Mn (submartingale),

E[Mn+1 ∣ Fn] ≤ Mn (supermartingale),

E[Mn+1 ∣ Fn] = Mn (martingale).

Notice that (Mn)n is a (sub/super-)martingale if and only if (Mn −M0)n is and M0 ∈ L1. We shall therefore
often forget about the initial value M0 and simply take equal to 0. Also let us already note that (Mn)n is
submartingale if and only if (−Mn)n is supermartingale and that (Mn)n is martingale if and only if it is both
a supermartingale and a submartingale. Hence, properties for one model are easily transferred to another
model such as the next easy one.

Lemma 8.1.3. If (Mn)n is a submartingale, then for every n > m, it holds:

E[Mn ∣ Fm] ≥ Mm.

The converse inequality holds for supermartingales and an equality for martingales.

Proof. Recall the tower property in Lemma 6.5.1:

E[Mn ∣ Fm] = E[E[⋯E[Mn ∣ Fn−1]⋯ ∣ Fm+1] ∣ Fm].

The claim then easily follows by induction.

By taking the expectation, we deduce that the sequence (E[Mn])n is monotone, namely, for a submartin-
gale we have for every pair n > m,

E[Mn] ≥ E[Mm] ≥ E[M0].

The converse inequalities hold for supermartingales and equalities for martingales.

Lemma 8.1.4. Let � ∶ ℝ → ℝ be a convex function and let (Mn)n be an adapted process. Suppose that
(�(Mn))n is integrable.

(i) If (Mn)n is a martingale, then (�(Mn))n is a submartingale.

(ii) If (Mn)n is a submartingale and � is nondecreasing, then (�(Mn))n is a submartingale.

Proof. A direct application of the conditional Jensen inequality (recall Lemma 6.4.3) yields:

E[�(Mn+1) ∣ Fn] ≥ �(E[Mn+1 ∣ Fn]).

If (Mn)n is a martingale, then the right-hand side is �(Mn), whereas it is larger than or equal to �(Mn) if
both (Mn)n is a submartingale and � is nondecreasing.
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Example 8.1.5. Here are some convex functions that often appear in martingale theory: |x |, x2, ecx and
e−cx with c > 0, as well as max(x, c) and −min(x, c) with c ∈ ℝ. Notice that for c = 0, the last two amount
to x+ and x− respectively.

We often interpret martingales as the fortune of a gambler as time passes: the game is fair for martingales,
and (un)favourable for (super/sub)martingales. In the basic model the gambler bets 1 unit of money at
every step, and at the n’th game they win (or loose) Mn −Mn−1. Now suppose they can choose to bet Hn
for the n’th game, then the algebraic gain becomes Hn(Mn −Mn−1). Of course, the choice of Hn should not
depend on the result of the n’th game: it has to be made before and therefore it can only depend on the
previous history. Formally (Hn)n must be predictable in the sense of De�nition 7.1.4.

One can now wonder: is there a possibility to turn a unfavourable game into a favourable game by
betting appropriately? The answer is of course no for otherwise casinos would not exist. The proof is a
simple exercise but this result will shortly have a very important application.

Lemma 8.1.6 (You cannot trick the game). Let M = (Mn)n≥0 be an adapted process and H = (Hn)n≥1 be a
predictable process. De�ne a new process H ∙M by (H ∙M)0 = 0 and for n ≥ 1,

(H ∙M)n =
n
∑
k=1

Hk(Mk −Mk−1)

and suppose that it is integrable.

(i) If M is a martingale, then so is H ∙M .

(ii) If M is a submartingale (resp. supermartingale), then so is H ∙M if in addition and Hn ≥ 0 for all n.

To ensure that H ∙M is integrable we typically assume either that H is bounded or that both Mn, Hn ∈ L2

for every n.

Proof. Note that H ∙M is adapted since for k ≤ n, each Hk , Mk m Fn. Then, for every n ≥ 1, let us write:

E[(H ∙M)n ∣ Fn−1] = (H ∙M)n−1 + E[Hn(Mn −Mn−1) ∣ Fn−1].

Recall that Mn−1, Hn m Fn−1, then by �rst taking out what is known (Lemma 6.5.2), we have:

E[Hn(Mn −Mn−1) ∣ Fn−1] = Hn E[Mn −Mn−1 ∣ Fn−1] = Hn(E[Mn ∣ Fn−1] −Mn−1).

For a martingale, the term in parenthesis vanishes; for a submartingale, it is nonnegative, so assuming that
Hn ≥ 0, the right-hand side is nonnegative; it is similarly nonpositive in the case of a supermartingale.

Remark 8.1.7. Next semester you will study processes (Mt )t∈[0,∞) that evolve in continuous time. The
analogue of the transformation (H ∙M)n = ∑n

k=1 HkΔMk becomes (H ∙M)t = ∫ t
0 HsdMs . This object, basically

constructed by a limit of Riemann sums, is called the stochastic integral and is a fundamental object in the
study of continuous-time stochastic processes.

8.2 The stopping theorem

Let us continue in the hope of winning at an unfavourable game. To complete our strategy, in addition to
be able to freely choose the amount of money we bet, we can also decide when to leave the game. As for
betting, the decision to leave at time n must only depend on the information up to time n, and thus must be
formally a stopping time in the sense of De�nition 7.1.6. Recall also the stopped process from De�nition 7.2.3.
By betting one unit until we decide to stop, we obtain the following result.

Lemma 8.2.1. Let (Mn)n≥0 be a (sub/super)martingale and let T be a stopping time. Then the stopped process
(Mn∧T )n≥0 is a (sub/super)martingale.
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Proof. For every n ≥ 1, we have {T ≥ n} = {T ≤ n − 1}c ∈ Fn−1 so the process de�ned by Hn = 1T≥n is
predictable and obviously bounded and nonnegative. Notice that Mn∧T = M0 + (H ∙M)n. The claim then
follows from Lemma 8.1.6.

Consequently, for any stopping time T and any n ≥ 0, we have E[Mn∧T ] ≥ E[M0] for a submartingale,
the converse inequality for a supermartingale, and an equality for a martingale. Suppose that T < ∞ and
recall the random variable MT from Lemma 7.2.4. Let us already note that in general these inequalities do
not extend to MT . As a concrete example, the simple random walk on ℤ is a martingale and we saw in
Theorem 4.3.1 that it was recurrent, so T = inf{n∶ Mn = −1} < ∞ a.s. and here MT = −1 ≠ M0 = 0.

Now we would very much like to know wether E[MT ] ≥ E[M0] for a submartingale. This is certainly the
case if T is bounded, i.e. there exists a deterministic integer N such that T ≤ N a.s. since then Mn∧T = MT

for all n > N . In this setting of bounded stopping times, we can be more precise and extend the identity
E[Mn ∣ Fm] ≥ Mm valid for all deterministic n ≥ m (recall Lemma 8.1.3).

Theorem 8.2.2. Let (Mn)n≥0 be a submartingale and let S and T be two bounded stopping times satisfying
S ≤ T . Then MS , MT ∈ L1 and we have

E[MT ∣ FS] ≥ MS and so E[MT ] ≥ E[MS] ≥ E[M0].

The converse inequalities hold for supermartingales and equalities for martingales.

Proof. Suppose that S ≤ T ≤ N where N is deterministic. Then |MT | = ∑N
n=0 |Mn |1T=n ≤ supn≤N |Mn | ∈ L1

and similarly for MS . Fix A ∈ FS and de�ne Hn = 1A 1S<n≤T for every n ≥ 1. By Proposition 7.2.1, we have
A ∩ {S < n} ∈ Fn−1 and since {T ≥ n} ∈ Fn−1 as well, then (Hn)n is predictable. It is obviously bounded,
and thus we infer from Lemma 8.1.6 that (H ∙M) is again a submartingale, started at 0. In particular,

0 = E[(H ∙M)0] ≤ E[(H ∙M)N ] = E[
N
∑
n=1

1A 1S<n≤T (Mn −Mn−1)] = E[1A(MT −MS)].

We conclude that E[E[MT − MS ∣ FS]1A] ≥ 0 for every A ∈ FS ; taking A = {E[MT − MS ∣ FS] < 0},
we obtain a nonpositive random variable with a nonnegative expectation, so it vanishes a.s. namely
E[MT −MS ∣ FS] ≥ 0.

Let us mention a converse statement that provides a useful characterisation of (sub/super-)martingales.

Corollary 8.2.3. Let (Mn)n≥0 be an adapted and integrable process. Then it is a submartingale if and only if
for every bounded stopping times T ≥ S we have MS , MT ∈ L1 and

E[MT ] ≥ E[MS].

The same holds for supermartingales with the converse inequality and for martingales with an equality.

Remark 8.2.4. In the case of martingales, since we have an equality, then an adapted and integrable process
(Mn)n is a martingale if and only if for all bounded stopping times T , we have MT ∈ L1 and E[MT ] = E[M0].
This is not true for submartingales (with ≥), for otherwise every nonnegative deterministic sequence would
be nondecreasing!

Proof. The direct implication follows from the previous theorem; let us henceforth suppose that for every
bounded stopping times S ≤ T we have MS , MT ∈ L1 and E[MT ] ≥ E[MS]. Fix n ≥ 0 and A ∈ Fn and de�ne

T = (n + 1)1Ac + n 1A.

Then T ≤ n + 1 is a stopping time since {T = n} = A ∈ Fn and {T = n + 1} = Ac ∈ Fn ⊂ Fn+1, and
{T = k} = ∅ ∈ Fk otherwise. Note that MT = Mn+1 1Ac +Mn 1A = Mn + (Mn+1 −Mn)1Ac . Since n + 1 is also
a bounded stopping time, then by our assumption:

E[Mn+1] ≥ E[MT ] = E[Mn] + E[(Mn+1 −Mn)1Ac ].
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We infer that
E[(Mn+1 −Mn)1A] ≥ 0,

for all A ∈ Fn, which, as in the previous proof, implies E[Mn+1 −Mn ∣ Fn] ≥ 0. Since n is arbitrary, then
(Mn)n is a submartingale.

Now what can be said for unbounded stopping times? Here are two useful cases in practice. Notice that
the less restrictive assumptions we make on T , the more restrictive we make on M .

Proposition 8.2.5. Let (Mn)n≥0 be a submartingale and let T be a stopping time. Suppose we are in one of
the following two cases:

(i) either E[T ] < ∞ and (Mn∧T )n has bounded increments, i.e. there exists a deterministic C < ∞ such that
|Mn∧T −M(n−1)∧T | ≤ C for all n a.s.

(ii) or T < ∞ a.s. and (Mn∧T )n is bounded, i.e. there exists a deterministic C < ∞ such that |Mn∧T | ≤ C for
all n a.s.

Then in both cases MT ∈ L1 and we have E[MT ] ≥ E[M0]. If M is instead a supermartingale, then E[MT ] ≤
E[M0], and �nally if M is a martingale, then E[MT ] = E[M0].

Proof. By Lemma 8.2.1 we know that E[Mn∧T ] ≥ E[M0] for all n ≥ 0. Moreover, if T < ∞ a.s. then
Mn∧T → MT a.s. Then the second case follows from dominated convergence. As for the �rst claim, under
the bounded increment assumption we have:

|Mn∧T | =
||||
M0 +

n∧T
∑
k=1
(Mk −Mk−1)

||||
≤ |M0| +

n∧T
∑
k=1

|Mk −Mk−1| ≤ |M0| + C(n ∧ T ) ≤ |M0| + CT .

If T is integrable, then we can again apply the dominated convergence theorem.

Remark 8.2.6. • These cases are just a suggestion and in practice, one can safely apply Lemma 8.2.1
and try to pass to limit depending on the situation. We used here the dominated convergence theorem,
but monotone convergence can be useful as well.

• This proposition is sometimes stated with the more restricted assumption that M or its increments
are bounded, not the stopped process. In practice it is very often the case, especially in the second
one, that the whole process is unbounded, but the stopped process is.

8.3 Some decompositions (⋆)

Since gambling doesn’t work, let us give another, more mathematical, motivation to consider such objects.
The �rst result is sometimes called the Doob–Meyer decomposition. It shows that martingales and predict-
able processes naturally appear in random processes. It will play an important role in the next chapter. The
other results of this section will not be used in the sequel.

Lemma 8.3.1. Let (Xn)n be an integrable process adapted to a �ltration (Fn)n. Then:

(i) There exist a predictable process (An)n and a martingale (Mn)n, both for the �ltration (Fn)n and both
null at 0, such that for every n ≥ 0,

Xn = X0 +Mn + An.

(ii) If (A′n)n and (M ′
n)n is another such pair, then A′n = An and M ′

n = Mn for all n.

(iii) Finally (Xn)n is a submartingale, resp. supermartingale, resp. martingale, if and only if (An)n is non-
decreasing, resp. nonincreasing, resp. constant (null).
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Proof. Suppose �rst there exists such a decomposition. Since A is predictable and M a martingale, then we
must have for all n ≥ 1:

E[Xn − Xn−1 ∣ Fn−1] = An − An−1, hence An =
n
∑
k=1

E[Xk − Xk−1 ∣ Fk−1].

A posteriori, this process is indeed predictable and thus is the only possible one null at 0. Next let us set
Mn = Xn − X0 − An, we obtain:

E[Mn −Mn−1 ∣ Fn−1] = E[Xn − Xn−1 − E[Xn − Xn−1 ∣ Fn−1] ∣ Fn−1] = 0,

so it is a martingale null at zero. The uniqueness of M follows then from that of A. The last part of the
statement is now clear.

Remark 8.3.2. Recall that if (Mn)n is a martingale then (M2
n )n is a submartingale provided integrability. The

nondecreasing predictable process in the associated decomposition plays an important role, see Section 9.6.2.

Next, we are used to decompose a random variable as X = X + − X −. Recall from Lemma 8.1.4 that
if (Xn)n is martingale, then (X +

n )n and (X −
n )n are submartingales. The next result, sometimes called the

Krickeberg decomposition, shows that we can decompose it as the di�erence of two martingales under an
optimal assumption.

Lemma 8.3.3. Let (Xn)n be a martingale. It satis�es supn E[|Xn |] < ∞ if and only if there exist two nonneg-
ative martingales (Mn)n and (Nn)n such that:

Xn = Mn − Nn.

Moreover in this case, there exists a unique such decomposition which satis�es:

sup
n≥0

E[|Xn |] = E[M0] + E[N0],

and (Mn)n and (Nn)n are the smallest nonnegative martingales which bound (Xn)n and (−Xn)n above respect-
ively.

Proof. Note that if (Mn)n and (Nn)n are nonnegative martingales, then indeed their di�erence remains a
martingale, and moreover, for every n ≥ 0, we have

E[|Mn − Nn |] ≤ E[|Mn |] + E[|Nn |] = E[Mn] + E[Nn] = E[M0] + E[N0],

so the left-hand side is bounded uniformly in n.
Conversely, suppose that (Xn)n is a martingale with supn E[|Xn |] < ∞. Fix n ≥ 0 and de�ne two

sequences (M (n)
k )k and (N (n)

k )k by M (n)
k = E[X +

n+k ∣ Fn] and N (n)
k = E[X −

n+k ∣ Fn] respectively, so by the tower
property,

Xn = E[Xn+k ∣ Fn] = M
(n)
k − N (n)

k ,

for every k ≥ 0. Let us focus on (M (n)
k )k , as the other sequence satis�es similar properties. First, we claim

that it is nondecreasing. Indeed by the tower property and convexity, since (Xn+k)n is a martingale, then

M (n)
k+1 = E[X +

n+k+1 ∣ Fn] = E[E[X +
n+k+1 ∣ Fn+k] ∣ Fn] ≥ E[X +

n+k ∣ Fn] = M
(n)
k .

Thus (M (n)
k )k converges a.s. to a limit, say M (n)

∞ ∈ [0,∞]. It actually is �nite, and even integrable by Fatou’s
lemma:

E[M (n)
∞ ] ≤ lim inf

k→∞
E[M (n)

k ] ≤ sup
k≥0

E[M (n)
k ] = sup

k≥0
E[X +

n+k] ≤ sup
k≥0

E[|Xk |] < ∞.
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We claim that letting n vary, the integrable process (M (n)
∞ )n is a martingale. Indeed, by the tower property

again, we have

E[M (n+1)
k ∣ Fn] = E[E[X +

n+1+k ∣ Fn+1] ∣ Fn] = E[X +
n+1+k ∣ Fn] = M

(n)
k+1.

Letting k → ∞, we conclude by conditional monotone convergence (Lemma 6.4.3) that

E[M (n+1)
∞ ∣ Fn] = E[↑ lim

k
M (n+1)
k ∣ Fn] = ↑ lim

k
E[M (n+1)

k ∣ Fn] = ↑ lim
k
M (n)
k+1 = M

(n)
∞ .

The exact same argument applies to N (n)
k = E[X −

n+k ∣ Fn] and its nonnegative martingale limit N (n)
∞ . We can

thus let k → ∞ in our decomposition Xn = M (n)
k − N (n)

k to obtain:

Xn = M (n)
∞ − N (n)

∞ .

Finally, for k ≥ 0, we have:

M (0)
k + N (0)

k = E[X +
k ∣ F0] + E[X

−
k ∣ F0] = E[|Xk | ∣ F0].

Take the expectation of both sides and use monotone convergence to conclude that

E[M (0)
∞ ] + E[N (0)

∞ ] = sup
n

E[|Xn |].

Suppose now that there is another such decomposition Xn = M ′
n − N ′

n as di�erences of nonnegative
martingales. Notice that M ′

n ≥ X +
n and N ′

n ≥ X −
n for every n, then by taking conditional expectations, we get

for every n ≥ 0:
M ′
n = E[M ′

n+k ∣ Fn] ≥ E[X +
n+k ∣ Fn] = M

(n)
k ⟶

k→∞
M (n)
∞ .

Hence M ′
n ≥ M (n)

∞ and similarly N ′
n ≥ N (n)

∞ for every n ≥ 0. If this new decomposition also satis�es
supn E[|Xn |] = E[M ′

0] + E[N ′
0 ], then necessarily, E[M ′

n] = E[M ′
0] = E[M (0)

∞ ] = E[M (n)
∞ ] and E[N ′

n] = E[N ′
0 ] =

E[N (0)
∞ ] = E[N (n)

∞ ] so combined with the previous bounds we get M ′
n = M (n)

∞ and N ′
n = N (n)

∞ , hence the
uniqueness of the decomposition.

Suppose (Yn)n is a nonnegative martingale which satis�es Yn ≥ Xn. Then Yn ≥ X +
n and the previous

argument shows that Yn ≥ M (n)
∞ . Similarly, if instead Yn ≤ −Xn, then Yn ≥ N (n)

∞ , hence the minimality
property of M (n)

∞ and N (n)
∞ .

Here is a last result known as the Riesz decomposition. Recall that if (Xn)n is a submartingale then
(E[Xn])n is nondecreasing.

Lemma 8.3.4. Suppose (Xn)n is a submartingale with supn E[Xn] < ∞. Then there exists a unique decompos-
ition

Xn = Mn − Yn

where (Mn)n is a martingale and (Yn) is a nonnegative supermartingale with E[Yn] → 0. The process (Mn)n
is the smallest supermartingale bounded below by (Xn)n.

Proof. We proceed with ideas similar to those of the previous proof. Fix n and let M (n)
k = E[Xn+k ∣ Fn], then

Xn ≤ E[Xn+k ∣ Fn] ≤ E[E[Xn+k+1 ∣ Fn+k] ∣ Fn] = E[Xn+k+1 ∣ Fn].

Thus the sequence (M (n)
k )k is nondecreasing and lower bounded by Xn; we let M (n)

∞ ∈ [Xn,∞] denote its
limit as k → ∞. By monotone convergence, applied to the nonnegative and nondecreasing sequence
(M (n)

k − Xn)k), and since Xn is integrable, we obtain:

E[M (n)
∞ ] = E[Xn] + E[M (n)

∞ − Xn] = E[Xn] + ↑ lim
k→∞

E[M (n)
k − Xn] = ↑ lim

k→∞
E[M (n)

k ] = ↑ lim
k→∞

E[Xk] < ∞.
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Thus the sequence (M (n)
∞ )n is integrable. Next,

E[M (n+1)
k ∣ Fn] = E[E[Xn+1+k ∣ Fn+1] ∣ Fn] = E[Xn+1+k ∣ Fn] = M

(n)
k+1.

We then let k → ∞, using conditional monotone convergence on the left, to obtain that (M (n)
∞ )n is a

martingale. Consequently, the di�erence Yn = M (n)
∞ − Xn de�nes a supermartingale; it is nonnegative by

construction and we have seen that E[M (n)
∞ ] = limk E[Xk], so E[Yn] → 0 as n → ∞. Now let (Zn)n be a

supermartingale with Zn ≥ Xn for every n. Then

Zn ≥ E[Zn+k ∣ Fn] ≥ E[Xn+k ∣ Fn] = M
(n)
k .

Letting k → ∞, we obtain that Zn ≥ M (n)
∞ which is therefore the smallest such supermartingale.

Suppose �nally that there exists another such decomposition as Xn = M ′
n + Y ′n = M (n)

∞ + Yn. Then
the process Zn = M ′

n − M
(n)
∞ = Y ′n − Yn is both a martingale as well as the di�erence of two nonnegative

supermartingales whose expectation tends to 0. Since it is a martingale, then by convexity,

E[|Zn |] ≤ E[|Zn+k |] ≤ E[Yn+k] + E[Y ′n+k] ⟶
k→∞

0

hence Zn = 0 for every n and the decomposition is indeed unique.

8.4 Martingales and Markov chains (⋆)

There is a deep connection between martingales and Markov chains, in relation also with harmonic functions
discussed in Section 3.5. Let (Xn)n denote a Markov chain with values in a countable set X, with transition
matrix P . Recall that for every function f ∶ X → ℝ for which the expectation is well-de�ned, we have for
every x ∈ X

Pnf (x) = ∑
y∈X

Pn(x, y)f (y) = ∑
y∈X

ℙx (Xn = y)f (y) = Ex [f (Xn)].

We let I denote the identity matrix on X.

Theorem 8.4.1. Let (Xn)n be a stochastic process with values in X and let P be a transition matrix. Then
(Xn)n is a P-Markov chain if and only if for every measurable and bounded function f ∶ X → ℝ, the process
given by:

M f
n = f (Xn) − f (X0) −

n−1
∑
k=0
(P − I )f (Xk)

is a martingale null at 0.

Proof. Let Fn = � (X0,… , Xn). The process (M f
n )n is adapted and integrable for any bounded function f since

then Pf and hence (P − I )f are also bounded. Moreover we have

M f
n+1 −M

f
n = f (Xn+1) − f (Xn) − (P − I )f (Xn) = f (Xn+1) − Pf (Xn),

hence
E[M f

n+1 ∣ Fn] = M
f
n if and only if E[f (Xn+1) ∣ Fn] = Pf (Xn),

and the right-hand sides holds if and only if (Xn)n is a P-Markov chain.
Indeed (Xn)n is a P-Markov chain when for every x0,… , xn+1 we have:

ℙ(Xn+1 = xn+1 ∣ X0 = x0,… , Xn = xn) = P (xn, xn+1).

If this holds, then for f bounded, we have:

E[f (Xn+1) ∣ X0 = x0,… , Xn = xn] = ∑
xn+1∈X

f (xn+1)ℙ(Xn+1 = xn+1 ∣ X0 = x0,… , Xn = xn)

= ∑
xn+1∈X

f (xn+1)P (xn, xn+1)

= Pf (xn).
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Recall that E[f (Xn+1) ∣ X0,… , Xn] = Ψ(X0,… , Xn) where Ψ(x0,… , xn) = E[f (Xn+1) ∣ X0 = x0,… , Xn = xn],
hence E[f (Xn+1) ∣ X0,… , Xn] = Pf (Xn) for a P-Markov chain. Conversely, this identity applied to f (y) =
1y=xn+1 shows that:

ℙ(X0 = x0,… , Xn+1 = xn+1) = E[f (Xn+1)
n

∏
k=0

1Xk=xk]

= E[E[f (Xn+1) ∣ X0,… , Xn]
n

∏
k=0

1Xk=xk]

= E[Pf (Xn)
n

∏
k=0

1Xk=xk]

= Pf (xn)ℙ(X0 = x0,… , Xn = xn)

= P (xn, xn+1)ℙ(X0 = x0,… , Xn = xn),

which shows that (Xn)n is a P-Markov chain.

Remark 8.4.2. Recall that a function ℎ is P-harmonic when Pℎ = ℎ. Thus, if (Xn)n is a P-Markov
chain, then (ℎ(Xn))n is a martingale if and only if ℎ is P-harmonic. More generally, it is a submartingale
(resp. supermartingale) if and only if ℎ is subharmonic (resp. superharmonic).

Remark 8.4.3. If (Xn)n is a Markov chain, then the martingale (M f
n )n is that in the Doob–Meyer decom-

position of the process (f (Xn))n provided by Lemma 8.3.1. The sum ∑n−1
k=0(P − I )f (Xk) indeed corresponds to

the predictable part.

We can also consider functions of both the position and the time.

Theorem 8.4.4. Let (Xn)n be a P-Markov chain and let f ∶ ℤ+ ×X → ℝ. Let M f
n = f (n, Xn) and assume that

E[|M f
n |] < ∞ and that

Pf (n + 1, x) = ∑
y∈X

P (x, y)f (n + 1, y) = f (n, x).

Then (M f
n )n is a martingale.

Proof. The process (M f
n )n is adapted to Fn = � (X0,… , Xn) and we assume that it is integrable. Next, by the

Markov property,

E[f (n + 1, Xn+1) ∣ X0 = x0,… , Xn = xn] = E[f (n + 1, Xn+1) ∣ Xn = xn] = Pf (n + 1, xn),

which equals f (n, xn) by our assumption. We conclude as in the previous proof.

Example 8.4.5. Let (Sn)n denote the simple random walk on ℤ, corresponding to P (i, i−1) = P (i, i+1) = 1/2.
The harmonic functions ℎ = Pℎ are the solutions to:

ℎ(j) =
1
2
(ℎ(j + 1) + ℎ(j − 1)), equivalently ℎ(j + 1) − ℎ(j) = ℎ(j) − ℎ(j − 1).

The increments are constant, so the solutions are easily found to be

ℎ(k) = k(ℎ(1) − ℎ(0)) + ℎ(0).

Then Theorem 8.4.1 shows that for any value a = ℎ(0) and b = ℎ(1), we have that

(b − a)Sn + a is a martingale.

The functions f that satisfy the identity in Theorem 8.4.4 are solution to:

f (n, i) =
1
2
(f (n + 1, i − 1) − f (n + 1, i + 1)).

This gets more complicated, but one easily checks that f (n, i) = i2 − n is a solution, so

S2n − n is a martingale.
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These results allow to use martingale techniques to study Markov chains. As an example, one can
give an alternative treatment of the Dirichlet problem presented in Section 3.5 by relying on the stopping
theorem for the martingale (M f

n )n. We shall solve in the exercises the ruin problem in this way. The
recurrence/transience of a Markov chain can also be studied by means of such martingales decomposition.

8.5 Optimal stopping problem with �nite horizon

Consider the following game. You are given a �xed �nite horizon N ≥ 2, and for every n = 1,… , N , a
certain amount of money is proposed to you and you can decide:

• either to take it and stop without knowing the future proposals,

• or to refuse it and hear the next proposal.

At time n = N , if you have refused all the previous o�ers, then you get the last one. The question is then to
try to design a strategy to maximise the probability that the o�er you accept is the overall best one. This
problem is also known under the name of the ‘secretary problem’ in which one can imagine auditioning
candidates one after the others for an open secretary position, and trying to hire the best person, or also
‘marriage problem’ in which you try to get the best partner... These problems are also very standard in
�nancial mathematics. Let us formalise mathematically the problem.

De�nition 8.5.1 (Finite Horizon Optimal Stopping Problem). Fix an integer N , a �nite �ltration (Fn)0≤n≤N ,
and an adapted and integrable process (Xn)0≤n≤N . Let TN denote the set of all stopping times with values in
{0,… , N}. An optimal stopping time is a stopping time � ∈ TN that satis�es:

E[X� ] = sup
T∈TN

E[XT ],

which may not exist nor be unique. The questions are: do they exist and can we �nd them explicitly?

We shall start the process (Xn)n rather at time n = 1, and take F0 = {∅,Ω} the trivial �-algebra. Also,
for de�niteness, let Xn = XN and Fn = FN for n > N .

Remark 8.5.2. Actually, in our motivation problem (see Subsection 8.5.2) and this is often the case, the
sequence (Xn)n is not adapted to (Fn)n, that is, the knowledge of Fn does not entirely determine Xn and
some randomness remains. In this case, de�ne X̃n = E[Xn ∣ Fn], which is adapted, and observe that for any
stopping time � ∈ TN , we have since {� = n} ∈ Fn,

E[X� ] =
N
∑
n=0

E[Xn 1�=n] =
N
∑
n=0

E[X̃n 1�=n] = E[X̃� ].

Therefore a stopping time is optimal for (Xn)n if and only if it is optimal for (X̃n)n, and also the maximal
expected gain satis�es:

sup
�∈TN

E[X� ] = sup
�∈TN

E[X̃� ].

We can thus always come back to the adapted case.

8.5.1 Solution via the Snell enveloppe

We are going to solve this problem using martingale theory via the notion of Snell enveloppe. To get the
intuition consider the case N = 2 in our problem: you are proposed an amount X1, do you take it or refuse
it to get X2? The answer depends on what you expect X2 to be, given the information F1 (the amount X1).
Precisely: compute the conditional expectation E[X2 ∣ F1], then you accept X1 if the latter is larger than
E[X2 ∣ F1] and refuse it otherwise. This motivates the following de�nition.
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De�nition 8.5.3 (Snell enveloppe). Under the preceding notation, the sequence (Sn)0≤n≤N de�ned by the
backward recursion:

SN = XN and Sn = max(Xn, E[Sn+1 ∣ Fn]) for 0 ≤ n ≤ N − 1,

is called the Snell enveloppe of (Xn)0≤n≤N .

As before, we extend Sn = SN = XN for n > N . Here is another way of understanding the Snell
enveloppe.

Lemma 8.5.4. The Snell enveloppe of (Xn)n is the smallest (Fn)n-supermartingale above (Xn)n in the sense
that Sn ≥ Xn for every n.

Proof. Notice that since both Xn and E[Sn+1 ∣ Fn] are Fn-measurable and integrable, then so is Sn; moreover
Sn ≥ E[Sn+1 ∣ Fn] for n ≤ N ; after N , both (Sn)n≥N and (Fn)n≥N are constant so E[Sn+1 ∣ Fn] = E[SN ∣ FN ] =
SN = Sn, hence it is a supermartingale. The bound Sn ≥ Xn is also obvious from the construction. Let us
prove that it is the smallest such supermartingale. Let (Yn)n be another one, then �rst Yn ≥ Xn = Sn for
n ≥ N . We use then a backward induction: let us assume that for some 1 ≤ n ≤ N we have Yn ≥ Sn, and let
us prove that Yn−1 ≥ Sn−1. Since (Yn)n is a supermartingale, then

Yn−1 ≥ E[Yn ∣ Fn−1] ≥ E[Sn ∣ Fn−1].

Since in addition Yn−1 ≥ Xn−1 by assumption, then actually:

Yn−1 ≥ max(Xn−1,E[Sn ∣ Fn−1]) = Sn−1.

We conclude by a backward induction.

As a consequence, we can upper bound the maximal expected gain in the optimal stopping problem.

Corollary 8.5.5. If (Sn)0≤n≤N is the Snell enveloppe of (Xn)0≤n≤N , then

sup
�∈TN

E[X� ] ≤ E[S0].

Proof. Fix a stopping time � ∈ TN . Since (Sn)n is a supermartingale, then so is (Sn∧� )n and since (Sn)n is
above (Xn)n, then

E[Xn∧� ∣ F0] ≤ E[Sn∧� ∣ F0] ≤ S0

for any n. Taking n = N , we obtain E[X� ∣ F0] ≤ S0 and we conclude by taking the expectation on both
sides.

Let us next consider two special stopping times given by:

�⋆ = inf{n ≥ 0∶ Sn = Xn} and �⋆ = inf{n ≥ 0∶ Sn > E[Sn+1 ∣ Fn]}. (8.1)

Note that the backward recursion Sn = max(Xn, E[Sn+1 ∣ Fn]) for n ≤ N − 1 shows both that �⋆ ≤ N and
that it is equivalently given by �⋆ = inf{n ≥ 0∶ Sn ≥ E[Sn+1 ∣ Fn]}. The strict inequality required in �⋆ may
not occur, so it can be in�nite.

Lemma 8.5.6. Both stopped processes (Sn∧�⋆)n and (Sn∧�⋆)n are martingales.

Proof. The key is to note that �rst if � is a stopping time, then S� 1�≤n = ∑k≤n Sk 1�=k m Fn, and second
that both stopping times �⋆ and �⋆ have the property that if � ≥ n + 1, then Sn = E[Sn+1 ∣ Fn]. Indeed, we
know that Sn = max(Xn,E[Sn+1 ∣ Fn]) ≥ Xn so if n < �⋆, then Sn > Xn and thus Sn = E[Sn+1 ∣ Fn]. Similarly,
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if n < �⋆, then Sn ≤ E[Sn+1 ∣ Fn] and thus an equality holds. If � is any stopping time with this property,
then we have:

E[S(n+1)∧� ∣ Fn] = E[Sn+1 1�≥n+1 ∣ Fn] + E[S� 1�≤n ∣ Fn]

= E[Sn+1 ∣ Fn]1�≥n+1 + S� 1�≤n
= Sn 1�≥n+1 + S� 1�≤n
= Sn∧� .

Thus in this case (Sn∧� )n is a martingale.

The next theorem shows that the upper bound from Corollary 8.5.5 is achieved, it also characterises the
optimal stopping times using the Snell enveloppe and shows that the two previous ones are respectively
the smallest and largest ones.

Theorem 8.5.7. Let (Sn)0≤n≤N be the Snell enveloppe of (Xn)0≤n≤N : The following holds.

(i) A stopping time � ∈ TN is optimal if and only if X� = S� and (Sn∧� )n is a martingale.

(ii) It holds E[S0] = sup�∈TN
E[X� ].

(iii) A stopping time � is optimal if and only if �⋆ ≤ � ≤ �⋆ and X� = S� , where �⋆ and �⋆ are de�ned in (8.1).
In particular �⋆ is always optimal and �⋆ is as soon as it is not in�nite.

Proof. Let us start with the converse implication in (i). Fix � ∈ TN and suppose that X� = S� and (Sn∧� )n is a
martingale. Then by the stopping theorem, since � is bounded,

S0 = E[S� ∣ F0] = E[X� ∣ F0].

In particular, taking the expectation, we infer from the previous corollary that:

sup
�∈TN

E[X� ] ≤ E[S0] = E[X� ].

Hence � is optimal and moreover we have:

E[S0] = sup
�∈TN

E[X� ].

At this point, we have proved that if a stopping time � ∈ TN satis�es both X� = S� and (Sn∧� )n is a martingale,
then it is optimal and (ii) holds. Since �⋆ ≤ n satis�es these two conditions by Lemma 8.5.6, then it is optimal
and (ii) always holds. Similarly �⋆ is optimal as soon as it is smaller than or equal to N .

Now let us prove the direct implication in (i), that is let � ∈ TN be optimal and let us prove that
necessarily X� = S� and (Sn∧� )n is a martingale. Recall that (Sn)n is a supermartingale, so E[S� ] ≤ E[S0],
and that it satis�es Sn ≥ Xn for every n and so S� ≥ X� . In addition, since � is optimal and (ii) holds
as we just proved, then E[X� ] = E[S0]. Hence S� ≥ X� and E[S� ] ≤ E[X� ], which implies that S� = X� .
Similarly, we know that (Sn∧� )n is a supermartingale, so E[S(n+1)∧� ∣ Fn] ≤ Sn∧� and further the expectation
is nonincreasing so:

E[S� ] = E[SN∧� ] ≤ E[Sn∧� ] ≤ E[S0∧� ] = E[S0].

Since � is optimal, then E[S� ] = E[S0], so E[Sn∧� ] is constant; in particular E[S(n+1)∧� ∣ Fn] ≤ Sn∧� have the
same expectations and thus are equal: the stopped process (Sn∧� )n is a martingale.

It remains to prove (iii). First, if � is optimal, then it has X� = S� so � ≥ �⋆. In addition (Sn∧� )n is a
martingale so on the event n < � we have Sn = E[Sn+1 ∣ Fn] and thus n < �⋆. This shows that � ≤ �⋆.
Conversely, if � ≤ �⋆ ∧ N has X� = S� , since (Sn∧�⋆)n is a martingale by Lemma 8.5.6, then the stopped
process Sn∧� = Sn∧�⋆∧� is a martingale as well, so � is optimal by the �rst item.
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8.5.2 An explicit calculation

Let us come back to our original game or ‘secretary problem’ and apply Theorem 8.5.7 to design a strategy
that maximises the probability to get the overall best o�er.

Modelisation. Let us formalise the problem: N ≥ 2 values a1 < ⋯ < aN are �xed in advanced, but
unknown to us, and are presented to us one at a time in a random order, given by a uniform random
permutation � of {1,… , N}. Let Xn = 1 if a� (n) = max0≤i≤N ai and Xn = 0 otherwise, that is Xn = 1 when the
n’th o�er is the overall best one. Let TN denote the set of stopping times less than or equal to N . We aim at
�nding � ∈ TN that solves:

E[X� ] = sup
T∈TN

E[XT ] = sup
�∈TN

ℙ(a� (� ) = max ai).

This situation is a typical example of what we explained in Remark 8.5.2: at time n, the information that
we have is about the values of the �rst n numbers that appeared, that is Fn is generated by a� (1),… , a� (n),
whereas Xn uses the information of all the numbers a1,… , aN , given by FN . Then as we explained, it is
equivalent to solve the problem with Xn replaced by X̃n = E[Xn ∣ Fn].

Let us �rst express this random variable X̃n. Let An = {a� (n) > maxk≤n−1 a� (k)} be the event that the n’th
o�er is better than all the previous ones, soAn ∈ Fn. By symmetry, theAn’s are independent and ℙ(An) = 1/n
respectively. Then X̃n equals the conditional probability given a� (1),… , a� (n) of An ∩ Acn+1 ∩⋯ ∩ AcN , that is,
by independence:

X̃n = 1An
N
∏
k=n+1

k − 1
k

=
n
N
1An .

Let us solve the optimal stopping problem for this sequence.

The Snell enveloppe. For 1 ≤ n ≤ N − 1, de�ne the rest of the harmonic sum:

rn =
N−1
∑
k=n

1
k
,

de�ne also r0 = ∞ and rN = 0. Note that (rn)n decreases and has r1 ≥ 1 so there exists a unique index
n⋆ ∈ {1,… , N − 1} such that:

rN < ⋯ < rn⋆ ≤ 1 < rn⋆−1 < ⋯ < r0.

Recall that the Snell enveloppe is de�ned by the backward recursion:

SN = X̃N and for 1 ≤ n ≤ N − 1, Sn = max(X̃n, E[Sn+1 ∣ Fn]).

By a backward induction, we can show that:

Sn =
n
N
1An +

n
N
rn 1Acn for n⋆ ≤ n ≤ N and Sn =

n⋆ − 1
N

rn⋆−1 for 1 ≤ n < n⋆. (8.2)

Indeed, this holds true for n = N since rN = 0 and X̃n = n
N 1An . Then for n⋆ ≤ n < N , if this holds for n + 1,

then we get since the Ak ’s are independent Bernoulli with parameter 1/k:

E[Sn+1 ∣ Fn] = E[
n + 1
N

1An+1 +
n + 1
N

rn+1 1Acn+1 ∣ Fn]

=
n + 1
N

1
n + 1

+
n + 1
N

rn+1
n

n + 1

=
1
N
+
n
N (rn −

1
n)

=
n
N
rn.
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Consequently, since X̃n = n
N 1An and rn ≤ 1 for n ≥ n⋆, then

Sn = max(X̃n, E[Sn+1 ∣ Fn]) =
n
N
max(1An , rn) =

n
N
1An +

n
N
rn 1Acn ,

which concludes the induction in this case and this identity holds for all n ≥ n⋆.
Next take n = n⋆ − 1, then the �rst two equalities in the last display still hold true, the di�erence is that

now rn⋆−1 > 1 ≥ 1An⋆−1 and so we have:

Sn⋆−1 =
n⋆ − 1
N

max(1An⋆−1 , rn⋆−1) =
n⋆ − 1
N

rn⋆−1,

which initialises the backward induction for the second part of (8.2). Next note that since rn⋆−1 > 1, then
for any n < n⋆ − 1 it holds:

X̃n =
n
N
1An <

n⋆ − 1
N

rn⋆−1.

Therefore if the right-hand side equals Sn+1, then

Sn = max(X̃n, E[Sn+1 ∣ Fn]) =
n⋆ − 1
N

rn⋆−1

as well, concluding the induction.

The solution. Note that in addition to (8.2), we just saw that Sn > X̃n for n < n⋆, whereas for n ≥ n⋆, we
have Sn = X̃n + n

N rn 1Acn which equals X̃n if and only if An holds true or n = N . We infer from Theorem 8.5.7
that the smallest optimal stopping time �⋆ = inf{n ≥ 1∶ Sn = Xn} is given by:

�⋆ = inf{n ≥ n⋆∶ An holds true} ∧ N .

The strategy thus consists in rejecting arbitrarily the �rst n⋆ o�ers that are presented to you and then after
that, accepting the �rst o�er that comes up and which is the best one so far, or taking the last one if the
best o�er was before time n⋆. Theorem 8.5.7 proves that the probability to end up with the overall best
o�er with this strategy equals:

pmax = E[S1] =
n⋆ − 1
N

rn⋆−1.

Furthermore, if other strategies can lead to this same probability, this one is the quickest and no strategy
can do better.

Large N limit. Let us �nally recall that n⋆ was de�ned as the only index between 1 and N satisfying:

N−1
∑
k=n⋆

1
k
= rn⋆ ≤ 1 < rn⋆−1 =

N−1
∑

k=n⋆−1

1
k
.

Note that n⋆ depends on N , and so does pmax. We aim at �nding their limit behaviour as N → ∞. Basic
calculus shows that if n/N → a for some a ∈ [0, 1], then, with the convention log(1/0) = ∞,

rn =
1
N

N−1
∑
k=n

1
k/N

⟶
N→∞ ∫

1

a

1
x
dx = log(1/a).

Since the ratio n⋆/N lies between 0 and 1, it admits subsequential limits as N → ∞ and the previous display
combined with the condition rn⋆ ≤ 1 < rn⋆−1 imply that that e−1 is the only possible subsequential limit. We
infer that:

n⋆
N

⟶
N→∞

e−1 which implies rn⋆ ⟶
N→∞

1 so �nally pmax =
n⋆ − 1
N

rn⋆−1 ⟶
N→∞

e−1 .

Hence, when N is large, one should �rst reject the n⋆ ∼ e−1 N ≈ 0,37 × N �rst o�ers, then accept the �rst
one larger than all the previous ones, which provides a probability pmax ∼ e−1 ≈ 37% to get the overall best.

135



8.6 Optimal stopping problem with in�nite horizon (⋆)

Let us generalise in this section the optimal stopping problem when the horizon N = ∞.

De�nition 8.6.1. Let (Fn)n≥0 be a �ltration and �x an adapted stochastic process (Xn)n≥0 satisfying the
integrability condition:

E[supn≥0
|Xn |] < ∞. (8.3)

Let T denote the set of all �nite stopping times. An optimal stopping time is a stopping time � ∈ T that
satis�es:

E[X� ] = sup
T∈T

E[XT ].

Note that the integrability condition (8.3) ensures that E[XT ] is well-de�ned for all T ∈ T.

The case of �nite horizon N corresponds to taking Xn = XN and Fn = FN for every n ≥ N , in which
case an optimal stopping time, if any, can always be taken less than or equal to N . Moreover, in this case,
the integrability condition (8.3) is equivalent to simply requiring E[|Xn |] < ∞ for each n as we did. Finally,
Remark 8.5.2 applies as previously: we can always replace Xn by E[Xn ∣ Fn] so the assumption that (Xn)n is
adapted can be dropped.

Let us start with an example which can be solved by hand.

8.6.1 An explicit example

Suppose that you possess a car that you do not use and that you want to sell: you are getting random o�ers
for it and want the highest one. We neglect here that the value tends to diminish with time and suppose
that the o�ers are i.i.d. However every month you have to pay the insurance, possible the parking, etc. so
you also want to sell it as quick as possible. Let us formalise the problem mathematically.

Modelisation. Let (Uk)k≥1 be i.i.d. random variables such that U1 > 0 a.s. and E[U 2
1 ] < ∞. They represent

the o�ers proposed to you, say once every week. Let c > 0 be a real number which represents the �xed cost
per week of the car. Let Vn = supk≤n Uk ; we are interested in maximising the quantity:

Xn = Vn − cn,

which represents your possible gain at time n if you are not forced to answer an o�er right away, so they are
not limited in time and you can choose the highest one you have received so far. We let Fn = � (Uk , k ≤ n).

Optimal stopping time. Let M = sup{x ≥ 0∶ ℙ(U1 ≥ x) > 0} denote the supremum of the support of
the law of U1, which is in�nite if U1 is unbounded. For x ∈ ℝ, let f (x) = E[max(0, U1 − x)] = E[(U1 − x)+],
which is a continuous and decreasing function on (−∞, M) which converges to 0 at M (and is constant equal
to 0 after M if the latter is �nite). In particular for c > 0, there is a unique solution  ∈ (−∞, M) of f ( ) = c.
De�ne then the stopping time:

T⋆ = inf{n ≥ 1∶ f (Vn) ≤ c} = inf{n ≥ 1∶ Vn ≥ }.

It is an easy exercise to show that Vn increases and converges to M almost surely, so f (Vn) decreases and
converges towards 0. In particular T⋆ is �nite almost surely and we have f (Vn) ≥ c for every n < T⋆ and
f (Vn) ≤ c for every n ≥ T⋆.

The function f and the stopping time T⋆ appear as follows: since the Uk ’s are i.i.d. then,

E[Xn+1 ∣ Fn] = E[max(Vn, Un+1) − (c + 1)n ∣ Fn]

= Vn + E[max(0, Un+1 − Vn) ∣ Fn] − (c + 1)n

= Vn + f (Vn) − (c + 1)n

= Xn + f (Vn) − c.
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Hence T⋆ is the instant such that E[Xn+1 ∣ Fn] ≥ Xn for every n < T⋆ and E[Xn+1 ∣ Fn] ≤ Xn for every
n ≥ T⋆, that is, at time T⋆, the process (Xn)n transitions from a submartingale to a supermartingale. We
claim that this time is optimal, provided XT⋆ is integrable. Indeed, iterating these inequalities, we get
Xn 1n<T⋆ ≤ E[XT⋆ 1n<T⋆ ∣ Fn] and E[Xn 1n≥T⋆ ∣ FT⋆] ≤ XT⋆ 1n≥T⋆ . Let T be another stopping time, then,
provided XT is integrable as well, we can extend these inequalities to n = T , namely:

XT 1T<T⋆ ≤ E[XT⋆ 1T<T⋆ ∣ FT ] and E[XT 1T≥T⋆ ∣ FT⋆] ≤ XT⋆ 1T≥T⋆ .

Taking the expectation and summing the two inequalities, we obtain:

E[XT ] ≤ E[XT⋆].

Optimal gain. Let us next compute E[XT⋆]. We have the equality of events: {Vn ≥ c} ∩⋂k<n{Vk < c} =
{Un ≥ c} ∩⋂k<n{Uk < c} from which follows:

T⋆ = inf{n ≥ 1∶ Un ≥ }.

Hence T⋆ has the geometric law with mean 1/ℙ(Un ≥  ). Further, for every n ≥ 1, it holds:

E[U1 1U1≥ ] = E[(U1 −  )1U1≥ ] +  ℙ(U1 ≥  ) = f ( ) +  ℙ(U1 ≥  ) = c +  ℙ(U1 ≥  ).

Using that the Uk ’s are i.i.d. we infer that:

E[Un 1T⋆=n] = E[Un 1Un≥
n−1
∏
k=1

1Uk<] = E[U1 1U1≥ ]ℙ(U1 <  )
n−1 = (c +  ℙ(U1 ≥  )) ℙ(U1 <  )n−1.

Summing over all n ≥ 1, we get:

E[UT⋆] = ∑
n≥1

E[Un 1T⋆=n] = (c +  ℙ(U1 ≥  ))∑
n≥1

ℙ(U1 <  )n−1 =
c +  ℙ(U1 ≥  )

ℙ(U1 ≥  )
,

so �nally, since UT⋆ = VT⋆ :

sup
T∈T

E[XT ] = E[XT⋆] = E[UT⋆] − c E[T⋆] =
c +  ℙ(U1 ≥  )

ℙ(U1 ≥  )
−

c
ℙ(U1 ≥  )

=  ,

which we recall is the solution to E[(U1 −  )+] = c.

8.6.2 Essential supremum

We cannot de�ne the Snell enveloppe by the backward recursion in in�nite horizon as we are not able to
initialise it; we shall provide another, more robust, de�nition. Let us go back to the case of �nite horizon N
�rst. Recall that the Snell enveloppe (Sn∧N )n is the smallest supermartingale above (Xn∧N )n. Consequently,
if we let Tn,N denote the set of stopping times with values in {n,… , N}, then for any such T ∈ Tn,N , we
have:

Sn ≥ E[ST ∣ Fn] ≥ E[XT ∣ Fn].

Furthermore, for
�⋆,n = inf{k ∈ {n,… , N}∶ Sk = Xk} ∈ Tn,N ,

we have S�⋆,n = X�⋆,n , which implies as in the proof of Lemma 8.5.6 that (Sk∧�⋆,n )k is actually a martingale.
Hence, for this particular choice, we have:

Sn = E[S�⋆,n ∣ Fn] = E[X�⋆,n ∣ Fn].
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Combining the two displays, we obtain:

Sn = E[X�⋆,n ∣ Fn] ≥ E[XT ∣ Fn]

for every stopping time T ∈ Tn,N . In a sense �⋆,n is thus the stopping time T ∈ Tn,N that maximises
E[XT ∣ Fn], and this maximal value is Sn. This extends Theorem 8.5.7 which concerns the case n = 0.
However there is a measurability issue here: the set Tn,N is uncountable, and in general the supremum of
uncountably many measurable functions is not measurable, that is supT∈Tn,N

E[XT ∣ Fn] is not a well-de�ned
random variable a priori.

Example 8.6.2. Let (Ω,F,ℙ) be the interval [0, 1] equipped with the Borel �-algebra B([0, 1]) and the
Lebesgue measure. Let A ⊂ [0, 1] be your favorite non-Borel set and for every a ∈ A and t ∈ [0, 1], let
Xa(t) = 1t=a. Then Xa is indeed measurable but supa∈A Xa = 1A is not.

The correct notion is that of essential supremum.

Lemma 8.6.3. Let I be any set and (Xi , i ∈ I ) a collection of random variables de�ned on the same probability
space (Ω,F,ℙ) and with values in ℝ ∪ {−∞,∞}. There exists a random variable X on this space that has:

(i) For every i ∈ I , we have X ≥ Xi almost surely,

(ii) If Y also satis�es (i), then Y ≥ X almost surely.

(iii) If Z satis�es (i) and (ii), then X = Z almost surely.

(iv) There exists a countable subset J ⊂ I such that X = supj∈J Xj almost surely.

This a.s. unique random variable X is denoted by

X = esssup
i∈I

Xi ,

and called the essential supremum of (Xi , i ∈ I ).

Continuing the previous example, one has Xa = 0 almost surely for each a ∈ A and therefore
esssupa∈A Xa = 0 almost surely.

Proof. Note that uniqueness in (iii) is a direct consequence of (ii) since the symmetric argument shows that
X ≤ Y a.s. Let us �rst construct X and prove the last claim. Recall that ℝ ∪ {−∞,∞} can be mapped on
[0, 1] by an increasing bijection (e.g. x ↦ 1/2 + arctan(x)/� extended to ±∞); applying this bijection to our
random variables, we may, and shall, assume that they all take value in [0, 1]. For any countable subset
J ⊂ I , let us set X J = supj∈J Xj , which is a well de�ned random variable. De�ne then:

� = sup{E[X J ]∶ J ⊂ I countable}.

As a supremum of real numbers, there exists a sequence of countable sets of indices (Jn)n such that
� = limn E[X Jn ]. The set ⋃n Jn is countable so we associated with it X = X⋃n Jn = supj∈⋃n Jn Xj .

Let us prove that X satis�es the �rst claim. By construction, we have both E[X ] ≥ E[X Jn ] for every n
and E[X ] ≤ � . Since E[X Jn ]→ � , then we infer that E[X ] = � . Now �x any i ∈ I and consider the countable
set {i} ∪ ⋃n Jn and the associated random variable X {i}∪⋃n Jn = supj∈{i}∪⋃n Jn Xj = max(Xi , X ≥ X ). Then
similarly, we have both E[X {i}∪⋃n Jn ] ≤ � and E[X {i}∪⋃n Jn ] ≥ E[X ] = � , hence E[X {i}∪⋃n Jn ] = � = E[X ].
Combining with the (a.s.) bound X {i}∪⋃n Jn ≥ X , we infer that X = X {i}∪⋃n Jn ≥ Xi a.s. wich proves the
�rst claim. Finally, if Y also satis�es this bound, then in particular with probability 1 we have Y ≥ Xj
simultaneously for every j ∈ ⋃n Jn, and thus Y ≥ supj∈⋃n Jn Xj = X .

Following the discussion before this lemma, the Snell enveloppe (Sn)0≤n≤N of (Xn)0≤n≤N is given by:

Sn = esssup
T∈Tn,N

E[XT ∣ Fn]. (8.4)

Note that this is an alternative way to de�ne Sn.
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8.6.3 Optimal stopping with in�nite horizon

We may now de�ne the Snell enveloppe in general. The integrability condition (8.3) allows to de�ne
E[XT ∣ Fn] for any �nite stopping time.

De�nition 8.6.4. The Snell enveloppe (Sn)n≥0 of (Xn)n≥0 is de�ned by:

Sn = esssup
T∈Tn

E[XT ∣ Fn],

where Tn denotes the set of �nite stoping times with values in {n, n + 1,…}.

The next lemma links this de�nition with the backward recursion that we used in the �nite horizon
case.

Lemma 8.6.5. Assume the integrability condition (8.3). The Snell enveloppe (Sn)n≥0 of (Xn)n≥0 solves the
backward recursion: for every n ≥ 0,

Sn = max(Xn, E[Sn+1 ∣ Fn]). (8.5)

Moreover, it is the smallest (Fn)n-supermartingale above (Xn)n in the sense that Sn ≥ Xn for every n.

Proof. Let us prove successively that:

(i) Sn ≥ max(Xn, E[Sn+1 ∣ Fn]), this immediately implies both the supermartingale property and the
bound Sn ≥ Xn for every n.

(ii) Sn = max(Xn, E[Sn+1 ∣ Fn]),

(iii) (Sn)n is the smallest supermartingale above (Xn)n.

Step 1: proof of Sn ≥ max(Xn, E[Sn+1 ∣ Fn]). The integrability condition (8.3) provides domination that
shows that (Sn)n is integrable, so we can make sense of E[Sn+1 ∣ Fn]. Since Sn ≥ E[XT ∣ Fn] for any T ∈ Tn,
then in particular for T = n we have Sn ≥ Xn. Let us next argue that Sn ≥ E[Sn+1 ∣ Fn]. By Lemma 8.6.3,
for each n there is a countable subset {�Nn+1, N ≥ 1} ⊂ Tn+1 such that Sn+1 = supN≥1 E[X�Nn+1 ∣ Fn+1]. Let us
transform the �Nn+1 so the conditional expectation are nondecreasing: for each N ≥ 1, let kNn+1 be any index
k ≤ N such that:

E[X�kn+1 ∣ Fn+1] = maxj≤N
E[X� jn+1 ∣ Fn+1]

and set
TNn+1 = �

kNn+1
n+1 so now Sn+1 = ↑ lim

N→∞
E[XTNn+1 ∣ Fn+1].

Using (8.3) we may apply the dominated convergence theorem under the conditional expectation E[ ⋅ ∣ Fn]
(recall Lemma 6.4.3) and deduce from the tower property that:

E[Sn+1 ∣ Fn] = lim
N→∞

E[E[XTNn+1 ∣ Fn+1] ∣ Fn] = lim
N→∞

E[XTNn+1 ∣ Fn].

Since TNn+1 ∈ Tn+1, then each conditional expectation on the right is upper bounded by esssupT∈Tn+1
E[XT ∣

Fn]. Letting N → ∞, we infer that E[Sn+1 ∣ Fn] ≤ esssupT∈Tn+1
E[XT ∣ Fn]. On the other hand, for any

T ∈ Tn+1 we have Sn+1 ≥ E[XT ∣ Fn+1], so E[Sn+1 ∣ Fn] ≥ E[XT ∣ Fn] by the tower property again. By
Lemma 8.6.3, this implies:

E[Sn+1 ∣ Fn] = esssup
T∈Tn+1

E[XT ∣ Fn] ≤ esssup
T∈Tn

E[XT ∣ Fn] = Sn.

We have thus proved that Sn ≥ max(Xn,E[Sn+1 ∣ Fn]).

139



Step 2: proof of Sn = max(Xn, E[Sn+1 ∣ Fn]). For any T ∈ Tn, we have T ∨ (n + 1) ∈ Tn+1 so by
Lemma 8.6.3:

E[XT ∣ Fn] = E[Xn 1T=n + XT∨(n+1) 1T≥n+1 ∣ Fn]

= Xn 1T=n + E[XT∨(n+1) ∣ Fn]1T≥n+1
≤ max(Xn,E[XT∨(n+1) ∣ Fn])

≤ max(Xn, esssup
T∈Tn+1

E[XT ∣ Fn])

≤ max(Xn,E[Sn+1 ∣ Fn]),

hence the last line is larger than or equal to esssupT∈Tn
E[XT ∣ Fn] = Sn. This shows that (Sn)n solves the

backward recursion relations.
Step 3: minimality of (Sn)n. Finally, if (Yn)n is another supermartingale above (Xn)n, then for any

stopping time T ∈ Tn and any N ≥ n we have

Yn ≥ E[YT∧N ∣ Fn] ≥ E[XT∧N ∣ Fn].

Letting N → ∞ and applying the dominated convergence theorem under the conditional expectation
E[ ⋅ ∣ Fn], using again the assumption (8.3), we infer that Yn ≥ E[XT ∣ Fn]. As this holds for any T ∈ Tn, we
conclude that

Yn ≥ esssup
T∈Tn

E[XT ∣ Fn] = Sn,

and the proof is complete.

Let (Sn)n denote the Snell enveloppe of (Xn)n and de�ne:

�⋆,n = inf{m ≥ n∶ Sm = Xm} ∈ Tn,

which is a stopping time for every n ≥ 0. It generalises �⋆ = �⋆,0 from (8.1).

Lemma 8.6.6. Assume the integrability condition (8.3). For every n ≥ 0 �xed, the stopped process (Sm∧�⋆,n )m≥n
is a martingale. Moreover, if �⋆,n is �nite almost surely, then it realises the essential supremum:

Sn = E[X�⋆,n ∣ Fn] ≥ E[XT ∣ Fn]

for every T ∈ Tn.

Proof. Let us decompose: for every m ≥ n,

S(m+1)∧�⋆,n = S�⋆,n 1�⋆,n≤m + Sm+1 1�⋆,n≥m+1.

Observe that S�⋆,n 1�⋆,n≤m = ∑k≤m Sk 1�⋆,n=k m Fm and since 1�⋆,n≥m+1 m Fm as well, then:

E[S(m+1)∧�⋆,n ∣ Fm] = S�⋆,n 1�⋆,n≤m + E[Sm+1 ∣ Fm]1�⋆,n≥m+1.

On the other hand, if �⋆,n ≥ m + 1, then Xm ≠ Sm, and since Sm = max(Xm,E[Sm+1 ∣ Fm]) ≥ Xm, then this
means that Sm > Xm and so in fact Sm = E[Sm+1 ∣ Fm]. Consequently,

E[S(m+1)∧�⋆,n ∣ Fm] = S�⋆,n 1�⋆,n≤m + Sm 1�⋆,n≥m+1 = Sm∧�⋆,n .

Thus (Sm∧�⋆,n )m≥n is a martingale. In particular Sn = E[Sm∧�⋆,n ∣ Fn] for every m ≥ n. Suppose that �⋆,n < ∞
almost surely, so we can make sense of X�⋆,n = S�⋆,n = limm Sm∧�⋆,n . Moreover we have |Sk | ≤ E[supk |Xk | ∣ Fn]
which has �nite mean by the integrability condition (8.3). We may thus apply the dominated convergence
theorem under the conditional expectation E[ ⋅ ∣ Fn] (recall Lemma 6.4.3) and deduce that:

E[X�⋆,n ∣ Fn] = E[S�⋆,n ∣ Fn] = lim
m→∞

E[Sm∧�⋆,n ∣ Fn] = Sn.

The lower bound Sn ≥ E[XT ∣ Fn] for every T ∈ Tn follows from the de�nition of Sn.
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We may now solve the optimal stopping problem. Let us actually generalise the original problem as
follows: �x n ≥ 0 and search for � ∈ Tn, the set of �nite stopping times larger than or equal to n, that has:

E[X� ] = sup
T∈Tn

E[XT ]. (8.6)

The original problem is for n = 0. Recall the stopping time �⋆,n = inf{m ≥ n∶ Sm = Xm} ∈ Tn, then a
consequence of Lemma 8.6.6 is that

sup
T∈Tn

E[XT ] ≤ E[X�⋆,n ] = E[Sn].

The next theorem shows that this upper bound is achieved, so �⋆,n is an optimal stopping time, and is
actually the smallest one.

Theorem 8.6.7 (General case). Assume the integrability condition (8.3). For every n ≥ 0 �xed, the following
holds as soon as �⋆,n is �nite almost surely:

(i) A stopping time � ∈ Tn solves (8.6) if and only if S� = X� and (Sm∧� )m≥n is a martingale.

(ii) It holds E[Sn] = supT∈Tn
E[XT ].

(iii) The stopping time �⋆,n solves (8.6) and any other such solution � ∈ Tn has � ≥ �⋆,n.

If �⋆,n can be in�nite with positive probability, then there is no solution to (8.6).

Proof. Fix n ≥ 0 and suppose �rst that �⋆,n is �nite almost surely. Let � ∈ Tn be such that both S� = X� and
(Sm∧� )m≥n is a martingale. In particular E[Sn] = E[Sm∧� ] for every m ≥ n and Sm∧� → S� as m → ∞. As in
the previous proof, the integrability condition (8.3) allows us to apply the dominated convergence theorem
and get:

E[S� ] = lim
m→∞

E[Sm∧� ] = E[Sn].

We observed already that E[Sn] ≥ supT∈Tn
E[XT ] ≥ E[S� ] = E[Sn] so these inequalities are equalities and �

therefore solves (8.6). In addition, in this case (ii) holds as well.
Recall from Lemma 8.6.6 that �⋆,n has that S�⋆,n = X�⋆,n and (Sm∧�⋆,n )m≥n is a martingale. Hence it

solves (8.6) and (ii) always holds.
Suppose conversely that � ∈ Tn solves (8.6) and let us prove that necessarily S� = X� and (Sm∧� )m≥n

is a martingale. On the one hand the latter is a supermartingale by Lemma 8.6.5, so in particular E[Sn] ≥
E[Sn∧� ] = E[Sm∧� ] for any m ≥ n; letting m → ∞, by dominated convergence again, we obtain E[Sn] ≥
E[S� ] ≥ E[X� ]. On the other hand � solves (8.6) and (ii) holds as we just proved so �nally:

E[X� ] = sup
T∈Tn

E[XT ] = E[Sn] ≥ E[S� ] ≥ E[X� ].

Thus all these inequalities are equalities. Recall that Sm ≥ Xm for every m so S� ≥ X� and since their
expectation are equal then actually S� = X� . Similarly, the stopped process (Sm∧� )m≥n is a supermartingale:
E[S(m+1)∧� ∣ Fm] ≤ Sm∧� for every m and we claim that their expectations are equal, so again the random
variables are equal. Indeed, the expectation of a supermartingale is nonincreasing so for every � ≥ m ≥ n
we have by dominated convergence again:

E[Sn] = E[Sn∧� ] ≥ E[Sm∧� ] ≥ E[S�∧� ] ⟶
�→∞

E[S� ] = E[Sn],

so E[Sm∧� ] = E[Sn] for every m so (Sm∧� )m≥n is not only a supermartingale but a martingale. This proves (i).
Recall the consequence of Lemma 8.6.6 that supT∈Tn

E[XT ] ≤ E[X�⋆,n ] = E[Sn]. Since the extremities
are equal by (ii), then the inequality is an equality, that is: �⋆,n solves (8.6). On the other hand, any other
solution � ∈ Tn has S� = X� by (i), so necessarily � ≥ �⋆,n by de�nition of the latter. This also proves
that if there is a solution � to (8.6), which is �nite by de�nition of a solution, then �⋆,n ≤ � < ∞, so by
contraposition, if �⋆,n = ∞ with positive probability, then there is no solution to (8.6).
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Chapter 9

Convergence of martingales

This chapter is dedicated to the study of the asymptotic behaviour of martingales and their convergence in
di�erent senses. The fundamental result is an almost sure convergence which, in addition to the Borel–
Cantelli lemma, is basically the only general tool to prove such a convergence in general, besides bare-hand
study of the model. We then discuss the convergence in L1 and in Lp . We �nish with an extension of the
Central Limit Theorem which was one of the �rst concerns in this theory: how to generalise this result
without independence between the increments? This CLT will be applied to prove a CLT for Markov chains.
We shall also mention some applications to numerical simulations.
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In Section 9.1 we �rst discuss almost sure convergence of martingales. Let us stress already the
mild assumptions that are used, for example being nonnegative su�ces! Section 9.2 further discusses
the convergence in L1, which actually holds if and only if the martingale takes the form of successive
conditioning of a �xed random variable. Section 9.3 presents some further developments with the notion of
uniform integrability. In Section 9.4 we prove very useful bounds on the maximum of a martingale and
derive Lp convergence results with p > 1. Section 9.5 shows in particular that a martingale with bounded
increments either converges to a �nite limit or it oscilles between +∞ and −∞, but it cannot converge to
in�nity! Sections 9.6 and 9.7 develop extensions of the LLN and CLT in the context of martingales in L2.
Finally Section 9.8 presents an application to the stochastic gradient descent that allows to numerically
approximate the minimiser of a function.

9.1 Almost sure convergence

Martingales are one of the few tools we have to prove almost sure convergence, besides the Borel–Cantelli
lemma. This is based on the following result.

Theorem 9.1.1. Let (Mn)n be a (sub/super-)martingale bounded in L1, i.e. such that

sup
n≥0

E[|Mn |] < ∞.
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Then Mn converges a.s. to some M∞ which has E[|M∞|] < ∞.

Let us stress right away that the convergence may not hold in L1! This will be our next topic. A classical
proof of Theorem 9.1.1 is based on the idea of counting ‘upcrossings’ of an interval. Fix a < b and a sequence
(xn)n on ℝ and de�ne two sequences 0 = t0 ≤ s1 ≤ t1 ≤ s2 ≤ … inductively by:

sk = inf{j ≥ tk−1∶ xj ≤ a} and tk = inf{j ≥ sk ∶ xj ≥ b}.

Then write U a,b
n = sup{k ≥ 0∶ tk ≤ n} for the number of upcrossings of [a, b] by x up to time n. We also

let U a,b
∞ = ↑ limn U a,b

n denote the total upcrossing number.

Lemma 9.1.2. The sequence (xn)n converges in [−∞,∞] if and only if U a,b
∞ < ∞ for all rational numbers a < b.

Proof. Notice that U a,b
∞ < ∞ if and only if there exists k ≥ 0 such that the corresponding upcrossing times

satisfy tk < ∞ = tk+1, namely xn > a for every n > tk or xn < b for every n > tk . Recall that (xn)n converges
in [−∞,∞] if and only if lim infn xn = lim supn xn.

If (xn)n does not converge, then lim infn xn < lim supn xn and so there exist two rational numbers a < b
such that lim infn xn < a < b < lim supn xn, which implies U a,b

∞ = ∞ for this pair. Suppose conversely that
there exist two rational numbers a < b such that U a,b

∞ = ∞, so each sk , tk is �nite and we have:

lim inf
n

xn ≤ lim inf
k

xsk ≤ a < b ≤ lim sup
k

xtk ≤ lim sup
n

xn,

so (xn)n does not converge.

The proof of Theorem 9.1.1 then mostly relies on checking that the number of upcrossings of any
interval is almost surely �nite. This is based on the following result.

Lemma 9.1.3. Let (Mn)n be a supermartingale and let a < b. Then the mean upcrossing number satis�es:

E[U a,b
n ] ≤

E[(Mn − a)−]
b − a

≤
|a| + E[|Mn |]

b − a
.

Once again, we can explain the proof in terms of a strategy, see Figure 9.1. Imagine (Mn)n representing
the price of an asset on the stock market. If, as the author of these lines, you know nothing about �nance, a
naive way to try to make money is to wait until the price is low, here below a, then buy one unit at this
time, so now your fortune follows the same evolution as the price, then wait until the price gets above b to
sell and thus freeze your fortune until the price gets below a again, etc. Note that every time you sell, you
earned at least b − a, which corresponds to the denominator in the lemma. The numerator appears to take
into account that at time n, you may be engaged since the price went below a again, but not yet above b, so
you may be loosing some money. This explains why you should only use this strategy to prove theorems:
after going below a the price might not go up again!

Proof. Let us write 0 = T0 ≤ S1 ≤ T1 ≤ S2 ≤ … for the random times de�ned as above for M . Since M is
adapted, then these are stopping times and so the process de�ned for n ≥ 1 by:

Hn = ∑
k≥1

1Sk<n≤Tk

is predictable. It is obviously nonnegative and it is bounded since at most one indicator can take value
1. The process (H ∙ M) corresponds to our strategy presented above. Let us decompose the trajectory
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b

a

≥ b − a

≥ b − a

(Xn − a)−

X

(H ∙ X )

Figure 9.1: The proof of Lemma 9.1.3 explained.

according to the upcrossings, and notice that the total increment along each one is MTj −MSj ≥ b − a, so:

(H ∙M)N =
N
∑
n=1

∑
k≥1

1Sk<n≤Tk (Mn −Mn−1)

= ∑
k≥1

N∧Tk
∑

n=Sk+1
(Mn −Mn−1)

=
U a,b
N

∑
j=1
(MTj −MSj ) + 1SUN+1≤N (MN −MSUN+1 )

≥ (b − a)U a,b
N − (MN − a)−,

where the last term accounts for a possible �nal incomplete upcrossing, in which case we simply throw
away a temporary positive gain, but we cannot forget a temporary loss. According to Lemma 8.1.6 the
process H ∙M remains a supermartingale, and so E[(H ∙M)N ] ≤ 0, which implies the �rst inequality. The
second one follows since (x − a)− ≤ |a| + |x |.

Theorem 9.1.1 now easily follows.

Proof of Theorem 9.1.1. Combining Lemma 9.1.3 and monotone convergence, we have

E[U a,b
∞ ] ≤

1
b − a(

|a| + sup
n≥1

E[|Mn |]) < ∞.

Consequently, U a,b
∞ < ∞ a.s. and this holds in fact a.s. simultaneously for all pairs of rational numbers a < b

since there are countably many of them. We infer from Lemma 9.1.2 that (Mn)n converges to some limit
M∞ ∈ [−∞,∞]. Finally by Fatou’s lemma,

E[|M∞|] ≤ lim inf
n→∞

E[|Mn |] ≤ sup
n≥1

E[|Mn |] < ∞,

so M∞ is integrable (and thus �nite).

We can derive a particularly useful, and extraordinary at �rst sight, result.

Corollary 9.1.4. Let c ≥ 0 and let (Mn)n be a supermartingale that has infnMn ≥ −c a.s. Then (Mn)n
converges a.s. to some M∞ which has E[|M∞|] < ∞ and moreover Mn ≥ E[M∞ ∣ Fn] for all n.
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Proof. Let us set Yn = Mn + c ≥ 0. This remains a supermartingale, and it is bounded in L1 since E[|Yn |] =
E[Yn] ≤ E[Y0]. We can then apply Theorem 9.1.1 and deduce the a.s. convergence to some Y∞ ∈ L1. Moreover,

E[Y∞ ∣ Fn] ≤ lim inf
k→∞

E[Yn+k ∣ Fn] ≤ Yn,

by the conditional Fatou lemma and Lemma 8.1.3. The claim follows by subtracting c.

Note that a priori even for martingales, we only have the inequality Mn ≥ E[M∞ ∣ Fn] because of
the conditional Fatou lemma. The next subsection discusses when we have equality, and also when Mn

converges to M∞ in L1.

9.2 Closed martingales and L1 convergence

A particular case of martingales are those de�ned by taking successive conditional expectations of a �xed
random variable.

De�nition 9.2.1. Let � ∈ L1, then a sequence de�ned by Mn = E[� ∣ Fn] for every n ≥ 0 is called a closed
martingale.

Integrability of this process follows from Lemma 6.4.1; the martingale property then comes from the
tower property:

E[E[� ∣ Fn+1] ∣ Fn] = E[� ∣ Fn].

As shown in the next result, these martingales are the generic case of martingales that converge in L1.
Notice also the surprising fact that a martingale that converges in L1 necessarily converges almost surely.
Recall that F∞ = � (⋃n Fn) ⊂ F is the limit of the �ltration.

Theorem 9.2.2. Let (Mn)n be a martingale. The following assertions are equivalent:

(i) It is closed: there exists � ∈ L1 such that Mn = E[� ∣ Fn] for every n ≥ 0.

(ii) It converges almost surely and in L1 to some M∞.

(iii) It converges in L1 to some M∞.

Moreover, when this holds we have M∞ = E[� ∣ F∞] and Mn = E[M∞ ∣ Fn].

By the very last assertion of this theorem, we do not need to specify � when we speak of a closed
martingale since we may always take � = M∞.

Proof. (i) ⟹ (ii): Suppose �rst thatMn = E[� ∣ Fn] for every n ≥ 0, with � ∈ L1. Then E[|Mn |] ≤ E[|� |] < ∞
so (Mn)n is bounded in L1. By Theorem 9.1.1 it therefore converges a.s. to some M∞ ∈ L1. Then for every
", K > 0, we have:

E[|Mn −M∞|] ≤ E[|Mn −M∞|1|Mn−M∞ |≤"] + E[|M∞|1|Mn−M∞ |>"] + E[|Mn |1|Mn−M∞ |>"]

≤ " + E[|M∞|1|Mn−M∞ |>"] + E[|Mn |1|Mn |≤K 1|Mn−M∞ |>"] + E[|Mn |1|Mn |>K 1|Mn−M∞ |>"]

≤ " + E[|M∞|1|Mn−M∞ |>"] + K ℙ(|Mn −M∞| > ") + E[|Mn |1|Mn |>K ].

The �rst expectation tends to 0 by dominated convergence, so does the probability, and for the last
expectation, note that since Mn = E[� ∣ Fn] and since {|Mn | > K} ∈ Fn, then

E[|Mn |1|Mn |>K ] ≤ E[E[|� | ∣ Fn]1|Mn |>K ] = E[|� |1|Mn |>K ].

By dominated convergence, as n → ∞, the right-hand side converges to E[|� |1|M∞ |>K ]. Thus for every
", K > 0, we have:

lim sup
n→∞

E[|Mn −M∞|] ≤ " + E[|� |1|M∞ |>K ].
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Letting further K → ∞ (by dominated convergence again) and " → 0, we conclude that: indeed Mn → M∞

in L1 and thus (i) ⟹ (ii).
Obviously (ii) ⟹ (iii); let us prove that (iii) ⟹ (i). Suppose thus that Mn converges to M∞ in L1.

Since (Mn)n is a martingale, then for any n, k ≥ 0,

E[|Mn − E[M∞ ∣ Fn]|] = E[|E[Mn+k ∣ Fn] − E[M∞ ∣ Fn]|]
≤ E[E[|Mn+k −M∞| ∣ Fn]]
= E[|Mn+k −M∞|] ⟶

k→∞
0.

Hence E[|Mn − E[M∞ ∣ Fn]|] = 0 and so Mn = E[M∞ ∣ Fn] a.s. This proves (i) and the last identity in the
claim.

It only remains to prove that if (i) holds, then M∞ = E[� ∣ F∞]. First observe that each Mn is Fn ⊂ F∞-
measurable, so their limit M∞ is F∞-measurable. Next, since Mn = E[M∞ ∣ Fn] for every n ≥ 0, then for
every event A ∈ Fn, we have

E[� 1A] = E[Mn 1A] = E[M∞ 1A].

In other words, the two measures on (Ω,F) de�ned by �(A) = E[� 1A] and �(A) = E[M∞ 1A] agree on
the �-system ⋃n � (Fk , k ≤ n) and they have the same �nite total mass E[� ] = E[M∞] < ∞, hence they
agree on � (⋃n � (Fk , k ≤ n)) = F∞ by Theorem 1.1.13. This means that for every event A ∈ F∞, we have
E[� 1A] = E[M∞ 1A] and thus M∞ = E[� ∣ F∞].

This corollary can be used to give an extension of the celebrated Kolmogorov 0-1 law in Theorem 2.1.16.

Corollary 9.2.3 (Lévy’s 0-1 law). For any A ∈ F∞, we have

E[1A ∣ Fn] ⟶
n→∞

1A a.s. and in L1.

Proof. The sequence de�ned by Mn = E[1A ∣ Fn] is a closed martingale, which therefore converges a.s. and
in L1 to some M∞ which satis�es M∞ = E[1A ∣ F∞] = 1A since A ∈ F∞.

Remark 9.2.4. This indeed extends Theorem 2.1.16. Recall from Example 2.1.12 that the grouping property
shows that if (Mn)n≥1 are independent random variables then the �-algebras Fn = � (Mk , k ≤ n) and
Tn = � (Mk , k ≥ n + 1) are independent. Consequently each Fn is independent of T = ⋂n Tn and for
A ∈ T⊂ F∞, we have ℙ(A) = E[1A ∣ Fn]→ 1A a.s. One can be puzzled by the identity ℙ(A) = 1A a.s. since
the right-hand side is random. However this implies that either ℙ(A) = 0 or ℙ(A) = 1, so 1A is actually
constant a.s. either to 0 or to 1 respectively.

Let us end by extending the stopping theorem from Section 8.2 in the case of closed martingales. Recall
that by Theorem 9.2.2 such a martingale (Mn)n converges a.s. and in L1 to some M∞ m F∞ and furthermore
Mn = E[M∞ ∣ Fn] for all n. For any stopping time T let us set

MT = ∑
n≥0

Mn 1T=n +M∞ 1T=∞,

which is FT -measurable according to Lemma 7.2.4.

Theorem 9.2.5. Let (Mn)n be an adapted and integrable process. Then it is a closed martingale if and only if
for every stopping time T we have MT ∈ L1 and

E[MT ] = E[M0].

Moreover in this case, for any stopping times S ≤ T we have:

MS = E[MT ∣ FS].
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Remark 9.2.6. Note that we can take T = ∞ in the last identity, so for any stopping time S, we have in the
case of a closed martingale MS = E[M∞ ∣ FS] and further E[M0] = E[MS] = E[M∞].

Proof. Let us �rst prove the direct implication. Since Mn = E[M∞ ∣ Fn], then

E[|MT |] = ∑
n≥0

E[|Mn |1T=n] + E[|M∞|1T=∞]

= ∑
n≥0

E[|E[M∞ ∣ Fn]|1T=n] + E[|M∞|1T=∞]

≤ ∑
n≥0

E[E[|M∞| ∣ Fn]1T=n] + E[|M∞|1T=∞]

= ∑
n≥0

E[|M∞|1T=n] + E[|M∞|1T=∞]

= E[|M∞|] < ∞.

So indeed MT ∈ L1. Let next A ∈ FT , i.e. A ∈ Fand A ∩ {T = n} ∈ Fn for all n. Then for every n ≥ 0,

E[MT 1A∩{T=n}] = E[Mn 1A∩{T=n}] = E[M∞ 1A∩{T=n}].

By summing over n and using Fubini’s Theorem (recall MT , M∞ ∈ L1) we obtain

E[MT 1A] = E[M∞ 1A] for all A ∈ FT and so MT = E[M∞ ∣ FT ].

Now if S ≤ T is another stopping time, then FS ⊂ FT (Lemma 7.2.2) so by the tower property (Lemma 6.5.1),

E[MT ∣ FS] = E[E[M∞ ∣ FT ] ∣ FS] = E[M∞ ∣ FS] = MS .

Let us next prove the converse implication, so suppose that E[MT ] = E[M0] for all stopping times T . By
Remark 8.2.4 we know (using only bounded stoping times) that (Mn)n is a martingale. Taking T = ∞, we
know that M∞ is integrable and we can adapt the proof of Corollary 8.2.3 to show that Mn = E[M∞ ∣ Fn]
for all n. Indeed, �x n ≥ 0 and A ∈ Fn and de�ne the stopping time

T = n 1A + ∞1Ac .

Then
E[M∞] = E[M0] = E[MT ] = E[Mn 1A] + E[M∞ 1Ac ],

and thus E[M∞ 1A] = E[Mn 1A]. Since this holds for all A ∈ Fn, then Mn = E[M∞ ∣ Fn].

9.3 Uniformly integrable martingales (⋆)

We can push further the previous subsection with the notion of uniform integrability from Section 2.3.2.
Recall from Theorem 2.3.14 that it is the optimal assumption to improve convergence in probability to L1 or
Lp convergence. Recall also that boundedness in Lp with some p > 1 implies uniform integrability.

Lemma 9.3.1. Let M be an integrable random variable then the family {E[M ∣ G]; G ⊂ F} of conditional
expectations with respect to each sub-� -algebra Gof F is uniformly integrable.

Proof. Fix a sub-�-algebra Gof Fand let Y = E[M ∣ G] and Z = E[|M | ∣ G]. Fix K > 0, recall that |Y | ≤ Z
and that 1Z>K m Gso

E[|Y |1|Y |>K ] ≤ E[Z 1Z>K ] = E[|M |1Z>K ].

Further, we have

|M |1Z>K = |M |1|M |≤
√
K,Z>K + |M |1|M |>

√
K,Z>K ≤

√
K 1Z>K + |M |1|M |>

√
K .
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Taking the expectation and using the Markov inequality, we infer that

E[|Y |1|Y |>K ] ≤
√
K ℙ(Z > K ) + E[|M |1|M |>

√
K ] ≤

1
√
K

E[Z ] + E[|M |1|M |>
√
K ].

Recall that Z = E[|M | ∣ G] so in particular E[Z ] = E[|M |], so for any sub-�-algebra Gof F, we have

E[|E[M ∣ G]|1|E[M ∣G]|>K ] ≤
1

√
K

E[|M |] + E[|M |1|M |>
√
K ],

and the right-hand side tends to 0 as K → ∞.

Remark 9.3.2. Combined with Remark 9.2.6 we �nd that if (Mn)n is a closed martingale, then the collection
{MT , T stopping time} is uniformly integrable.

Let us next complete Theorem 9.2.2.

Theorem 9.3.3. Let (Mn)n be a martingale. The following assertions are equivalent:

(i) It is uniformly integrable.

(ii) It is closed.

(iii) It converges almost surely and in L1 to some M∞.

(iv) It converges in L1 to some M∞.

Moreover, when this holds we have M∞ = E[� ∣ F∞] and so Mn = E[M∞ ∣ Fn].

Proof. Lemma 9.3.1 shows that (ii) ⟹ (i). Next, if (Mn)n is a uniformly integrable martingale, then it is
bounded in L1 so it converges a.s. by Theorem 9.1.1 and further in L1 by Theorem 2.3.14 so (i) ⟹ (iv). The
rest was proved in Theorem 9.2.2.

9.4 Lp convergence

Fix p > 1 and suppose that each Mn ∈ Lp . We wonder wether we can extend the previous L1 convergence to
an Lp convergence. We shall rely on Doob’s inequalities, which are powerful tools that allow to control the
maximum of the whole trajectory of a process up to a given time n simply by looking at its value at time n
and that are of independent interest. As an introduction, recall the Markov inequality: for any nonnegative
real-valued random variable M and any constant c > 0, we have:

c ℙ(M ≥ c) = E[c 1M≥c] ≤ E[M 1M≥c] ≤ E[M].

Below, we improve this bound for a submartingale by controlling the maximum up to time n in terms of
the value at time n.

Theorem 9.4.1 (Doob’s maximal inequalities). Let (Mn)n be a nonnegative submartingale and for n ≥ 0
de�ne

Mn = sup
k≤n

Mk .

Then the following assertions hold for every n ≥ 0.

(i) For any c > 0 it holds:
c ℙ(Mn ≥ c) ≤ E[Mn 1Mn≥c] ≤ E[Mn].

(ii) For any p > 1, it holds:
‖Mn‖p ≤

p
p − 1

‖Mn‖p .
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By Lemma 8.1.4, this theorem applies to |Mn | when (Mn)n is a martingale and to M+
n if (Mn)n is a

submartingale.

Proof. (i) The second inequality is immediate, let us prove the �rst one. De�ne the stopping time
Tc = inf{n ≥ 0∶ Mn ≥ c} and notice that {Mn ≥ c} = {Tc ≤ n} = ⋃n

k=0{Tc = k}. Since {Tc = k} ∈ Fk

and E[Mn ∣ Fk] ≥ Mk ≥ c on this event, then by the characterisation of the conditional expectation
for the last equality, we have:

c ℙ(Tc = k) = E[c 1Tc=k] ≤ E[Mk 1Tc=k] ≤ E[E[Mn ∣ Fk]1Tc=k] = E[Mn 1Tc=k].

The claim follows by summing over k, recalling that {Mn ≥ c} = ⋃n
k=0{Tc = k}.

(ii) Fix p > 1 and n ≥ 1 and assume E[Mp
n ] < ∞ as otherwise it is immediate. According to Lemma 8.1.4

the process (Mp
n )n is a submartingale, and in particular E[Mp

k ] ≤ E[Mp
n ] for any k ≤ n. Hence

E[(Mn)p] = E[sup
k≤n

Mp
k ] ≤ E[

n
∑
k=0

Mp
k ] = ∑

k≤n
E[Mp

k ] ≤ n sup
k≤n

E[Mp
k ] = nE[M

p
n ] < ∞.

Next by Fubini’s theorem, the �rst part, and Fubini’s theorem again,

E[(Mn)p] = E[∫
∞

0
pxp−1 1x≤Mn

dx]

= ∫
∞

0
pxp−1 ℙ(Mn ≥ x) dx

≤ ∫
∞

0
pxp−2 E[Mn 1Mn≥x ] dx

= E[Mn ∫
∞

0
pxp−2 1x≤Mn

dx]

=
p

p − 1
E[Mn(Mn)p−1].

Let q = p/(p − 1) be such that 1/p + 1/q = 1, then by Hölder’s inequality,

E[(Mn)p] ≤ q E[Mn(Mn)p−1] ≤ q E[Mp
n ]
1/p E[(Mn)q(p−1)]1/q = q E[Mp

n ]
1/p E[(Mn)p]1−1/p .

Since E[(Mn)p] < ∞, then we may divide both sides by E[(Mn)p]1−1/p > 0 to obtain the inequality

‖Mn‖p ≤
p

p − 1
‖Mn‖p

as wanted.

Recall from Corollary 2.3.15 and the remark below it that in general, boundedness in Lp and convergence
in probability imply convergence in Lq for q < p but not in Lp . Here the martingale structure allows us to
get enough control in Lp via Theorem 9.4.1.

Theorem 9.4.2. Let p > 1 and let (Mn)n be a martingale bounded in Lp in the sense that

sup
n≥0

E[|Mn |p] < ∞.

Then M is closed in that there exists an integrable random variable M∞ which satis�es

E[M∞ ∣ Fn] = Mn for all n.

Moreover M∞ ∈ Lp and more precisely, letting M∞ = supn≥0 |Mn |, we have

p − 1
p

‖M∞‖p ≤ ‖M∞‖p ≤ sup
n≥0

‖Mn‖p and �nally Mn ⟶
n→∞

M∞ a.s. and in Lp .
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Proof. Since (Mn)n is bounded in Lp , then it is also bounded in L1 so it converges a.s. by Theorem 9.1.1 to
M∞ ∈ L1 which satis�es Mn = E[M∞ ∣ Fn] for all n. Let Mn = supk≤n |Mk |, then by Theorem 9.4.1 applied to
the nonnegative submartingale (|Mn |)n, we have:

E[Mp
n] ≤ (

p
p − 1)

p
E[|Mn |p] ≤ (

p
p − 1)

p
sup
n≥0

E[|Mn |p] < ∞.

By monotone convergence, the left-hand side converges to E[Mp
∞] which therefore has �nite expectation.

The random variables |Mn |p are thus dominated by the integrable random variable Mp
∞, so by dominated

convergence E[|Mn |p]→ E[|M∞|p] and we infer by letting n → ∞ in the previous display that

(
p − 1
p )

p
E[Mp

∞] ≤ E[|M∞|p] ≤ sup
n≥0

E[|Mn |p].

Dominated convergence applied to |Mn −M∞|p also implies the Lp convergence Mn → M∞.

9.5 The case of bounded increments (⋆)

A martingale with bounded increments has a simple destiny: it either converges to a �nite limit or oscillates
between ±∞; in particular it cannot tend to in�nity!

Theorem 9.5.1 (Destiny of a martingale). Let (Xn)n≥0 be a martingale with bounded increments, and let

Aconv = {Xn converges to a �nite limit}

and
Aosc = {X oscillates} = {lim inf

n→∞
Xn = −∞} ∩ {lim sup

n→∞
Xn = ∞}.

Then
ℙ(Aconv ∪ Aosc) = 1.

Proof. A union bound shows that:

ℙ(Acconv ∩ A
c
osc) ≤ ℙ(Acconv ∩ {lim inf Xn > −∞}) + ℙ(Acconv ∩ {lim supXn < ∞}).

Let us prove that the �rst probability on the right vanishes. Then so does the second one by replacing Xn by
−Xn. For K ≥ 1, we let TK = inf{n ≥ 0∶ Xn < −K} and observe that {lim infn Xn > −∞} = ⋃K{TK = ∞}, so

ℙ(Acconv ∩ {lim inf Xn > −∞}) = ℙ(⋃
K≥1

(Acconv ∩ {TK = ∞})) ≤ ∑
K≥1

ℙ(Acconv ∩ {TK = ∞}).

It now su�ces to prove that for any K �xed, each probability on the right vanishes.
The stopped process (Xn∧TK )n is a martingale and moreover, because the increments are bounded, say

|Xn+1 − Xn | ≤ M , then Xn∧TK ≥ −M − K for every n. We infer from Corollary 9.1.4 that it converges a.s. to a
�nite (even integrable) limit. Since the martingale is unstopped when TK = ∞, then indeed:

ℙ(Acconv ∩ {TK = ∞}) ≤ ℙ(Xn∧TK does not converge to a �nite limit) = 0,

and the proof is complete.

As a corollary, we can extend the Borel–Cantelli lemma from Lemma 2.1.15.

Corollary 9.5.2. Fix a sequence of events An ∈ Fn for every n ≥ 1 and de�ne two nondecreasing processes
by:

Yn =
n
∑
k=1

1Ak and Zn =
n
∑
k=1

E[1Ak ∣ Fk−1].

Then a.s. we have Z∞ < ∞ ⟺ Y∞ < ∞.
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Proof. Let X0 = 0 and Xn = Yn − Zn for every n ≥ 1. The sequence (Xn)n has bounded increments (by 1) and
Xn is clearly Fn-measurable; �nally one easily gets E[Xn+1 ∣ Fn] = Xn so it is a martingale with bounded
increments. By the previous theorem, a.s. it either converges to a �nite limit or oscillates between ±∞. If
Y∞ = ∞ and Z∞ < ∞ or Y∞ < ∞ and Z∞ = ∞, then Xn → ∞ and Xn → −∞ respectively, so this occurs with
probability 0 and the claim follows.

Note that Y∞ < ∞ i� Ak occurs for only �nitely many indices k. On the one hand if ∑k ℙ(Ak) < ∞, then
E[Y∞] < ∞ so Y∞ < ∞ a.s. On the other hand, if the events are independent, then for Fn = � (Ak , k ≤ n)
we have that E[1Ak ∣ Fk−1] = ℙ(Ak). Therefore if ∑k ℙ(Ak) = ∞, then Y∞ a.s. We thus indeed recover the
Borel–Cantelli lemma.

9.6 Law of Large Numbers

Martingales were originally introduce to generalise cumulative sums of independent and centred sequences
and extend the of strong Law of Large Numbers & Central Limit Theorem. We focus here on the former and
di�er the latter to the next section. For the rest of this section, we let (Mn)n be a martingale. Henceforth we
shift the notation to see it as the sum of its increments and we shall write:

Mn =
n
∑
i=0

Xi so Xn = Mn −Mn−1 and X0 = M0.

Then the process (Mn)n is a martingale if and only if for every n ≥ 0, it holds:

E[Xn+1 ∣ Fn] = 0.

When working with non i.i.d. random variables, we need more than just integrable random variables. We
shall work with martingales in L2, i.e. such that E[X 2

n ] < ∞ for every n. In this case, the increments satisfy
an orthogonality property, namely for every n ≥ 0 and k ≥ 1 we have:

E[Xn+kXn] = E[E[Xn+kXn ∣ Fn+k−1]] = E[E[Xn+k ∣ Fn+k−1]Xn] = 0. (9.1)

This property will be crucial in this section.

9.6.1 A �rst easy strong law

First, observe that boundedness in L2 can be checked by considering a deterministic series.

Lemma 9.6.1. A martingale is bounded in L2 in that supn E[M2
n] < ∞ if and only if the series ∑n E[X 2

n ]
converges. When this holds Mn converges a.s. and in L2 to some limit M∞ which satis�es E[M∞ ∣ Fn] = Mn

for all n.

Proof. The claim relies on the orthogonality of the increments (9.1). Indeed, this implies that all the crossed
products in the expansion of E[M2

n] = E[(∑n
i=0 Xi)2] vanish and we obtain:

E[M2
n] = E[(

n
∑
i=0

Xi)
2

] =
n
∑
i=0

E[X 2
i ].

Thus the claimed equivalence. The rest follows from Theorem 9.4.2 for p = 2.

Let us derive an easy LLN for martingales in L2. We shall rely on Kronecker’s lemma which is very
useful when it comes to proving a LLN.

Lemma 9.6.2 (Kronecker). Let (xn)n be real numbers and let (an)n be positive numbers with an ↑ ∞.

If the series ∑
n

xn
an

converges, then
1
an

n
∑
k=0

xk ⟶
n→∞

0.
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Proof. Let us write yk = ∑k
i=1 xi/ai , then

n
∑
k=1

xk =
n
∑
k=1

ak(yk − yk−1) =
n
∑
k=1

akyk −
n
∑
k=1

ak−1yk−1 −
n
∑
k=1
(ak − ak−1)yk−1 = anyn −

n
∑
k=1
(ak − ak−1)yk−1.

Under our assumption the sequence (yn)n has a �nite limit, say y∞. Consequently, for any " > 0, there exists
k0 such that |yk−1 − y∞| < " for every k > k0. Since an → ∞, then we infer that:

lim sup
n→∞

1
an

n
∑
k=1
(ak − ak−1)yk−1 = lim sup

n→∞

1
an

n
∑
k=k0

(ak − ak−1)yk−1 ≤ lim sup
n→∞

an − ak0−1
an

(y∞ + ") = y∞ + ".

Similarly the liminf is lower bounded by y∞ − ". Since " is arbitrary, then

1
an

n
∑
k=1
(ak − ak−1)yk−1 ⟶

n→∞
y∞,

and the claim follows.

Here is a �rst LNN for martingales. Note that if the increments are i.i.d. then the assumption is clearly
satis�ed.

Proposition 9.6.3. Let (Mn)n be an L2-martingale.

If ∑
n≥1

E[X 2
n ]

n2
< ∞, then

Mn

n
⟶
n→∞

0 a.s. and in L2.

Proof. First note that the L2 convergence follows from Lemma 9.6.1 and Kronecker’s lemma 9.6.2 applied to
xk = E[X 2

k ] and an = n2. Indeed, we have

E[(n−1Mn)2] =
1
n2

n
∑
k=0

E[X 2
k ] ⟶

n→∞
0 since ∑

n≥1

E[X 2
n ]

n2
< ∞.

Let us prove the almost sure convergence by applying Kronecker’s lemma 9.6.2 to xk = Xk and an = n.
Indeed, de�ne X̃k = k−1Xk and then M̃n = ∑n

k=1 X̃k . Then E[X̃n+1 ∣ Fk] = (n + 1)−1 E[Xn+1 ∣ Fk] = 0 so (M̃n)n
inherits the martingale property from (Mn)n. Further, our assumption reads ∑n E[X̃ 2

n] < ∞, so Lemma 9.6.1
implies that M̃n converges a.s. (and in L2) to a �nite limit M̃∞. This means formally that the event

A = {! ∈ Ω∶ the series ∑
k

Xk(!)
k

converges}

has probability 1. As alluded, we then apply Kronecker’s lemma 9.6.2 to xk = Xk(!) and ak = k to infer that
for every ! ∈ A, it holds n−1Mn = n−1∑n

k=1 Xk(!)→ 0. Since ℙ(A) = 1, this means that n−1Mn → 0 almost
surely as wanted.

Remark 9.6.4. Proposition 9.6.3 can be used to prove the strong LLN for i.i.d. integrable random variables.
Indeed one of the key points in the proof of Theorem 2.4.2 was to show with the notation there that
n−1∑k≤n Yk → 0 and one can check that this sum de�nes an L2 martingale which satis�es the assumptions
of Proposition 9.6.3.

9.6.2 The bracket process & further strong laws

In the LLN and CLT for martingales, the normalising factor is not always of order n and
√
n respectively. It

involves more generally the so-called bracket process.
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De�nition 9.6.5. Let Mn = ∑k≤n Xk be an L2-martingale. We de�ne a nondecreasing process (⟨M⟩n)n≥0 by
⟨M⟩0 = 0 and for n ≥ 1,

⟨M⟩n =
n
∑
k=1

E[X 2
k ∣ Fk−1] =

n
∑
k=1

E[M2
k −M

2
k−1 ∣ Fk−1].

Let also ⟨M⟩∞ = ↑ limn ⟨M⟩n ∈ [0,∞].

Remark 9.6.6. The analogous bracket process, also called quadratic variation plays an important role in
the study of continuous-time processes.

The next lemma characterises the bracket process. It is actually a particular case of Lemma 8.3.1 applied
to the submartingale (M2

n ) and we refer the interested reader to this more general result.

Lemma 9.6.7. The process (⟨M⟩n)n≥0 is the almost surely unique predictable process such that the di�erence
M2
n −M2

0 − ⟨M⟩n de�nes a martingale null at 0.

Proof. First it is clear from the de�nition that ⟨M⟩n m Fn−1. In addition, by construction, for every n ≥ 0,
we get by expanding M2

n+1 = M2
n + X 2

n+1 + 2MnXn+1:

E[M2
n+1 −M

2
0 − ⟨M⟩n+1 ∣ Fn] = M2

n + E[X
2
n+1 ∣ Fn] −M

2
0 − ⟨M⟩n+1

= M2
n −M

2
0 − ⟨M⟩n,

hence the martingale property. Suppose next that (An)n≥0 is a predictable process such that M̃n = M2
n−M2

0−An
de�nes a martingale null at 0, then:

An+1 − An = (M2
n+1 −M

2
n ) − (M̃n+1 − M̃n).

Since An+1 − An m Fn and (M̃n)n is martingale, then we infer that

An+1 − An = E[An+1 − An ∣ Fn] = E[M2
n+1 −M

2
n ∣ Fn] = ⟨M⟩n+1 − ⟨M⟩n.

Since A0 = 0 = ⟨M⟩0, then we infer that the two sequences (An)n and (⟨M⟩n)n coincide.

Let T be a stopping time and recall from Lemma 8.2.1 that the stopped process de�ned by MT
n = Mn∧T

for every n ≥ 0 remains a martingale in L2. We can therefore de�ne its bracket process (⟨MT ⟩n)n≥0. The
next lemma shows that the stopped bracket process is the bracket process of the stopped process.

Lemma 9.6.8. For any stopping time T , we have (⟨M⟩n∧T )n = (⟨MT ⟩n)n.

Proof. According to Lemma 9.6.7, the process (⟨MT ⟩n)n is the unique predictable process (An)n such that
(M2

n∧T − An)n is a martingale started at M2
0 . Let us prove that (⟨M⟩n∧T )n also satis�es these two properties.

First, by decomposing according to the value of T , we have

⟨M⟩n∧T =
n−1
∑
j=0

1T=j ⟨M⟩j + 1T>n−1 ⟨M⟩n,

and each random variable on the right is Fn−1-measurable, hence (⟨M⟩n∧T )n is indeed predictable. Next
simply observe that since (M2

n − ⟨M⟩n)n is a martingale, then so is the stopped process (M2 − ⟨M⟩)n∧T =
M2
n∧T − ⟨M⟩n∧T . The claim follows then by uniqueness of (⟨MT ⟩n)n.

Let us observe that E[M2
n] = E[⟨M⟩n] so by monotone convergence (Mn)n is bounded in L2 if and only

if E[⟨M⟩∞] < ∞. In this case, Theorem 9.4.2 applies and the martingale converges almost surely an in L2.
In the next result, we remove the assumption E[⟨M⟩∞] < ∞ and prove almost sure convergences; note
however that we may not have convergence in L2.
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Theorem 9.6.9. Let (Mn)n be an L2-martingale.

(i) On the event that ⟨M⟩∞ < ∞ we have Mn → M∞ a.s where E[M2
∞] < ∞. Conversely, if (Mn)n has

bounded increments, then on the event that it converges a.s. we have ⟨M⟩∞ < ∞ a.s.

(ii) On the event that ⟨M⟩∞ = ∞ we have Mn/ ⟨M⟩n → 0 a.s.

Proof. Fix k ≥ 0 and let Tk = inf{n ≥ 0∶ ⟨M⟩n+1 > k}, which is a stopping time since (⟨M⟩n+1)n is adapted.
Then by Lemma 9.6.8 the bracket of the stopped process (Mn∧Tk )n is (⟨M⟩n∧Tk )n. The latter is bounded by k,
so (Mn∧Tk )n is bounded in L2 by the previous remark and Lemma 9.6.1 shows that it converges a.s. The limit
is square-integrable by Fatou’s lemma. On the event {⟨M⟩∞ < ∞} = ⋃k{Tk = ∞}, this implies that (Mn)n
converges a.s.

Conversely, assume that M0 = 0, or otherwise subtract it, and suppose that there exists K > 0 such
that |ΔMn | ≤ K for all n a.s. Then by Lemma 9.6.8, for any n, k ≥ 0 by the martingale property we have
E[M2

n∧T − ⟨M⟩n∧T ] = 0 for any stopping time T . Fix k > 0 and let T k = inf{n ≥ 0∶ |Mn | > k}, then
Mn∧T k ≤ k + K and so E[⟨M⟩n∧T k ] ≤ (k + K )2 for all n, hence ↑ limn ⟨M⟩n∧T k < ∞ a.s. On the event that M
converges we have {supn |Mn | < ∞} = ⋃k{T k = ∞} and so ⟨M⟩∞ < ∞ a.s.

Let us prove the last claim. The process H = 1/(1 + ⟨M⟩) is bounded by 1 and predictable so H ∙M is a
martingale in L2. Moreover,

(H ∙M)k − (H ∙M)k−1 = Hk(Mk −Mk−1) =
Xk

1 + ⟨M⟩k

and since the denominator is Fk−1-measurable, then

⟨H ∙M⟩n =
n
∑
k=1

E[((H ∙M)k − (H ∙M)k−1)2 ∣ Fk−1]

=
n
∑
k=1

E[X 2
k ∣ Fk−1]

(1 + ⟨M⟩k)2

=
n
∑
k=1

⟨M⟩k − ⟨M⟩k−1
(1 + ⟨M⟩k)2

≤
n
∑
k=1

(
1

1 + ⟨M⟩k−1
−

1
1 + ⟨M⟩k )

= 1 −
1

1 + ⟨M⟩n
,

where the inequality follows from the fact that ⟨M⟩ is nondecreasing. In particular, we see that ⟨H ∙M⟩∞ ≤ 1
so by the �rst part the series H ∙M = ∑k Xk/(1 + ⟨M⟩k) converges a.s. Kronecker’s lemma 9.6.2 applied to
an = 1 + ⟨M⟩n and xn = Xn �nally shows that

Mn

1 + ⟨M⟩n
a.s.
⟶
n→∞

0

on the event ⟨M⟩n ↑ ⟨M⟩∞ = ∞.

This theorem applied to sums of independent random variables reads as follows.

Corollary 9.6.10. Let (Xk)k≥1 be independent random variables with E[Xk] = 0 and Var(Xk) = �2k < ∞. Let
Sn = X1 +⋯ + Xn and Vn = �21 +⋯ + �2n ↑ V∞ ∈ [0,∞].

(i) If V∞ < ∞, then Sn converges a.s. to a �nite limit. The converse holds if in addition supk |Xk | < K a.s. for
some constant K < ∞.

(ii) If V∞ = ∞, then Sn/Vn → 0 a.s.
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As another corollary, we can extend the Borel–Cantelli lemma further than Corollary 9.5.2.

Theorem 9.6.11. Fix a sequence of events An ∈ Fn for every n ≥ 1 and de�ne two nondecreasing processes
by:

Yn =
n
∑
k=1

1Ak and Zn =
n
∑
k=1

E[1Ak ∣ Fk−1].

Then a.s. we have:

(Z∞ < ∞ ⟹ Y∞ < ∞) and (Z∞ = ∞ ⟹ Yn/Zn → 1).

Proof. By construction, Z is predictable and nondecreasing and M = Y − Z is a martingale with bounded
increments, so in L2, hence Y = M + Z is the decomposition of a submartingale. Note that

⟨M⟩n =
n
∑
k=1

E[(Mn −M−1)2 ∣ Fn−1]

=
n
∑
k=1

E[(1An − E[1An ∣ Fn−1])
2 ∣ Fn−1]

=
n
∑
k=1

E[1An ∣ Fn−1] − E[1An ∣ Fn−1]
2

≤
n
∑
k=1

E[1An ∣ Fn−1] = Zn.

Consider now the three cases (we drop the “a.s.” everywhere):

• If Z∞ < ∞, then ⟨M⟩∞ < ∞, so M converges by Theorem 9.6.9 and so Y∞ ≤ supn |Mn | + Z∞ < ∞.

• If Z∞ = ∞ and ⟨M⟩∞ < ∞, then M converges again and so Yn/Zn = 1 +Mn/Zn → 1.

• If Z∞ = ∞ and ⟨M⟩∞ = ∞, then |Mn |/Zn ≤ |Mn |/ ⟨M⟩n → 0 and again Yn/Zn = 1 +Mn/Zn → 1.

Note that when Z∞ = ∞, we have Y∞ = ∞. Therefore we arrive at the dichotomy: a.s. we have,

• either Z∞ < ∞ and then Y∞ < ∞, that is Ak occurs for only �nitely many indices k,

• or Z∞ = ∞ and then Y∞ = ∞, that is Ak occurs for in�nitely many indices k.

On the one hand E[E[1Ak ∣ Fk−1]] = ℙ(Ak), so if ∑k ℙ(Ak) < ∞, then E[Z∞] < ∞ so Y∞ < ∞ a.s. On the
other hand, if the events are independent, then for Fn = � (Ak , k ≤ n) we have that E[1Ak ∣ Fk−1] = ℙ(Ak).
Therefore if ∑k ℙ(Ak) = ∞, then Y∞ a.s. We thus indeed recover the Borel–Cantelli lemma.

9.7 Central Limit Theorems

Let us continue with a Central Limit Theorem for L2 martingales, which generalises the case where the
increments are independent in Theorem 2.7.2. We then apply this result to prove the CLT for �nite-state
Markov chains stated in Theorem 5.1.4.

9.7.1 Martingale Central Limit Theorem

As for the case of independent increments, rather than a �xed martingale (Mn)n≥0, one can consider but a
triangular array (Mn,k)n≥k≥0 of martingales, that is for every n ≥ 0, the path (Mn,k)k≥0 is a martingale. We
shall not emphasise this in order to keep light notation, but the reader may keep it in mind.
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Theorem 9.7.1 (Martingale Lindeberg’s CLT). Suppose that there exist a positive sequence an → ∞ and a
constant �2 > 0 such that

⟨M⟩n
an

ℙ
⟶
n→∞

�2.

Second, assume the Lindeberg condition: for any " > 0, one has

1
an

n
∑
k=1

E[|Xk |2 1|ΔXk |>"
√an ∣ Fk−1]

ℙ
⟶
n→∞

0. (9.2)

Then
Mn√an

(d)
⟶
n→∞

N(0, �2) and
Mn√
⟨M⟩n

(d)
⟶
n→∞

N(0, 1).

If instead �2 = 0, then a−1/2n Mn → 0 in probability.

As for independent random variables a stronger condition but often simpler to verify is the so-called
Lyapunov condition (9.3), which is often checked with 2 + � = 3 or 4 in practice (provided such a moment
exists). This recovers similarly Theorem 2.7.3 in the case of independent increments.

Proposition 9.7.2 (Lyapunov’s CLT). Suppose that there exists � > 0 such that

1
a1+�/2n

n
∑
k=1

E[|Xk |2+� ∣ Fk−1] ⟶
n→∞

0. (9.3)

Then (9.2) holds.

Proof. We use the conditional Hölder inequality and then the conditional Markov inequality. Indeed, with
p = (2 + �)/2 and q = (2 + �)/� so 1/p + 1/q = 1, we have for every " > 0:

a−1n E[|Xk |2 1|Xk |>"
√an ∣ Fk−1] ≤ a

−1
n E[|Xk |2+� ∣ Fk−1]

1/p ℙ(|Xk | > "
√
an ∣ Fk−1)1/q

≤ a−1n E[|Xk |2+� ∣ Fk−1]
1/p

(("
√
an)−(2+�) E[|Xk |2+� ∣ Fk−1])

1/q

= "−�a−(1+�/2)n E[|Xk |2+� ∣ Fk−1],

and the claim follows.

The philosophy of the proof of Theorem 9.7.1 is to follow as closely as possible that of Theorem 2.7.2
and we invite the reader to have a look at the latter �rst. The lack of independence causes several issues
but we can deal with them with some tricks.

Proof of Theorem 9.7.1. Recall that a random variable Z with the Gaussian law N(0, �2) is characterised by
its characteristic function E[exp(itZ )] = exp(−t2�2/2) for all t ∈ ℝ. Moreover the pointwise convergence of
characteristic functions is equivalent to the convergence in distribution so our claim follows if we prove
that for each t ∈ ℝ �xed, we have:

E[exp(it
Mn√an)]

⟶
n→∞

exp(−
t2�2

2 ).

Step 1: Reduction to an additional assumption. Fix a constant C > �2. Since ⟨M⟩n/an → �2 in
probability then in particular with a probability tending to 1 we have ⟨M⟩1 ≤ ⋯ ≤ ⟨M⟩n ≤ Can. This bound
will help us at several occasions so we shall replace Mn = ∑n

k=1 Xk by

M̃n =
n
∑
k=1

Xk 1⟨M⟩k≤Can = Mn∧Tn , where Tn = inf{k ≥ 0∶ ⟨M⟩k+1 > Can},
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is a stopping time. Then (Mk∧Tn )n≥k≥0 is an array of martingales, and since |Xk 1⟨M⟩k≤Can | ≤ |Xk | then it also
satis�es the Lindeberg condition (9.2). In addition, on the event {⟨M⟩n ≤ Can} each indicator equals 1 so
we have M̃n = Mn and ⟨M̃⟩n = ⟨M⟩n. Hence for any " > 0, it holds:

ℙ(| ⟨M̃⟩n/an − �2| > ") ≤ ℙ(| ⟨M⟩n/an − �2| > ") + ℙ(⟨M⟩n/an > C) ⟶
n→∞

0.

The stopped martingales thus satisfy the assumptions of the theorem, but also the extra condition ⟨M̃⟩n ≤
Can for all n ≥ 1 by construction. Finally, since Mn and M̃n can only di�er when ⟨M⟩n > Can, then we
conclude that

|||E[exp(it
Mn√an)]

− E[exp(it
M̃n√an)]

||| ≤ E[
|||exp(it

Mn√an)]
− E[exp(it

M̃n√an)
|||1⟨M⟩n>Can]

≤ 2ℙ(⟨M⟩n > Can),

which converges to 0. Therefore it is su�cient to prove the theorem for M̃n, or equivalently, we may assume
that almost surely, we have

⟨M⟩n
an

≤ C for all n ≥ 1, (9.4)

which we do for the rest of the proof.
Step 2: Proof under the additional assumption. We aim at showing that

E[exp(it
Mn√an

+
t2�2

2 )] ⟶
n→∞

1

under the extra assumption (9.4). Since ⟨M⟩n/an → �2 in probability, then it is tempting to replace the
latter by the former in the previous expectation and indeed:

|||E[exp(it
Mn√an

+
t2�2

2 )] − E[exp(it
Mn√an

+
t2 ⟨M⟩n
2an )]

||| ≤ E[
|||exp(

t2�2

2 ) − exp(
t2 ⟨M⟩n
2an )

|||].

The term inside the expectation on the right tends to 0 in probability, and the extra assumption (9.4) provides
enough domination to conclude that the expectation tends to 0. It thus remains to prove that

E[exp(it
Mn√an

+
t2 ⟨M⟩n
2an )] ⟶

n→∞
1,

which we shall do using (9.4) again. Indeed, notice that we have a telescopic sum:

exp(it
Mn√an

+
t2 ⟨M⟩n
2an ) − 1 =

n
∑
k=1

(exp(it
Mk√an

+
t2 ⟨M⟩k
2an ) − exp(it

Mk−1√an
+
t2 ⟨M⟩k−1

2an ))

=
n
∑
k=1

exp(it
Mk−1√an

+
t2 ⟨M⟩k
2an )(exp(it

Xk√an)
− exp(−

t2 E[X 2
k ∣ Fk−1]
2an )).

Notice that in the last sum, each random variable is Fk−1-measurable, except Xk . Then by conditioning
with respect to Fk−1, we have:

|||E[exp(it
Mk−1√an

+
t2 ⟨M⟩k
2an )(exp(it

Xk√an)
− exp(−

t2 E[X 2
k ∣ Fk−1]
2an ))]

|||

= |||E[exp(it
Mk−1√an

+
t2 ⟨M⟩k
2an )(E[exp(it

Xk√an)
||| Fk−1] − exp(−

t2 E[X 2
k ∣ Fk−1]
2an ))]

|||

≤ exp(
t2C
2 )E[

|||E[exp(it
Xk√an)

||| Fk−1] − exp(−
t2 E[X 2

k ∣ Fk−1]
2an )

|||].

Using the triangle inequality, let us further upper bound the term in last expectation by

|||E[exp(it
Xk√an)

||| Fk−1] − (1 −
t2 E[X 2

k ∣ Fk−1]
2an )

||| +
|||E[exp(−

t2 E[X 2
k ∣ Fk−1]
2an ) − (1 −

t2 E[X 2
k ∣ Fk−1]
2an )

|||.
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Applying Lemma 2.7.4 with n = 2 (removing the useless factor 1/6) and taking the conditional expectation,
we infer that for every " > 0 and every u ∈ ℝ (which plays the role of t/√an to lighten the notation), we
have since E[Xk ∣ Fk−1] = 0:

|||E[e
iuXk ∣ Fk−1] − (1 −

u2 E[X 2
k ∣ Fk−1]
2 )

||| =
|||E[e

iuXk −(1 + iuXk − u
2X

2
k
2 )

||| Fk−1]
|||

≤ E[min(u2X 2
k , |u|

3 |Xk |3) ∣ Fk−1]
≤ u2 E[X 2

k 1|Xk |>"
√an ∣ Fk−1] + |u|3 E[|Xk |3 1|Xk |≤"

√an ∣ Fk−1]
≤ u2 E[X 2

k 1|Xk |>"
√an ∣ Fk−1] + "

√
an |u|3 E[X 2

k ∣ Fk−1].

On the other hand, it is straightforward to show that for x ≥ 0 it holds 1 − x ≤ e−x ≤ 1 − x + x2/2, and thus,
for every u ∈ ℝ, we have:

|||exp(−
u2 E[X 2

k ∣ Fk−1]
2 ) − (1 −

u2 E[X 2
k ∣ Fk−1]
2 )

||| ≤
1
2(

u2 E[X 2
k ∣ Fk−1]
2 )

2

≤
u4

8
E[X 2

k ∣ Fk−1] sup
k≤n

E[X 2
k ∣ Fk−1].

Let us note that:

sup
k≤n

E[X 2
k ∣ Fk−1] ≤ sup

k≤n
E[X 2

k 1|Xk |≤"
√an ∣ Fk−1] + sup

k≤n
E[X 2

k 1|Xk |>"
√an ∣ Fk−1]

≤ "2an +
n
∑
k=1

E[X 2
k 1|Xk |>"

√an ∣ Fk−1].

Let L(n, ") = ∑n
k=1 E[X 2

k 1|Xk |>"
√an ∣ Fk−1], then combining all the previous bounds, with u = t/√an, we

obtain:

|||E[exp(it
Mn√an

+
t2 ⟨M⟩n
2an ) − 1]

|||

≤ et
2C/2

n
∑
k=1

E[
t2

an
E[X 2

k 1|Xk |>"
√an ∣ Fk−1] + "

|t |3

an
E[X 2

k ∣ Fk−1] +
t4

8a2n
E[X 2

k ∣ Fk−1]("
2an + L(n, "))]

≤ et
2C/2 E[

t2

an
L(n, ") + " |t |3

⟨M⟩n
an

+
t4

8
⟨M⟩n
an

("2 + a−1n L(n, "))].

Now recall that a−1n ⟨M⟩n → �2 in probability and a−1n L(n, ") → 0 in probability by the Lindeberg con-
dition (9.2). Using the extra assumption (9.4) that L(n, ") ≤ ⟨M⟩n ≤ Can almost surely we can apply the
dominated convergence theorem once again to infer that the expectation above tends to " |t |3�2 + "2t2�2/8.
By letting further " → 0, we may now conclude.

9.7.2 Markov chain Central Limit Theorem

Let us prove Theorem 5.1.4 by an application of Theorem 9.7.1. Recall the former result: let (Xn)n≥0 be an
irreducible Markov chain on a �nite set X with stationary probability � . For any function f ∶ X → ℝ, we
have the convergence in distribution:

1
√
n

n
∑
k=0

(f (Xk) − � (f ))
(d)
⟶
n→∞

N(0, �2),

where �2 is a constant that we discussed after the statement and that we shall see appearing in the proof.
Replacing f by f − � (f ) if necessary, it is su�cient to consider f such that � (f ) = 0.

The proof uses the solution of the so-called Poisson equation that we put in a separate lemma.
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Lemma 9.7.3. Let P be an irreducible transition matrix on a �nite state space X, with stationary probability
� . Let f ∶ X → ℝ be such that � (f ) = 0. Then the equation

u − Pu = f (9.5)

has a solution, given explicitly by u(x) = ∑k≥0 Pkf (x) for every x ∈ X.

Proof. Let us �rst prove that u is well-de�ned. Indeed, recall that in a �nite state-space, the Döblin condition
is always satis�ed, so by Theorem 5.2.13 there exist k ≥ 1 and � > 0 such that for any n ≥ 1 and any initial
position x , we have:

∑
y∈X

|Pn(x, y) − � (y)| ≤ 2(1 − �)⌊n/k⌋.

Consequently,

|||∑
y∈X

Pn(x, y)f (y) − ∑
y∈X

� (y)f (y)||| ≤ (max f )∑
y∈X

|Pn(x, y) − � (y)| ≤ 2(max f )(1 − �)⌊n/k⌋.

Recall that we assume that ∑y∈X � (y)f (y) = � (f ) = 0, hence ∑n |Pnf (x)| < ∞ and u(x) is well-de�ned as an
absolutely convergent series. The Poisson equation (9.5) then follows easily from the explicit expression:

Pu = P ∑
k≥0

Pkf = ∑
k≥0

Pk+1f = ∑
k≥1

Pkf = ∑
k≥0

Pkf + f = u − f ,

which is equivalent to (9.5).

We shall prove Theorem 5.1.4 by constructing a martingale using the Poisson equation (9.5) and applying
Theorem 9.7.1 to the latter.

Proof of Theorem 5.1.4. Recall that we assume � (f ) = 0, otherwise simply replace f by f − � (f ). Let u be the
solution to the Poisson equation (9.5) and de�ne for all n, k ≥ 1:

Yk = u(Xk) − Pu(Xk−1) and then Mn =
n
∑
k=1

Yk .

Then observe that:
n
∑
k=0

f (Xk) =
n
∑
k=0
(u(Xk) − Pu(Xk))

=
n
∑
k=1
(u(Xk) − Pu(Xk−1)) −

n
∑
k=1
(Pu(Xk) − Pu(Xk−1))

= Mn − (Pu(Xn) − u(X0)).

Since X is a �nite state, then Pu(Xn) − u(X0) is uniformly bounded in n, so it vanishes once divided by
√
n

and our claim is thus equivalent to
Mn√
n

(d)
⟶
n→∞

N(0, �2). (9.6)

We claim that (Mn)n is a martingale for the �ltration Fn = � (Xk , k ≤ n). Indeed:

E[Yk ∣ Fk−1] = E[u(Xk) ∣ Fk−1] − Pu(Xk−1)

= E[u(Xk) ∣ Xk−1] − Pu(Xk−1) (Markov property)

= Pu(Xk−1) − Pu(Xk−1)

= 0.

See the proof of Theorem 8.4.1 for more details on the Markov property in this context. According to
Theorem 9.7.1, the convergence (9.6) then holds as soon as n−1 ⟨M⟩n → �2 in probability and that the
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Lindeberg condition (9.2) is satis�ed with an = n. This last condition is trivial here since the increments
Yk are uniformly bounded (because X is �nite), so each conditional expectation in (9.2) vanishes when n
is large enough. Let us focus on the bracket process ⟨M⟩n = ∑n

k=1 E[Y 2k ∣ Fk−1]. We have by the Markov
property at the third line:

E[Y 2k ∣ Fk−1] = E[(u(Xk) − Pu(Xk−1))2 ∣ Fk−1]

= E[u(Xk)2 ∣ Fk−1] + (Pu(Xk−1))2 − 2Pu(Xk−1)E[u(Xk) ∣ Fk−1]

= E[u(Xk)2 ∣ Xk−1] + (Pu(Xk−1))2 − 2Pu(Xk−1)E[u(Xk) ∣ Xk−1]

= Pu(Xk−1)2 − (Pu(Xk−1))2

= Ψ(Xk−1),

where Ψ = Pu2 − (Pu)2. Applying Corollary 5.1.2 to this function Ψ, we obtain:

⟨M⟩n
n

=
1
n

n
∑
k=1

Ψ(Xk−1)
a.s.
⟶
n→∞

� (Ψ) = �2.

Theorem 9.7.1 then shows that the convergence (9.6) holds and this completes the proof.

The reader can see that the proof is rather robust and indeed CLT’s hold also in in�nite state spaces X
but one has to be more careful. For example, the solution to the Poisson equation u − Pu = f may not exist
in general. Thus di�erent versions of CLT exist under good conditions.

9.8 Stochastic Gradient Descent & Robbins–Monro Algorithm

In many applications, one aims at minimising or maximising a real-valued function which depends on many
parameters, and often in a not so explicit way. Such a function could for example quantify some cost in
economy, the energy e�ciency in some chemical reaction, optimise a transport system, compute a maximum
likelihood estimator, etc. Let us see an application of martingales theory to an algorithm solving numerically
this deterministic problem. In particular, Corollary 9.1.4 will ensure that our algorithm converges. Let us
start with the deterministic setting �rst. We shall not try to provide the minimal assumption here and
satisfy ourselves with easy proofs in simple cases.

9.8.1 The Gradient Descent algorithm

The context is the following. Suppose that a parameter � ∈ ℝd produces an e�ect that we quantify by
f (�) ∈ ℝ and suppose that f has a unique minimiser, i.e. a solution � ∗ ∈ ℝd of:

f (� ∗) = min
�∈ℝd

f (�).

The question is: If f is not explicit, how can we �nd � ∗ in practice? Not that we do not care about the
minimum value f (� ∗), we only want to be able to choose the optimal parameter � ∗. A well-used numerical
scheme is called the gradient descent. Recall that the gradient (if it exists) is the vector of partial derivatives:
∇f (�) = ()1f (�),… , )d f (�)). We shall suppose that ∇f satis�es the so-called separating condition:

⟨� − � ∗,∇f (�)⟩ > 0 for every � ∈ ℝd ⧵ {� ∗}, (9.7)

where ⟨⋅, ⋅⟩ is the inner product in ℝd . In dimension d = 1, this simply means that f ′ is strictly negative
before � ∗ and is strictly positive after � ∗. This condition ensures that f has a unique local minimum, at � ∗,
which is the global minimum. Recall in Section 5.3.3 an idea to deal with functions that admit several local
minima.
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The gradient descent is designed as follows: Fix a sequence (n)n≥1 of real numbers such that:

∀n ≥ 1∶ n > 0, ∑
n
n = ∞, ∑

n
 2n < ∞,

and �x an arbitrary initial value �0 ∈ ℝd . Then recursively de�ne:

�n = �n−1 − n∇f (�n−1), n ≥ 1. (9.8)

In this scheme we correct step by step the parameter �n by following the slope given by the gradient.
Indeed, consider the dimension d = 1 for simplicity. Since n > 0 then either f ′(�n−1) > 0 and then �n < �n−1,
or f ′(�n−1) < 0 and then �n > �n−1. By (9.7), in both cases we have f (�n) < f (�n−1). Roughly speaking, we
want n → 0 to ensure that the sequence converges, but ∑n n = ∞ to avoid it to converge too fast, before
reaching � ∗.

Proposition 9.8.1. Let f ∶ ℝd → ℝ be continuously di�erentiable and suppose that ∇f is bounded and
satis�es (9.7). For every �0 ∈ ℝd , the sequence (�n)n de�ned by (9.8) converges to � ∗.

Proof. Let us write for every k ≥ 1:

|�k − � ∗|2 = |�k−1 − � ∗|2 + |�k − �k−1|2 + 2 ⟨�k−1 − � ∗, �k − �k−1⟩

= |�k−1 − � ∗|2 +  2k |∇f (�k−1)|
2 − 2k ⟨�k−1 − � ∗,∇f (�k−1)⟩.

Consequently,

2
n
∑
k=1

k ⟨�k−1 − � ∗,∇f (�k−1)⟩ = |�0 − � ∗|2 − |�n − � ∗|2 +
n
∑
k=1

 2k |∇f (�k−1)|
2.

Under (9.7) each term on the left is positive; on the right, the sum is convergent under our assumptions
that ∑n  2n < ∞ and that ∇f is bounded. Therefore the series on the left is convergent and then since both
sums converge, the sequence |�n − � ∗|2 has a �nite limit. Further, by (9.7) and since ∇f is continuous, then
for every " > 0, the quantity:

inf
� ∶ |�−� ∗ |>"

⟨� − � ∗,∇f (�)⟩

is a positive number, say � > 0. If the limit of |�n − � ∗|2 is nonzero, then by choosing " small enough, we
have |�k−1 − � ∗| > " for every k large enough, say k ≥ k" , which leads to:

∞ > ∑
k≥1

k ⟨�k−1 − � ∗,∇f (�k−1)⟩ ≥ " ∑
k≥k"

k = ∞

by our assumption. We conclude that |�n − � ∗|2 converges to 0.

9.8.2 Stochastic Gradient Descent

Often in practice, the e�ect of the parameter � is random, say F (X, �) for some function F and some random
variable X , and we aim at minimising f (�) = E[F (X, �)] as before, but we can only observe F (X, �). Let
us assume that ∇f (�) = E[∇F (X, �)]. One typical application the reader may have in mind is the response
F (X, �) of a patient to a dose of medicine � (with possibly several components): we aim at �nding the dose
that provides the best average response over patients but we can only observe the e�ect on each patient.

A naive idea to �nd � ∗ here is to use the same numerical scheme as in (9.8), but at every step, approximate
∇f (�n−1) using the observable ∇F (X, �n−1). Formally, let (Xn,i)n,i≥0 be i.i.d. random variables with the same
law as X and let

∇̂f (�n−1)k =
1
k

k
∑
i=1

∇F (Xn,i , �n−1),
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which converges a.s. to ∇f (�n−1) by the Law of Large Numbers. Then we may use the scheme (9.8) with
∇f (�n−1) being replaced by ∇̂f (�n−1)k for some large k. This may however not be convenient in practice for
it requires a large number n × k of random variables of the form Xn,i . If we think again of the medicine
tested on patients, this requires a lot of trials! Also even for computer simulations, especially when the
dimension d of � is large, this may take too long computation time. This is typically the case in neural
networks.

Instead, the Robbins–Monro algorithm constructs a random sequence (Θn)n which in some sense allows
to take k = 1 above. Precisely let (Xn)n≥1 be i.i.d. copies of X , let Fn = � (Xk , k ≤ n) and construct recursively
starting from Θ0 ∈ ℝd an adapted process by:

Θn = Θn−1 − n∇F (Xn,Θn−1), where ∀n ≥ 1∶ n > 0, ∑
n
n = ∞, ∑

n
 2n < ∞. (9.9)

Theorem 9.8.2. Let f ∶ ℝd → ℝ be continuously di�erentiable; suppose that ∇f (�) = E[∇F (X, �)] where ∇F
is bounded and suppose that (9.7) holds. For every Θ0 ∈ ℝd , the sequence (Θn)n de�ned by (9.9) converges
almost surely to � ∗.

The proof is quite close to that of Proposition 9.8.1. The almost sure convergence is provided by a
supermartingale uniformly bounded below as in Corollary 9.1.4.

Proof. Let us write for every k ≥ 1:

|Θk − � ∗|2 = |Θk−1 − � ∗|2 + |Θk − Θk−1|2 + 2 ⟨Θk−1 − � ∗,Θk − Θk−1⟩

= |Θk−1 − � ∗|2 +  2k |∇F (Xk ,Θk−1)|2 − 2k ⟨Θk−1 − � ∗,∇F (Xk ,Θk−1)⟩.

Consequently, the sequence

Mn = |Θn − � ∗|2 −
n
∑
k=1

 2k E[|∇F (Xk ,Θk−1)|2 ∣ Fk−1],

satis�es:

E[Mn −Mn−1 ∣ Fn−1] = E[|Θn − � ∗|2 − |Θn−1 − � ∗|2 −  2n |∇F (Xn,Θn−1)|2 ∣ Fn−1]

= −2n ⟨Θn−1 − � ∗,E[∇F (Xn,Θn−1) ∣ Fn−1]⟩

= −2n ⟨Θn−1 − � ∗,∇f (Θn−1)⟩,

where the last equality follows from Theorem 6.5.4. The assumption (9.7) therefore implies that (Mn)n is a
supermartingale. Since we assume that ∑n  2n < ∞ and that ∇F is bounded, then this supermartingale is
bounded below by a constant and thus it converges almost surely by Corollary 9.1.4 to a �nite limit. The
sum in the de�nition of Mn also has a �nite limit, again because ∑n  2n < ∞ and ∇F is bounded. Hence
|Θn − � ∗| converges almost surely to a �nite limit. It remains to prove that this limit is 0.

By similar arguments, we have:

2E[
n
∑
k=1

k ⟨Θk−1 − � ∗,∇f (Θk−1)⟩] = E[|Θ0 − � ∗|2 − |Θn − � ∗|2] +
n
∑
k=1

 2k E[|∇F (Xk ,Θk−1)|2],

and the last sum converges. Consequently ∑k k ⟨Θk−1 − � ∗,∇f (Θk−1)⟩ < ∞ almost surely. Now recall that
∑k k = ∞, so we must have ⟨Θk−1 − � ∗,∇f (Θk−1)⟩ → 0 almost surely. On the other hand, by (9.7) and since
∇f is continuous, then for every " > 0 we have:

inf{⟨� − � ∗,∇f (�)⟩∶ � ∈ ℝd , |� − � ∗| ≥ "} > 0.

So the fact that ⟨Θk−1 − � ∗,∇f (Θk−1)⟩ → 0 implies that lim supk |Θk−1 − � ∗| ≤ " for every k large enough.
Taking the intersection over " ∈ ℚ, we conclude that almost surely, we have lim supk |Θk−1 − � ∗| = 0.
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