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What is this? This document serves as a guide for the probability course in the first term of this master
program. It contains mostly the mathematical details, and it should not be thought of as complete lecture
notes with many examples and applications. Students are advised to use well-written books such as those
cited below to either cover some missing prerequisites, see a different presentation from this one, or also to
go further. Some sections will also not be covered in class and are included for the curious reader, they are
denoted by a (*).

This document is still improving, all remarks, including typos, are very welcome.

Presentation & Prerequisites. The goal of this course is to introduce the theory of stochastic processes
in discrete time, namely sequences of random variables which are usually not independent, but rather
in which the law at a given time depends on the past. The two main theories which constitute central
objects in modern probability and statistics, both from a theoretical perspective as well as in applications,
are Markov chains and martingales. They form the main content of this course.

This course is meant to be an advanced course in probability. Familiarity with basic measure theory
and probability such as random variables, their law and expectation, independence, L? spaces, the different
notion of convergences, Law of Large Numbers & Central Limit Theorem will be assumed. These notions
are recalled in Chapter i} and 2] and will not be covered in class: this course starts with Chapter 3] Some
knowledge on Markov chains on a finite state-space is useful but not at all mandatory.

Lectures session by session (prevision)

Part I: Markov Chains

1) Introduction to Markov chains, transition matrices (Sections|3.1 &
2) Random recursion and the strong Markov property (Sections|3.3| &
3) Recurrence & transience (Sections[4.1] &

4) Stationary measures (Sections[4.2] &

5) Ergodic Theorem, aperiodicity (Sections[s.1 &

6) Convergence to equilibrium (Section 5.2)

7) Monte—Carlo simulation (Section|s.3)

8) Midterm exam (up to session 6 included)

Part II: Martingales

9) Abstract conditional expectation, properties (Chapter [6)

10) Generalities on stochastic processes, filtrations, stopping times, martingales, stopping thm (Chapter|;]

& Section[8.1] &

11) Almost sure convergence, closed martingales, L! convergence (Section &
12) Maximal inequalities, L? convergence, the L? case (Sections &

13) Central Limit Theorems (Section 9.7)

14) Applications: Optimal Stopping (Section [8.5), Robins-Morro (Section [9.8)

15) Final exam (up to session 13 included)



References. Here are some books that can be useful in relation with this course, some of them inspired
these notes. This is a personal list of references that I used as a student (especially the books by Durrett, by
Williams, and Baldi-Mazliak—Priouret for the exercises) or to prepare this course. Feel free to look outside
this list, the important point is to find one or more that you enjoy reading and find complementary to the
lectures.

« The following references cover the basics of measure theory and probability, as well as the conditional
expectation and martingale part of this course. They offer a complete course with also many exercises
and examples.
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Part I

Foundations of Probability



Chapter 1

Basics of Measure Theory & Integration

(%)

The content of this chapter will not be discussed in class and is only here to recall some technical details on
measure theory and integration with respect to a measure, which constitutes the foundation of probability.

Contents
[1.1 Measuredspaces| . .. ... ... . .. L e 6
[Lz Measurablefunctions| . .. ... ... ... ... . ... . oo 10
[1.3 Integration of nonnegative functions| . . . . . . ... ... .. ... ... . ... .. 11
[1.4 Integration of general functions| . . . . . ... ..... .. ... .. . 0 0L, 15
[1.5 Productmeasures|. . . . . . . . . . e e e e e e e e e e 18

We first introduce the basic definitions of o-algebras and measures in Section[1.1] we present a technical
result that we shall use a few times in the next chapters, see Theorem In Section [1.2| we define
the notion of measurable functions, then we construct the Lebesgue integral of nonnegative functions in
Section |1.3} and of general functions in Section [1.4] where we derive key results that we use all the time
(monotone convergence, dominated convergence, Fatou’s lemma). Finally we discuss product measures in
Section [1.5] which are the foundation of independence in probability.

1.1 Measured spaces

Throughout this section we let S be a set.
Definition 1.1.1. A o-algebra on S is a collection X of subsets of S such that
(i) SeZ,

(i) AeX = A€l

(ili)) ApeXforalln=1 = |J,.; An € 2.
The pair (S, ) is called a measurable space; elements of ¥ are said to be measurable.
Remark 1.1.2. Wealsohave @ = S°e€ Y and A, € S foralln=1 = (.1 An = (Uns1 A0 € X
Exercise 1.1.3. The intersection of any collection of o-algebras on S is a o-algebra.
Definition 1.1.4. Let 6 be a collection of subsets of S, then we let

o(B) = ﬂ{Z : Yisa o-algebra and ¥ > 6}

denote the smallest o-algebra that contains 6. It is called the o-algebra generated by 6.



Remark 1.1.5. In general, if (%,),; are o-algebras, then | J, %, is not, so we instead consider

o(Fyn=1)= O'(U 874,,).

Exercise 1.1.6. The o-algebra generated by the singletons is
oc({{w}: weS})={AcS: Aor A°is at most countable}.

Example 1.1.7. o If S is at most countable, we usually consider the o-algebra of all subsets of S, which
is generated by the singletons.

+ In a topological space (E, 0), we usually consider the Borel o-algebra B(E) = 0(0) generated by the
open sets. In R?, we have

BRY = o( {

1

d
(a;, b;): a;j < bjforalll<ix< d})
=1

Exercise 1.1.8. In R, we have
BR) =o({Ta, bt: a<b})=0({Ta,o): a€R})=0({(-00,bF: bER}),

for any choice = (or t = [ on the left and 1 =) or =] on the right. A similar property holds in R with
products of intervals.

Exercise 1.1.9. Let (¥,),.1 be o-algebras, then o(F,, n > 1) is also generated by the intersections of

Definition 1.1.10. A measure yi on (S,2) is a function y : ¥ — [0, co] such that

(i) (@) =0,

(ii) If A, € X for all n = 1 are disjoint, then p(| J, An) = Y., #(Ay).

elements in each %,, namely:

o(Fy,nz=1)= 0( U {mAi;Ai €EF

IcNN finite — i€l

The triple (S, 2, p) is called a measured space. The measure is said to be:

« o-finiteif there exists a countable collection (A,), of elements of ¥ such that S = | J,, A, and p(A;) < oo
for all n,

« finite if p(S) < oo,
- a probability if y(S) = 1.

Remark 1.1.11. We will not encounter non-o-finite measures, but they do exist (take e.g. the cardinal of a
set in R). Also in other contexts, one sometimes considers signed measures, taking values in R, or complex
measures, in C.

Notation. For A € 3, we say that A holds p-a.e. (for ‘almost everywhere’) when p(A°) = 0. If pis a
probability, this means p(A) = 1 and we say instead that A holds p-a.s. (for ‘almost surely’).

The following simple properties of measures are used all the time.

Lemma 1.1.12 (Key properties). Let (S, 2, i) be a o-finite measured space and let A, € X foralln = 1.
(i) If (An)n is increasing in that A, © Ayiq, then p(Ay) T p(U,, An)-



(ii) If (Apn)n is decreasing in that A, > Ap.1, and if there exists k = 1 such that p(Ay) < oo, then p(Ay) |
ll(ﬂn An)'

(iii) Tn any case, p((Jy An) = 3, 1(Ar).

A consequence of the last item is that
Uu(Ap) = 0 for any fixed n = ,u(U An) = 0.
n
In particular if y is a probability, then taking the complement we get

U(A,) = 1for any fixed n = ,u(ﬂ An) =1

This means that, in a countable collection, if each event occurs with probability one (we say that it occurs
almost surely), then they all occur almost surely simultaneously! Using arguments such as the density of
the rational numbers in R and monotonicity or continuity arguments, this can sometimes (depending on
the context) be extended to uncountable collections of events, which makes it a very powerful tool.

1.1.1 The 7 - 1 lemma

A o-algebra can be complicated and very often, we aim at considering only simpler subsets. For example,
in Exercise one prefers to work only with the intervals (a, b) or the intervals (-co, x] instead of all the
Borel sets of R. The question we need to answer is: Given a o-algebra X on a set S and a collection € of
subsets all in X, when is it to sufficient to prove that a property holds for any element of € to ensure that it
holds for any element of X?

Theorem 1.1.13. Let € be a collection of subsets and let i and v be two measures on (S, o(‘6)) Suppose that
1(A) = v(A) for all A € 6 and that for all A, B € 6, we have An B € 6. Assume that:

(i) either p(S) = v(S) < oo,
(ii) or there exists an increasing sequence (Ap), of subsets of € such that| J,, A, = S and p(A,) = v(A,) < o
for all n.
Then p(A) = v(A) for all A € o(6).
In particular two probability measures that agree on such a collection ‘€ agree more generally on the

o-algebra that it generates. As an immediate application, in probabilistic words, we deduce that two random
variables with the same distribution function have the same law.

Corollary 1.1.14. Two probability measures on R that agree on any interval (a, b), or on any interval (—oo, x|
must agree on B(R).

Let us prove Theorem|1.1.13|

Definition 1.1.15. A collection 6 of subsets of S is called a A-system when:
(1) S€ 46,
(ii) f A,B€ € and A c B,then B\ A€ G,

(iii) If A, € 6 and A, c Ay, for all n, then | J, A, € 6.

A collection 6 of subsets of S is called a 7-system when it is stable under finite intersections, namely for all
A,Be6,wehave AnB€ 6.



Remark 1.1.16. A A-system is also sometimes called d-system instead; one also finds the name of monotone
class, although the latter might also refer to something else depending on the author.

Lemma 1.1.17. A collection B of subsets of S is a c-algebra if and only if it is both a A-system and a x-system.

Proof. Suppose that € is a o-algebra. Then indeed it is a 7-system, it is even stable under countable
intersections. It also clearly satisfies the first and last property of a A-system; for the second one, if A, B € ‘€
with A< B,then B\A=Bn A€ 6,

Suppose that € is both a 7-system and a A-system. First for every A € €, we have A° = S\ A € 6. Next
let A, € 6 for all n, then for any n > k > 1, we have A} € € and so (., A} € € since it is a 7-system.
Hence B, = ., Ak = (k<n A})C € €. Now B, € € and B, c By, forall n,so | J, An = |J, Bn € 6 since it
is a A-system. O

As for o-algebras the intersection of A-systems is always a A-system so one can define for any collection
‘6 of subsets of S
A(B) = ﬂ{A : Alis a A-system and A > 6}

the A-system generated by 6.

Lemma 1.1.18 (7 — A Lemma). If 6 is a w-system, then so is A(€). The latter is therefore a o-algebra, and
actually A(6) = 0(B).

Proof. Let us prove that A(6) is a m-system. Fix A € € (beware, not in A(6)) and define
£ ={BeA(B): AnBe A(6)}.
Since A € € which is a 7-system, then € ¢ &. Further,
(i) AnS=A€A(B),s0SeZ,
(if) fB,Ce <L and Bc C,then An(C\B)=(An C)\(An B) € A(B),

(iii) If B, € £ and B, c By, for all n, then An (|, Bn) = U, (A n B,) € A(B).

Thus & is a A-system, and since it contains 6, then it contains A(‘6), i.e. for every A € 6 and every
B € A(6) we have
AnBeA®).

Then the exact same reasoning with now A € A(6) instead shows that {B € A(8): AnB € A(6)} isalso a
A-system which contains € and so A(6), i.e. for every A € A(8) and every B € A(B) we have

AnBeAB),

that is, A(6€) is a 7-system.

Combined with the previous lemma, we infer that A(€) is a o-algebra. Since it contains 6, then it also
contains the smallest such o-algebra, namely A(8) c ¢(6). Similarly, 0(6) is a A-system which contains
B, so it also contains the smallest such A-system, namely o(8) c A(6) and this concludes the proof. [

The proof of Theorem [r.1.13|follows easily.

Proof of Theorem|r.1.13 (i) Let A = {A € 6(6): p(A) = v(A)}. One can check that it is a A-system that
contains 6 so it contains A(€) = o(6) by Lemmal1.1.18]

(ii) For every n = 1 and every B € o(6), let u,(B) = (B n A,) and v,(B) = v(B n A,). According to the
first item for every B € o(6), we have u,(B) = v,(B) for every n = 1 and so by monotonicity,

H(B) =1 lim 1a(B) = 1 lim v,(B) = v(B),

which completes the proof. O



1.2 Measurable functions

Definition 1.2.1. Given to measurable spaces (S, %) and (E, €), a function f : S — E is measurable if for
every B € 6 the set f 1(B) = {w € S: f(w) € B} belongs to >.

We shall also denote by {f € B} the subset f~!(B).

Remark 1.2.2. In our typical use, the space (E, €) will be fixed, typically (E, €) = (R, B(R?)), or a countable
set, as well as the set S = Q (unspecified), and we will consider several o-algebras on S so we shall insist on
which one and write f () X to mean that f is measurable for X.

Exercise 1.2.3. For any function f from a set S to another one E and for any collection of subsets (A;)c; of
E, we have

A= (@) ad o (UJa) = U@

i€l i€l
The next lemma shows that it suffices to check the measurability on a collection of subsets that generates

the o-algebra €.

Lemma 1.2.4. Let 6 be a collection of subsets of E and let f : S — E be such that f 1(B) € X for any B € 6.
Then f~1(B) € > for any B € o(8).

Proof. Let € = {B€ o(6): f1(B) € 2}. Then it contains € by assumption and the exercise shows that it
is a o-algebra, thus it must contain ¢(6). O

Example 1.2.5. An example of application of this lemma is when (E, 0) is a topological space and € =
B(E) = o(0) is the Borel o-algebra. Then it suffices to check that f~1(0) € ¥ for any open set O. In the case
E = RY, recall that
d d
BRY) = 0({H(ai, by): a;< biforalll<ix d}) = U({H(—oo,xi] DX € ]R}),
1

i=1 i=

so it suffices to look at one of these two types of sets.
As an important example, if E and F are both topological spaces equipped with their Borel o-algebra
9%B(E) and %B(F), then a continuous function from E — F is automatically measurable.

Exercise 1.2.6. Take (E,8) = (R, B(R)), then measurability of functions is preserved by summation,
products, multiplication by constants, composition, limit (lim sup and lim inf), supremum and infimum,
also {s € S: (fu(s))n converges} € X and {s € S: f is continuous at s} € 3 if X is the Borel o-algebra on S.

Recall that we usually work with a fixed image space (E, €) and different o-algebras on the starting
space S. A function may be measurable for some o-algebras on S and not for other ones.

Definition 1.2.7. Let (f;);c; be a collection of functions from S — E. Define
ofi:i€el)=o({f '(B): i€I,B€E}),
the smallest o-algebra on S such that all functions f; are measurable.

The following important result (extensively used in the sequel) characterises measurable functions with
respect to the o-algebra generated by another function.

Lemma 1.2.8. Let f : S — E be measurable. Then a function g : S — R is measurable for o(f) if and only
if there exists a measurable function h : E — R such that g = hef.

10



Proof. First, if g = hof with h measurable, then for any B € B(R), we have h™'(B) € € and thus g"}(B) =
f Y (h"1(B)) € o(f). Let us prove the direct implication. Let g : S — R be measurable for o(f) and suppose
first that g only takes finitely many values so it takes the form g = Y'x_; a; 14, where K = 1, a; € R, and
Ay, € o(f) for every k. For each k, let B; € € be such that Ay = f~(By), then 14, = 1p,°f. Define then

K
h := Z ag ]lBk
k=1

which is indeed € — %B(R)-measurable, and g = hef. If g = 0 can take infinitely many values, then we can
write it as the limit of functions g, which only take finitely many values, e.g. explicitly:
n2"-1 i
8n = ZO ﬁ 11’52"g<i+1 +n ]lgzn-
i=

Since g is o(f)-measurable, then each set {i < 2"g < i+ 1} = g7}([27",27™(i + 1)) € o(f) and {g = n} =
g ([n, ™)) € o(f) as well, so in turn each g, is o(f)-measurable. By the previous case, they take the form
&n = hpef with h,, : E — R measurable. Define then for every x € E

h(x) = lim h,(x) if this limit exists and h(x) = 0 otherwise,

n—oo

which is measurable by the previous exercise. Since for every s € S we have g(s) = lim, g,(s) = lim, h,(f(s)),
then the sequence h, converges at the point f(s) so finally g(s) = h(f(s)) and the proof is complete. O

Note that the converse implication is clear by composition of measurable functions. The representation
given by the direct implication is very useful. This results extends to the o-algebra generated by finitely
many functions fi, ..., f,, in which case g takes the form A(fi, ..., f,)

1.3 Integration of nonnegative functions

Let us fix throughout this section a o-finite measured space (S, 2, p). All functions considered here on S are
real-valued and measurable. We make the convention that 0 x co = 0.

Definition 1.3.1. A nonnegative function f is called simple if it takes only finitely many values, in which
case it can be written as f = Z{-il a; 14, for some a; € R, and A; € 2. We then define for such a function f:

k
u(f) = Z a; p(A;) € [0, o].
i-1

Notation. We shall also write y(f) as [ f dpor [ f(x)u(dx). Also for A € 3, we write [, f duor [, f(x)pu(dx)
for u(f 14).

Remark 1.3.2. There are several choices of decompositions of a simple function in such a form but we can
always fix one by requiring that a; < a;,1.

Exercise 1.3.3. Prove that this definition of u(f) does not depend on the decomposition of f. Prove also
that it has the usual properties of linearity and monotonicity, namely that for two simple functions f and g
and two positive real numbers a and b, we have

paf +bg) = au(f) + bu(g)  and  f<g = p(f) = p(g).
Definition 1.3.4. For any nonnegative (measurable) function, we set
u(f) = sup{p(g) : g simple and such that g < f} € [0, =].

This preserves the monotonicity property. We also have the following result used all the time.

11



Lemma 1.3.5. Iff = 0 and u(f) = 0, then pu(f > 0) = p({x € S: f(x) > 0}) = 0.

Proof. For every n =1, wehave f = n"1 1 f=n- Which is a simple function so

0=p(f) = p(n" Lpoyr) = n ' p(f = n7").
Thus 0 = p(f = n™') T p(f > 0) since the sequence of sets is increasing. O
The building block of this integration theory is the following result.

Theorem 1.3.6 (Monotone convergence). Let(f,)n-1 be nonnegative measurable functions such that f, < fp.1
foralln = 1. Then

p(T lim fo) =T lim p(fy) € [0, 0o].
Proof. Let f = {lim, f,. By monotonicity, u(f) = p(f,) for all n and thus u(f) = 1lim, u(f,). For the converse
inequality, let 0 < g < f be a simple function and let ¢ € [0, 1). Write g = Zle a; 14,, then by monotonicity,

k
)u(fn) = .u(fn ]lfnzcg) = C,Ll(g ]lfnzcg) =c Z a; ,U(Ai n {fn = Cg})

i=1

Now observe that the sets {f, = cg} are increasing and since ¢ < 1, then | J,{f, = cg} = S. Thus
Ain{fy =cg} T A andso

k

Thm,u(fn) Thcha, (Ain{fu=cg}) = Z ) = cu(g).

i=1

Now let ¢ T 1 to get Tlim, . p(fn) = p(g) for all simple function g < f and thus finally 1 lim, . p(f,) =
().

Using this theorem, we can construct explicitly for any given measurable nonnegative function f a

O

sequence of simple functions whose integral converges to that of f.

Corollary 1.3.7. Let f be measurable nonnegative and for every n = 1 define

n2"-1 i
fn= Z on ]]-isznf<i+1 +n Ilfzn-
i=0

Then fu 1 f so u(fa) T p(f).

This allows to transfer properties of the integral of simple functions to general nonnegative functions,

such as the linearity.

Exercise 1.3.8. Let f and g be two nonnegative measurable functions. Prove that

(i) For every a, b > 0, we have p(af + bg) = au(f) + bu(g).
(i) p(f) <o = p(f =o0) = 0.
(iii) p(f) =0 < u(f >0)=0.

(i) p(f #8 =0 = pu(f) = pg)-

Remark 1.3.9. Thanks to the last point of the exercise, we can slightly relax the assumption of the
monotone convergence theorem by requiring that the monotonicity assumption only holds p-a.e. in the
sense that the set A = {s € S: f,(s) = fu+1(s) for all n} has p(A°) = 0. For definiteness, we then set
Tlim, f,(s) = 0 for s € A°. Indeed, we can apply the theorem in its previous form to the functions f, 14 to
deduce that u(flim, f, 14) = Tlim, u(f, 14) and note that for any n, we have u(f,) = u(f, 14) and further
pu(Tlimy, f, 14) = p(Tlim, f,). All the next results can be extended in this way.
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Lemma 1.3.10. Let f be a nonnegative measurable function and define for every A € X:

W(A) = uf La).
Then v is a measure and f is called the density of v with respect to yi. The function f is unique pi-a.e.

Proof. For A = @, we have f 1 = 0 s0 v(®) = 0. Let (A,), be disjoint measurable sets, and write f, = f 14,,
then linearity and monotone convergence combined justify the following identity:

/;fnd;F /Tngnmn;andu=Tngnm/L<Zandu=Tngnmn§V/fndu _ ;/fnd/l-
Note that [ f, du = v(A,) whereas [ Y, fudu = [ f 1) a, du = v(A) so we have prove the o-additivity
and v is indeed a measure.

If g = 0 is another function such that pu(f 14) = p(g 1) for every A € %, then for A = {f > g}, we have
by linearity 0 < p((f - g) 1f>¢) = p(f 11-) — (g 11-4) = 0, hence (f - g) 1. = 0 p-a.e. which means that
f = g p-ae. By exchanging f and g we also have that f > g y-a.e. so f = g p-a.e. O

Note that if y(A) = 0, then f 14 = 0 p-a.e. and so v(A) = 0; in such a case, we say that v is absolutely
continuous with respect to y. A more difficult theorem provides the converse implication.

Theorem 1.3.11 (Radon-Nikodym). If i and v are o-finite measures on (S,X) such that for any A € ¥ we
have v(A) = 0 as soon as ji(A) = 0, then there exists a nonnegative function f such that v(A) = p(f 14) for all
A € 3. The function f is unique y-a.e.

Uniqueness of the density is provided by the previous lemma. The argument we use is due to Anton

Schep.

Proof. STEP 1: reduction to finite measures. If p and v are o-finite measures, then there exits a countable
collection (A,), of disjoint sets in ¥ such that | J, A, = S and p(A,) < o and v(A,) < o for every n.
Define then finite measures by p,(B) = u(A, n B) and v,(B) = v(A, n B) for every B € X. Notice u,(B) = 0,
i.e. (A, n B) = 0, implies v(A, n B) = 0, i.e. puy(B) = 0. If the theorem holds for finites measures, then for
every n, there exists f, such that for every B € %, we have:

V(A, n B) = p(f 1a,0B)-

Let f =), fu 14,; since the sets A, are disjoint and cover S, then for every s € S exactly one indicator is
non zero in the definition of f(s). Then summing over n the previous display yields: v(B) = u(f 15).

From now on, we assume that y and v are finite measures. Replacing p by u(S)™'u(-), let us assume
further that p(S) = 1.

STEP 2: a first bound. Consider the set H of all the measurable functions f : S — [0, o) which satisfy:

u(f 1) = v(A) for every AeZ.

Note that it contains the constant function 0 so H is not empty. Let then M = sup{u(f), f € H}. Taking
the set A above to be S, we have 0 < u(f) = v(S) which we assume here is finite. Hence 0 = M < co and
there exists a sequence of functions (f;), all in H such that u(f,) — M. We can take this sequence to be
nondecreasing by replacing it by f;, = sup,_, fi. For this, notice that the maximum of two functions in H
remains in H. Indeed, if g, h € H, then for every A € %, we have:

p(max(g, k) 1a) = p(g Langgsny) + H(h Langg<ny) = V(An {g = h}) + v(An {g < h}) = v(A).

This extends to finitely many functions by induction so each f;, € H. Denote by f = Tlim, f, their limit,
which is measurable and nonnegative. By monotone convergence u(f) = Tlim, u(f;) = M. We claim that
f € H. Indeed, by monotone convergence again, for every A € X, we have

p(f La) =T lim p(fy 14) < v(A).

13



Thus f € H. The formula 7(A) = v(A) - p(f 14) for every A € X then defines a finite nonnegative measure,
and we want to prove that it is constant equal to 0.

STEP 3: a contradiction. Suppose by contradiction that v(S) > 0. We claim that in this case there exists
A € ¥ such that

1(A) >0 and V(An B) = ¥(S)u(An B) forevery Be€Z. (1.1)

Let us conclude from here and prove this claim after. Let g = f + ¥(S) 1 4, we claim that it belongs to the set
H. Indeed for every B € %, one has by the previous display for the first inequality and p(f 14) < v(A) for
the second one:

p(g L) = p(f 1) + V(S)u(A n B)
< u(f 1g) + ¥(An B)
= pu(f 1) + v(An B) - p(f L anp)
= u(f Lacnp) + V(A n B)

V(A n B) + v(An B)

v(B).

Hence g € H, so in particular p(g) < M. On the other hand, since p(A) > 0, then p(g) = p(f) + ¥(S)u(A) >
u(f) = M. This contradiction shows that A cannot exist, and thus v is the 0 measure, namely V(A) =
V(A) - p(f 14) = 0 for all A € ¥ as we wanted.

It remains to prove (L1). Let 7(A) = #(S)u(A) - #(A) for every A € ¥ to simplify notation. Recall that for
any A € 3, if u(A) = 0, then v(A) = 0 and then further 7(A) = v(A) — p(f 14) = 0, so m(A) = 0. If A = S does
not satisfy (1.1, this means that there exists B € ¥ such that 7(B) > 0. Let then n; > 1 be the smallest integer
such that there exists B € ¥ with 7z(B) > 1/ny, let B; be any such set, and let A; = B{ be its complement.
Then again if A; does not satisfy then there exists B € ¥ such that 7(A; n B) > 0 and we let n, > 1 be the
smallest integer such that there exists B € ¥ with 7(A; n B) > 1/n,, then we let B; be any such a set B and
finally A, = A; n B§ = (B; u By)“. By induction, for every k = 1, if Ay = (Ul 1 Bi)¢ does not satisfy (1.1) then
there exists B € 3 such that 7(Ax n B) > 0 and we let n,; be the smallest mteger such that there exists B € 3
with 7(Ag n B) > 1/ny.1, then we let By be any such a set B, and finally we let Ay.; = A n B, = (UkJ'1 B))~.
If no Ay satisfies (1.1) then we claim that A = (), Ax = (;»; Bi)¢ does. Indeed, first we have (recall that p is
a probability):

IA

IA

0 = V(S)u(S) = ¥(S) = V(S)u(A) = H(A) + US)p(A®) - V(A).

Notice that A° =  J,.; B; is a disjoint union, and by construction we have ¥(S)u(B;) — V(B;) = 1/n; for every
i. Consequently

HS)(A) = T(AS) = D" HS)u(B;) - #B) Zunl

i

Combining the two displays, we first infer that
> 1/n; < HA) - HS)u(A) = #(S) < o0

In particular ny — o0 as k — oco. Next, for any B € X, for every k = 1, we have An B c A n B so
(A n B) = m(Ax n B) = 1/(ng+1 — 1) by definition of ng,;. Since the right-hand side tends to 0, then we
conclude that 7(A n B) =< 0, that is A satisfies (1.1). It only remains to check that i(A) > 0. Recall that if
H(A) = 0, then V(A) = 0 and so ¥(S)u(A) — v(A) = 0, which implies by the previous display that ) ; 1/n; < 0,
which is a contradiction. This concludes the proof of (1.1). O

A last key result is Fatou’s lemma. Given a sequence of functions f,, define liminf, f, and lim sup,, f,
as the pointwise limits in [-oo, c0]:

liminf f, = T lim 1r1f fp and limsup f, = | lim sup f,.
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Theorem 1.3.12 (Fatou). Let (f,)n=1 be nonnegative measurable functions. Then in [0, co],
p(liminf £,)) < liminf p(f;,).
n—oo n—oo
If in addition there exists h such that f, < h for all n and pu(h) < oo, then

p(lim sup f) = lim sup p(fy).

n—oo n—oo

Proof. Put g, = inf,., f,, which is a nondecreasing sequence and note that f, = g, for all n = p so by

monotone convergence,
p(1 lim gy) =T lim p(gn) < T lim inf p(fp).
n—oo n—oo n—oo p=n

The left-hand side equals p(lim inf, f,), while the right-hand side equals lim inf,, p(f;). The second claim
follows by applying the first one to the nonnegative functions h - f;. O

1.4 Integration of general functions
Definition 1.4.1. A measurable function f : S — R is said to be integrable when p(|f]) < oo. Let us set
f* = max(f, 0) and  f~ = - min(f,0) = max(-f,0),
so that
fof-f and  fl=fef
Then f is integrable if and only if both p(f*), u(f~) < oo and we define
p(f) = p(f) - u(f7) ER,
which we also denote by [ fdu = [ f(x)u(dx).
The following results are easily derived from the definition.
Exercise 1.4.2. Let f and g be two integrable functions. Prove the following properties:
@ 1/ fdul = [Ifldp.

(ii) For every a, b € R, the function af + bg is integrable and [(af + bg)du = a [ f du + bu(g).

(iii) If f < g then [ fdp < p(g).

(iv) If p({f # g}) = 0 then [ fdu = p(g).

Remark 1.4.3. We shall also need to consider vector-valued functions, in R? for d > 1. Such a function
f = (fi,.... fa) is said to be integrable when its norm |f| (any equivalent norm in R¢) is integrable, or
equivalently when each coordinate is an integrable real-valued function and then we define

/fdp= (/fldp,...,/fddp)e]Rd.

The above properties extend, except the third one. In the particular case of complex-valued functions, we

/fd,u:/Refdp+i/ImfdyeC.

An important tool is the dominated convergence theorem.

have
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Theorem 1.4.4 (Dominated convergence). Let (f,)n=1 be measurable functions which converge pointwise to
a function f. Suppose that there exists a measurable function h such that |f,| < h for all n and p(h) < co. Then

wlh-f) — 0

and consequently u(f,) — p(f).

Proof. First we can note that the function f is integrable since |f| < h. Moreover |f, - f| = 2h so by Fatou’s

lemma,
lim sup u(|fn - f|) = p(limsup |f,, - f]) = p(0) = 0.

n—oo n—oo
Moreover, we have

p(fn) = 1)l = lufo = Pl = pllfa = fD),

and the second claim follows. O

Corollary 1.4.5 (L? dominated convergence). Let p = 1. Let (f,)n=1 be measurable functions which converge
pointwise to a function f. Suppose that there exists a measurable function h such that |f,| < h for all n and
u(hP) < co. Then

ulfa - fIP) —> 0.

n—oo

Proof. The sequence of functions g, = |f, — f|P converges pointwise to 0 and satisfies |f, - f|F =< (|fu| + [f])? =
(2h)P, which is integrable, so the result follows from the previous theorem. O

Lemma 1.4.6 (Scheffé). Let (f,)n=1 be integrable functions which converge pointwise to an integrable function
f. Then

plfa=f) —> 0 ifandonlyif — p(ful) —> p(f))-

n—oo

Proof. For the direct implication, note that ||f;| - |f|| = |f» — f| so

pllfal) = pfDI = pl(lfal = FID) = pllfa = FD)-

For the converse one, assume first that all the functions are nonnegative, then min(f,, f) — f and 0 <
min(f, f) < f. Since f is integrable, then we infer from dominated convergence that p(min(f,, )) — p(f).
Now observe that

fu + f = max(fy, f) + min(f,, f),

so after integration,

p(max(fo, ) = p(fa) + p(f) - p(min(fo, f)) — = pu(f).

n—oo

Hence

plfn = f1) = p(max(fo, f)) - p(min(fn, f)) — 0.

n—oo

For general functions, write f, = f, - f, and f = f* - f~ and note that f; — f* pointwise. Then the
assumption for the converse implication reads

pED) + ulfy) — p(f) + i)
Fatou’s lemma implies that both liminf, p(f;)) = p(f*) and liminf, pu(f,) = p(f~), so we infer that

p(fy) — p(f*) and  p(f,) — ().

n—oo n—oo

By the nonnegative case, this further implies that
plfa =10 = pfy = fD+plf - fD —2 O

ans the proof is complete. O
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In order to prove that a certain property holds for any integrable function, we often rely on the following
reasoning:

« We first prove that it holds for indicator functions.
« We extend the property by linearity to simple functions.
« We extend it by monotone convergence to nonnegative functions.

« We finally extend it by monotone convergence to integrable functions by linearity after splitting the
positive and negative part.

Let us illustrate this with the image measure by a function (also called push-forward), which allows to

transfer measures from a measurable space to another.

Definition 1.4.7 (Image measure). Let f : (S,X) — (E, €) be a measurable function and let ;1 be a measure
on (S, ). Then the function defined for all B € € by

p(B) = u(f"'(B)) = u(f € B)
is a measure on (E, €) called the image measure of f.

Lemma 1.4.8 (Transfer). Let f: (S,%) — (E,€) be a measurable function, ;i be a measure on (S,%), and
g: (E,€) — (R, B(R)) be measurable. Then g is js-integrable if and only if gof is u-integrable and in this
case it holds

pr(g) = /E gdys = /S gof du = p(gef).

Proof. When g is the indicator of a set B € %(RR), then the identity is the definition of . By linearity, the
identity extends to nonnegative simple functions and then to any nonnegative functions by monotone
convergence. Hence if g is any measurable function, then p¢(|g[) = u(|g(f)|) so the left-hand side is finite
if and only if the right-hand side is and then the identity extends by linearity again after the splitting

g=g"+g. O]

Recall from Lemma [1.3.10| that given a measurable and nonnegative function h, we can define a measure
v by v(A) = p(h 1,4). The measure v is said to have a density h with respect to p. Then the same proof as
above shows that another measurable function g is integrable for v if and only if gh is integrable for y and
in this case

v(g) = / gdv= / ghdu = p(gh).
Combined with Lemma [1.4.8] we obtain the following very useful criterion.

Proposition 1.4.9. Let y be a measure on (S,%) and f : (S,2) — (R, B(R)) be a measurable function. Let
A be a measure on (R, B(R)) and let h : R — R, be measurable as well. Then the measure iy has density h
with respect to A if and only if for any nonnegative and measurable function g : R — R., we have

pr(g) = p(gef) = Algh).

In this case, for any measurable function g, we have that g is yg-integrable if and only if gh is A-integrable
and then the above identity extends.

Proof. Suppose the identity holds for any nonnegative and measurable function g : R — R,, then taking
g = 1p for any B € B(R), we have yy(B) = A(h 1;), which is the definition of the fact that y¢ has density h
with respect to A. For the converse implication, we can repeat the proof of Lemma|1.4.8] By definition, if
pr has density h with respect to A, the identity holds for indicator functions, so it extends to nonnegative
simple functions by linearity and then to any nonnegative functions by monotone convergence. O

17



Let us mention that sometimes (as in the next subsection), we cannot apply this simple reasoning
because controlling the indicator function of any measurable set is already too complicated. Following the
discussion of Section[1.1.1] it is possible to extend this reasoning by only controlling the indicator functions
of a collection of subsets. The following result is based on Lemma[1.1.18] which explains the similarity in
the name.

Theorem 1.4.10 (Monotone class). Let # be a set of bounded functions from S to R satisfying the following
conditions:

(i) It is a real vector space in that if f,g € # and a,b € R, then af + bg € ¥ .

(ii) It contains the constant function equal to 1.

(iii) If fu = 0 belongs to # for all n and f, 1 f where f is a bounded function, then f € % .

Suppose there exists a m-system &P such that for any A € P, we have 14 € F. Then every bounded and
o(%P)-measurable function belongs to # .

Proof. Let Ml = {Ac S: 14 € #}. By the three properties of # we see that Jl is A-system. Since we also
assume that it contains the 7-system &, then by Lemma [1.1.18] we have o(%) € /M.
Let K > 0 and f be a 0(%)-measurable function with 0 < f < K and for any n = 1, define

lK2")

fn = Z ﬁ ]]-isZ"f<i+1~

i=0

Then f, is a simple function and f, T f. Note that each set A,; = {i < 2"f < i+ 1} € o(P) since f is
0(%)-measurable, so by the properties of #, we have f, € # and then f € #.

Given any bounded and ¢(%)-measurable function f, we infer from this that both f*, f~ € # and then
fex. O]

1.5 Product measures

Definition 1.5.1. Let (E;, 6;);<, be measurable spaces, then we can define a o-algebra on ]}, E; by

n n
®<&- = O'(HA,',A,' € 6;foralli=< n).
i=1 i=1
Notation. For any two sets E and F, any pair (x, y) € E x F, and any subset C c E x F, we let
Cx={y€F: (x,y)€C} and CY={x€E: (x,y)€C}.
For a function f from (E, F) we also set

fx: yEF — f(x,y) and fY: x€E— f(x,y).

Lemma 1.5.2. Fix three measurable spaces (E, ), (F, %), and (G, §). The following holds.

(i) For every A € € ® F we have

Ay €F foreveryx € E and AY €€ foreveryye€F.

(ii) For any measurable function f : (Ex F,€ ® ) — (G, ), we have

fx @M F foreveryx € E and  fY ()€ foreveryy € F.
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Proof. (i) Fixx € Eandforany A€ €aF,let A, ={y€F: (x,y) € Alanddd, = {A€ €0F : A, € F}.
One easily checks that ¢, is a sub-c-algebra of € ® %. Moreover, for any pair (B,C) € € ® F, if
A = B x C, then either x € Band then A, = C, or x ¢ B and then A, = @. In any case B x C € o, for
any (B,C)€e€eFsod, =€aF

(ii) Fix again x € €, then for any D € G, we have f!(D) € € ® F and thus

D) ={y€F: f(x.y)eD}={y€eF: (x,y)€f (D)} =(f ' (D)x €F
so fy is indeed F-measurable. O

Theorem 1.5.3. Let i, v be two o-finite measures on (E, 8) and (F, F) respectively. The following holds.

i ere exists a unique measure, which we denote ® von(ExF,&e®%) such that for an € € an
) Th q hich d byu ExF,€0%F h th yA€€and
Be %, it holds
pe v(AxB) = u(A)v(B).

Moreover p ® v is o-finite. If both pi and v are probability, then soisu ® v.
(ii) For every C € € ® F the functions
x = V(Cy) and y = u(C?)
are measurable, with respect to € and to F respectively.

(iii) For every C € € ® F it holds
= — y
1 ® v(C) /Ev(Cx)y(dx) = /F,u(C yv(dy).

The proof is based on Theorem [1.4.10/and will be omitted.

Remark 1.5.4. The assumptions that both measures are o-finite is important. For example take u to be
the Lebesgue measure on R and v the counting measure on R, then for C = {(x, x),x € R}, we have

Ji v(COu(dx) = o but f, u(CY)v(dy) = o.

Theorem 1.5.5 (Fubini-Tonelli). Let y, v be two o-finite measures on (E, €) and (F, %) respectively and let
f+ ExF — [0,00] be measurable. The following holds.

(i) The functions x — [ f(x, y)v(dy) and y — [ f(x, y)u(dx) are measurable with respect to € and to
F respectively.

/f(xyu®V(dxdy)—/(/fxyV(dy)) (dx) = /(/fxyu(dx))v(dy)

Proof. (i) Forany A€ € ® F,if f = 14 then x — [, f(x, y)v(dy) = v(A,) is measurable by the previous
theorem. Measurability is preserved by linear combination and limits so we can extend it to simple

(ii) We have

functions and then nonnegative functions by monotone convergence.

(ii) Again, the identity for indicator functions reduces to the previous theorem, and we conclude by

linearity and then monotone convergence. O

Theorem 1.5.6 (Fubini-Lebesgue). Let y1, v be two o-finite measures on (E,€) and (F, F) respectively and
let f : ExF — R be integrable (for p ® v). The following holds.

(i) For pi-a.e. x € E, the function f, is v-integrable and for v-a.e. y € F, the function f” is p-integrable.
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(ii) The functions x — /Ff(x, y)v(dy) and y — fEf(x, y)u(dx) are well-defined and integrable.

(iii) We have

/f(xy)y@v(dxdy)—/</fxyv(dy)) (dx) = /(/fxy <dx)v<dy>.

Proof. (i) By the previous theorem, we have

/E ( /F e, y)IV(dy))u(dX) - /E f e vidrdy) <o

Consequently [ |fo(y)|v(dy) < oo for p-a.e. x € E.

(i) It follows that for y-a.e. x € E, the integral [, f(x, y)v(dy) is well-defined and moreover we have
Je(Jp £ G, )v(dy)Dp(dx) = fo(fp [f G, )l v(dy))p(dx) < oo.

(iii) We use the previous theorem and linearity, decomposing positive and negative parts. O
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Chapter 2

Independent Random Variables (*)

The content of this chapter should for a large part be already known from a bachelor course in probability
and will not be covered in class. Some developments are often excluded in a first course and are included here
for interesting readers such as uniform integrability in Section[2.3.2] some generalities on weak convergence
in Section the Skorokhod representation theorem in Section and Lindeberg’s version of the
Central Limit Theorem in Section

Contents
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We first translate in Section 2.1 the vocabulary from measure theory to probability, then we focus on
the notion of independence of o-algebras and of random variables and some key related results such as the
Borel-Cantelli lemma. In Section [2.2] we recall some very useful inequalities such as the Markov inequality
and Holder’s inequality and we discuss L? spaces, with some emphasis on L? which will be used to develop
the theory of conditional expectation in Chapter[6] In Section [2.3 we discuss the notions of convergence
in probability, in L?, and almost surely and their relations; this is pushed to the limit with the theory of
uniform integrability. Then in Section |2.4| we recall the first fondamental result in probability: the Law
of Large Numbers. In Section [2.5| we focus on the convergence in distribution with some general useful
results and an interesting development with the Skorokhod representation theorem. Then in Section [2.6| we
present the characteristic function of a random vector, how it characterises its law and the convergence in
distribution. Finally we focus in Section[2.7]on the Central Limit Theorem with first a version in dimension 1
for independent random variables but not necessarily with the same law, and then a version for i.i.d. vectors
in higher dimensions, relying the notion of Gaussian vectors.

2.1 Probability & Independence

Probability theory is developed using measure theory whose basics are recalled in Chapter il From now
on we fix a probability space (Q2, F,P), where F is a o-algebra on a set Q and P is a probability measure.
Elements of & are called events.
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2.1.1 Random variables and distribution functions

Definition 2.1.1. Let us translate some vocabulary from measure theory.

« A measurable function X : (Q,%F) — (E,¥) is called a random variable (abbreviated r.v.). When
(E,6) = (]Rd, %(]Rd)) for d = 2, we speak of a random vector, and for d = 1, of a real random variable,
abbreviated r.r.v.

» The image measure Px(B) = P(X € B) for every B € € as in Definition [.4.7]is called the law of X.
A random vector is said to have a density f when its law Px has a density f with respect to the
Lebesgue measure in R? in the sense of Lemma

. Finally, when (E,€) = (R¢, B(R?)), we let E[X] = P(X) denote the integral of X, which we call its
expectation, provided it exists (either when X € [0, 00)¢ or when E[|X|] < o).

Let X be a r.v. in a general space E. Lemma[1.4.8) reads: for any measurable function g : E — R., we
have:

E[g(X)] = /Q g(X(w)) P(dw) = /E §(x) Px(dx).

Also Proposition yields the following criterion: let X be a random vector in R?, then it has a density f
if and only if for any nonnegative and measurable function g : R — R, we have:

ELg00) - [ gtof)dx.
In each case, the identity extends to integrable functions g.
A random vector may not have a density, but it always has a distribution function.
Definition 2.1.2. For any random vector X = (Xi, ..., Xy) in R4, we define its distribution function by:
Fx(x) = P(X; = xq,..., Xg < x3)
for any x = (xq, ..., xg) € RY.

We usually consider distribution functions mainly in dimension d = 1, but the next result could be
generalised to any finite dimension.

Theorem 2.1.3. For any r.r.v. X, its distribution function Fx satisfies:

(i) It is nondecreasing: x < y = Fx(x) = Fx(y).
(ii) It is right-continuous: For any x € R and any sequence x, | x, we have Fx(x,) | Fx(x).

(iii) It has the limits Fx(x) — 1 as x — oo and Fx(x) — 0 as x — -0,

Conversely, for any such function F, there exists a probability space (Q, %, P) and a r.r.v. X such that F = Fx.
Finally, if Y is a r.r.v. with distribution function Fx, then X and Y have the same law in the sense that for any
B € B(R) and any nonnegative and measurable function g, we have

P(X € B) = P(Y € B) and E[g(X)] = E[g(Y)].
Proof. The three properties are easily checked from the monotonicity of measures. The second part is
treated in the exercise sheet, where it is proved that if one defines for any u € (0, 1),

G(u) = inf{x € R: F(x) > u} = sup{x € R: F(x) =< u},
and if U has the uniform distribution on (0, 1), then X = G(U) has precisely distribution function F. The last

point comes from Theorem [1.1.13] since the probabilities Py and Py agree on the 7-system {(-o, x], x € R}
that generates %(R). The identity for expectations follows as in the end of Section 14| O

The second part of the theorem has important applications in numerical simulations for it allows to
generate from a uniform law (coded in any good language) any law for which G is explicit. We shall also
use it in some proofs.
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2.1.2 Independence
We say that € is a sub-o-algebra of F if it is a o-algebra and € c . Recall from Section [1.2|that if X is a
random variable with values in (E, €), then
oc(X)={weQ: X(w)€B,Beé}
is a sub—o-algebra of &, which is the smallest one that makes X measurable.
Exercise 2.1.4. Prove that for every set A, we have o(1,4) = o(A).

Definition 2.1.5. Let (¥F,),>1 be sub-c-algebras of &. They are said to be independent when for every finite
subset of indices I ¢ N and every A; € F; for i € I, we have:

P(ﬂ Ai) - [T pca)
iel iel
Random variables (X;),-1 are said to be independent when (¢c(X},)),-1 are and events (A,),-; are said to be

independent when (o(Ap)),»1 are.

Remark 2.1.6. - For any event A, we have 0(A) = {@, A, A%, Q}, so one can relate this definition with
the more familiar one of independence of events.

« In the definition, one can always take I of the form {1,..., N} for N > 1. Indeed, for other subsets of
indices, just take A; = Q for the indices i that you do not want to appear.

o If (X;,)n=1 are independent, then so are (f,(X,))n=1 for any measurable functions (f;),-1 since each
fn(Xy) is 0(X,,)-measurable.

« If I ¢ N is infinite, then letting I, = I n {1,..., n}, we have by monotonicity:

JP(QA,-) . ]P(ﬂﬂAi) =1’11er;oﬂ><ﬂAi) | lim H]P A) =TT P.

n=1 i€l i€l, i€l

The following reformulation of independence of r.v’s is very useful. Recall the product measure from

Theorem

Theorem 2.1.7. For every n = 1, let X, be a rv. with value in a measurable space (E,, 8,). Then the r.v’s
(Xu)ns1 are independent if and only if for every n = 1, the law of (X3, ..., Xp,) on Eq x --- x E,, is the product law:

]P(Xl,..A,X,,) = ]PXl ® - ® ]PXH,

which is equivalent to having
B[00 = T TEU00)
i=1 i=1

for all measurable functions f; : E; — R, i< n.

Proof. For each i < n, let A; € €;. On the one hand,

n

P, X)( A) (Xl,... n)eHA) (ﬂ{XeA})

i=1

On the other hand,

n n n
PX ®"'®]PX,,< Al> = ]PX,-(Ai)

1
i=1 i=1 i=1

]P(Xl S Al)
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Therefore (X;)n-1 are independent if and only if for every n = 1, the laws P(x, x,) and Px, ® -- ® Py,
coincide on the sets of the form []i_; A;, and thus on Q)}-; €; which is generated by this 7-system. The
second assertion follows from the first one by Fubini’s Theorem:

E[li[ﬁ(xi)] = /E ﬁfi(xi)li[]PX,-(dxi)

pexEy Ti=1

11 /E fi(x) Py, (dx)

n
= [TELCO1
i=1
Conversely, the second assertion immediately implies the first one by taking f; = 14,. O

Remark 2.1.8. If the r.v’s (X,)n-1 are independent, then by Fubini’s Theorem the identity

]E[lj £i)] = I_iIEUi(Xi)]

holds as soon as E[|f;(X;)|] < o for each i < n. Note that the left-hand side is well-defined since in this case,
we have E[|JT%; fi(Xi)|] = [T, E[Ifi(Xi)|]] < oo by the previous theorem.

As often, independence needs not to be checked for all possible sets, but sufficiently many. Recall the
notion of a 7-system from Section [r.1.]and especially Theorem [1.1.13]

Lemma 2.1.9. Let (7,)n-1 be m-systems each included in F and containing Q and such that for every finite
subset of indices I c IN and every A; € m;, we have:

P(ﬂ A,-) - T Pcan.
i€l i€l
Then the sub-c-algebras (o(m,))n=1 are independent.

Proof. Consider two m-systems. Fix an event A € 7; and define two measures y and v on Q by:
1(B) = P(An B) and v(B) = P(A) P(B),

for every B € F. Then they have same finite total mass P(A) and they agree on 7, by assumption so they
agree on o(1;) by Theorem[1.1.13} We can therefore use the same reasoning with B € o(r;) fixed instead of
A and obtain that

P(A n B) = P(A) P(B).

for any A € o(sm) and B € o(m,), i.e. that o(m1) and o(s,) are independent. The general case then follows by
induction: suppose that we have proved that (o(7,))n<n are independent for some N = 2. Then fix events
A; € my, ..., AN € ny and define two measures p and v by

N N
1(B) = lP(B ) Ai) and  v(B) = P(B) [ [ P(A).
i=1 i=1

They have the same total mass P(|Y, A;) = [T, P(A;) and agree on 7zy.; so they agree on o(7y.1). Then
we can fix B € o(nn+1) an iteratively replace each A; € 7; by A; € o(m;). O
Corollary 2.1.10. Let (X;)n.1 be n.rv’s such that for any N = 1 and any xy, ..., xy € RN we have

N
P(Xi < x1,..., XN, < xXN) = P(X, < x,).

n=1

Then they are independent.
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Proof. Apply the previous lemma with the z-system {(-oo, x], x € R} that generates Z8(R). O
Another consequence of Lemma|[2.1.9]is that it allows to group o-algebras that are independent.

Corollary 2.1.11 (Grouping property). Let (¥,)n-1 be independent c-algebras. Let (I,)n-1 be a partition of
N and for every n = 1, define a o-algebra by

G, = o(Fp kel,) = a(U GJk).
kel,

Then (6,),»1 are independent.

Proof. Recall from Exercise that each o-algebra G, is also generated by the 7-system:

m= {ﬂBi;Bi € Sy«j})

IcI, finite ~ i€l

Fix indices n; < - < ny and events A, € 7y, ..., Ay, € 7y, namely each A, take the form A, = Micr Bi
for some finite subset I ¢ I, and B; € F;. Using twice the independence of the F;’s, we have:

k k k k k

P(ﬂ An].) - P(ﬂ N B,-) -TITI?®) =11 P(ﬂ B,-) - T Pcan).
J=1 J=1 iel J=1 iel J=1 i€l J=1

We conclude by applying Lemma [2.1.9| that the o-algebras €, = o(r,) are indeed independent. O

Example 2.1.12. Let (X},)n>1 be independent r.v’s then
o(Xop,n=1) and 0(Xop-1,n=1) are independent.
Also, for every n = 1,

oc(Xr, k < n) and o(Xg, k=n+1) are independent.

2.1.3 0-1laws

Definition 2.1.13. Let us define for events (A;)p=1:

limsup A, = ﬂ U Ap={w€Q: we€ A, for infinitely many indices n},

n—oco N=1n=N

and

liminf A, = U ﬂ Ap={w€eQ: we A, for all but finitely many indices n}.
nee N=1n=N
Note that both lim sup, A, € # and liminf, A, € ¥ and that
c
(lim sup An) = lim inf Aj,.
n—oo n—oo

We have a simple Fatou’s lemma for events.

Lemma 2.1.14 (Fatou). We have

P (lim inf An) < liminf P(A,) and lP(lim sup An> > lim sup P(Ap).
n—oo n—oo

n—oo n—oo

Proof. For every N = 1 we have P((),.5 An) = inf,.n P(Ay); the right-hand side increases to lim inf, P(A,)
as N — oo while the left-hand side increases to P(liminf, A,) by Lemma since the sequence
(NN An)N is increasing. The second property follows similarly. O
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The following simple result is also a powerful tool to prove that events occur with probability 0 (or 1 by
taking the complement).

Theorem 2.1.15 (Borel-Cantelli). Let (A,)ns1 be a sequence of events. Then
(i) If Y., P(Ap) < oo, then P(limsup, A,) = 0.
(ii) If Y., P(Ap) = oo and the (Ap)ns1 are independent, then P(lim sup, A,) = 1.

Proof. (i) By LemmalL1.12] forevery N = 1 we have P(,..x An) < .,.5 P(As). The right-hand side tends
to 0 as N — oo by our assumption while the left-hand side tends to P(lim sup, A,) = lim sup, P(A,)

by Lemma

(ii) By independence and the easy bound e* = 1 - x for x = 0, we infer that:

]P( N A;> - TTa - Pean) = exp(— 3 ]P(An)>.
n=N n=N n=N
The left-hand side converges to P(lim inf, AS) as N — oo and the right-hand side to 0. t

Therefore, as soon as Y., P(A,) < oo, we have P(liminf, A%) = 1, i.e. almost surely, A, occurs for only
finitely many indices n. On the other hand, if ), P(A,) = o, then for independent events, almost surely,
A, occurs for infinitely many indices n.

We shall provide a second proof of the following result later using martingale theory.

Theorem 2.1.16 (Kolmogorov’s o-1law). Let (X,)n=1 be independent rv’s and consider the o-algebras

Ty =0Xp, k=n+1) and T = ﬂSTn.
n

Then J is trivial in the sense that P(A) € {0,1} for all events A € I and that any J -measurable r.v. is
constant a.s.

The o-algebra J is called the tail o-algebra. It contains all events that do not depend on any finite
subset of r.v.s such as

X+ + X

{(Xp)n converges}, { E X, converges}, {Q converges}.
n

n

Therefore all these events have probability either 0 or 1; of course the theorem does not tell us which case

occurs! Also, r.vs such as

Xp + -+ X,

lim inf X, and liminf ———
n n

and the limsup, are measurable with respect to I so they are a.s. constant (possibly infinite).

Proof. LetF, = o(X, k = n). We observed already that by the grouping property, ¥, and 7, are independent
for any n = 1. Thus J is independent from %, for any n = 1. We infer that for any events A € J and
B e, Fn, we have

P(A n B) = P(A) P(B).

Note that | J, F, is a 7-system and F = o(|J, Fn) = 0(Xk, k = 1) so by Lemma J and F are
independent: for any A € J and B € &, we have

P(A n B) = P(A) P(B).
Finally, J < & so for any A € I, we have
P(A) = P(A n A) = P(A),

thus P(A) € {0, 1}. O
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2.1.4 Independent random variables exist!

Theorem combined with Theorem shows that for any finitely many laws P, ..., P,, there exist
independent r.v’s X, ..., X, such that each X; has law P;. The question is then to extend this to (countably)
infinitely many laws. For laws on general measurable spaces, this extension may fail, but on R (and more
generally on complete separable metric spaces), they do exist. The general result is called Kolmogorov’s
extension Theorem. We will content ourself with the result on R (it could as well be R?) for which we

provide a constructive proof.

Theorem 2.1.17. Given distribution functions (F,)n-1, there exists a sequence of independent r.rv.’s (Xp,)ns1
such that Fx, = F, foralln > 1.

The proof goes in three steps. Starting from a single r.v. with the uniform distribution on [0, 1], we first
construct a sequence of independent r.v’s taking values 0 or 1 with probability 1/2. Then we use it to to
construct a sequence of independent r.v’s all having the uniform distribution on [0, 1]. Finally, we prove

the general form using these uniform r.v’s.

Proof in the case of coin tossing. Take Q = [0, 1), F = %B(Q) the Borel o-algebra, and P = Leb the Lebesgue
measure. Let us write any element o € Q using its binary expansion:
W= Z en(w)27",
nz1
where each ¢,(w) is either 0 or 1, and can be defined explicitly by ¢,(w) = [2"w| - 2|2" 'w]. Fix p = 1 and
i1,..., ip € {0,1} and note that we have &(®) = iy, ..., £,(w) = i, if and only if v € [23:1 inZ’”,Zﬁzl 027"+
27P]. Therefore, we have

P P
Pey = ity s &p = ip) = Leb( [Z 02", Z 27"+ 2‘P]) =27P.
n=1 n=1

This proves that the r.vs (¢,),21 are independent and Bernoulli distributed with parameter 1/2. Indeed, for

any p = 1, and i, € {0, 1}, we have

Plep=ip)= > Plag=iy..,g=i)=2""-27=1/,
il,...,ip,le{(),l}
and independence follows from the product form above. O
Remark 2.1.18. By grouping the variables, the random vectors (enp+15 --- > €(p+1))n=0 are independent for

any given p = 1. Since each sequence iy, ..., i, € {0,1} has a fixed probability 277 > 0 to appear for each
such vector, then by the Borel-Cantelli lemma, with probability one, any finite sequence of 0 and 1 appears
infinitely many times in the binary expansion of a uniform random number! Of course, the same would
hold for any other numerical basis.

Proof in the case of the uniform distribution. Let us continue with Q = [0, 1), F = %B(Q), and P the Lebesgue
measure, and the previous sequence (¢&,),-1 of independent r.v’s with the law P(e, = 1) = P(¢, = 0) = 1/2.
Let ¢ : IN*> — N be an injective map and let 8,4 = £, for all (p, ) € N?. Then the r.v’s (8p.g)(p,q)eN?
are independent and P(6,,4 = 1) = P(6,,4 = 0) = 1/2. By grouping them, the sequences ((5p,q)4-1)p-1 are
independent and thus if we set for each p = 1,

Up= . 8pq2 0 €[0,1),
g=1

then the r.v’s (Up),-1 are independent and they all have the same law [P, i.e. the uniform distribution on

[0, 1). O

Proof in the general case. Let (F,)-1 be distribution functions and let us denote by G, their pseudo-inverse
as in the proof of Theorem [2.1.3 Let (Uy)ns1 be independent r.v’s with the uniform distribution on [0, 1).
Then the r.v.s (G,(Uy))us1 are independent and they have distribution function F, respectively. ]
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2.2 L? spaces in probability

2.2.1 Important inequalities

Theorem 2.2.1 (Markov’s inequality). Let X be a nonnegative r.r.v. then for every a > 0, we have

E[X
P(X = a) < [ ]
a
Proof. Simply note that 1x., < X/a and take the expectation. O

This very simple inequality can become very powerful when applied to a transformation of X. For
example, for any r.r.v. X, we have forany a € Rand t > 0:

P(X = a) = P(e'X > e'9) < e " E[e'X],
P(X < a) = P(e™™X > e71%) < e’ E[e X].

Therefore
P(X = a) < itng e " E[e™] and P(X < a) < itng e E[e ).

Exercise 2.2.2. If X has the binomial distribution with parameters n > 1 and p € (0, 1), find the optimal
t > 0 in the above inequalities and thus the tightness bounds using this method.

Theorem 2.2.3 (Jensen’s inequality). Let ¢ be a convex function from an open interval I to R and let X be
arv. such that X € I a.s. and E[|X]|] < oco. Then

(i) E[$(X)] < 0o s0 E[(X)] = E[$(X)*] - E[$(X)] makes sense in R u {eo},

(ii) We have
E[¢(X)] = $(E[X]).

(iii) The inequality is an equality if and only if either X is a.s. constant or ¢ is affine Px-a.s.

Proof. As a convex function on an open interval, ¢ is continuous so ¢(X) is indeed measurable. Moreover,
it is known that for every a € I, there exists A, € R such that for all x € I such that x - a € I,

d(x) = ¢p(a) + Ag(x - a).

It follows that ¢(x)™ < (¢(a) + Aq(x — a))”, and when applied to x = X, the right-hand side has finite mean
so we can indeed define E[¢(X)] € R u {oo}. Moreover, for a = E[X], we get after taking the expectation:

E[¢(X)] = E[¢(E[X]) + Agpx)(X - E[X])] = (E[X]).

Finally, since ¢(X) = H(E[X]) + Ag;x)(X - E[X]) a.s. then the equality of the expectations holds iff the r.v’s
are a.s. equal. O

Notation. For p = 1, set | X|, = E[|X|’]"F € [0, ] and write X € L if |X], < .
Theorem 2.2.4 (H6lder’s inequality). Let p, q > 1 satisfy 1/p + 1/q = 1, then
IXY]r = X 1Y g-

Consequently, XY € L' as soon as X € LP and Y € L1. Moreover, we have |XY| = |X|, |Y|q iff either X = 0
as. orY =0 a.s. or there exists ¢ > 0 such that |X|P = ¢|Y|? a.s.
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Proof. Let us start with the Young inequality: for every a, b > 0, by strict convexity of exp, it holds
ab = exp(log(a’)/p +log(b?)/q) < a’/p + b/q,

with equality iff a? = b9. Suppose |X|, > 0 and |Y|, > 0 as otherwise either X or Y (or both) equals 0 a.s. so
XY =0 a.s. and the theorem clearly holds. Assume also they are finite. Then the Young inequality applied
to a = [X|/|X|, and b = |Y|/| Y], yields

XY 1( |X] )P 1( Y] )q (X e
< — + — = H]
IXIp 1Yl = pNIXI 7 aNIYIg/ pIXI5  qlYIg

with equality iff (|X|/|X][,)? = (|Y|/|Y]q)9, iff there exists ¢ > 0 such that | X[’ = c|Y|? a.s. Taking the

expectation, we obtain
XY

XYy 11
IXIp1Ylg 2 g
and the result follows. O

+ 1,

Corollary 2.2.5 (Inclusion of L? spaces). Let p = q = 1, then |X]|q < |X|,. Consequently LP c L1.

Proof. Just apply Holder’s inequality to X and 1 and the exponents r = p/q and s = r/(r — 1) = p/(p - q) so
1/r +1/s = 1 to get
IX[q = E0X]917 < E[X| T 1 = [X].

In particular, if | X|, < oo then | X], < co. O

Remark 2.2.6. The inclusion L? c L9 for p = q = 1 is quite characteristic of finite measures in the sense
that if 1 is a o-finite measure such that there exists a pair p > g = 1 with LP(u) c LI(u), then p is in fact finite.
To see that, let I : LP(u) — L9(p) be the identity operator, then by an argument similar to that used in the
proof of Theorembelow, its graph its closed in the sense that if X;, — X in L and if I(X,,) = X;, — Y
in LY, then for each of these sequences we can extract a subsequence that converges a.s. so X = Y a.s. By
the closed graph theorem (applied in the quotient spaces L? and L7), we infer that I is a continuous linear
operator, so there exists C < oo such that for every X € LP(u), we have |X|, = C|X],. In particular, if
J(A) < oo, then for X = 14, we read p(A)"P < Cp(A)Y7 and so p(A) = CY/P=4) < 0o, Hence, if 1 is o-finite,
then there exists (A,)y»1 With p(A,) < oo for all nand E = | J, A, so p(E) = lim, p(A,) = CYO/P~19 < o,
2.2.2 L? spaces are almost Banach spaces

Let us start with another famous inequality.

Corollary 2.2.7 (Minkowski’s inequality). Let p > 1, then
IX+ Ylp = 1X]p + [ Ylg-
Proof. The claim is clear for p = 1 so fix p > 1 and notice that for any x, y € R, we have
e+ i < Jx] lx+ P70+ [yl + P
Let g = p/(p — 1) be such that 1/p + 1/q = 1, then by Hoélder’s inequality,

E[IX + Y[P] < E[IX||X + Y"1 + E[[Y||X + Y|"]
< IXIp 11X + Y g + Y[ 11X+ Y1
= (IX]p + 1Y) E[IX + Y[PT'.

The result follows after rearranging the terms. O
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As a consequence, the space (L7, | - |,) is basically a normed vector space, except that | X|, = 0 if and
only if X = 0 a.s. One can get a true normed vector space by taking the quotient by the equivalence relation
X ~ Y when X = Y a.s. and actually, what we denote by L? here is usually denoted by A?, whereas L?
should refer to the quotient space. We prefer to work without quotienting and speak of L” as a metric space
by abuse of notation. The next result shows that it is a Banach space.

Theorem 2.2.8 (Completeness). For any p > 1, any Cauchy sequence in LP converges.

Proof. Let (X;)n>1 be a Cauchy sequence in L? i.e. [ X[, < coforall n = 1 and

sup | Xs - X,||p n_)—; 0.

s,t=n

Then we can build a sequence of integers (ng)k-1 such that sup ., |Xs - Xi[p < 27 for every k = 1, and in
particular,

E

Z |Xnk+1 - Xnk|j| = Z ”Xﬂk+1 - Xnk”l = Z ||X"k+1 - Xnk”p < ©o.
k=1 k=1 k=1

Thus a.s. the series )., (X
s = ng, then for every ¢ = k we have that

.. — Xn,) converges absolutely and so X, converges to some X. Fix k > 1 and

E[|X; - X, |F] < 27P*
so by Fatou’s lemma, letting £ — oo, we get
E[|X; - X|F] < lim inf E[|X; - X, |P] < 27PF,
Since X, € I?, then this shows that X € L?, and furthermore,

lim sup E[|X, - X|P] < 27PF.

§—00

since k = 1 is arbitrary, we conclude that X; — X in L. O

2.2.3 The case of L*

Let us end with some extra words on the case p = 2. Here L? not only is a Banach space, but a Hilbert space
since the norm | - |; comes from an inner (or scalar) product, namely for X, Y € L2,

X .Y = E[XY],

which is well-defined by Hélder’s inequality, which in the case p = g = 2 is the Cauchy-Schwarz inequality
for inner products.

Definition 2.2.9 (Covariance). For X, Y € L?, define their covariance by
Cov(X, Y) = E[(X - E[X])(Y - E[Y])] = E[XY] - E[X]E[Y],
as well as their variance by
Var(X) = Cov(X, X) = E[(X - E[X])?] = E[X?] - E[X]?,
and similarly for Y, and finally define their correlation coefficient by

(X, Y) = Cov(X,Y) € [11]
P = \JVar(X) Var(Y) ’

by the Cauchy-Schwarz inequality.
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Notation. If X = (X, ..., X,,) is a random vector in R", we denote by Cx its covariance matrix, given for
every 1 < i,j < nby
(Cx)ij = Cov(X;, Xj).

From a geometrical point of view, suppose E[X] = E[Y] = 0 (otherwise subtract the mean), then Var(X)
is the square-norm of the “vector” X and p(X, Y) is the cosine of the angle between X and Y. The case
p(X,Y) = 0, equivalently Cov(X, Y) = E[XY] = 0, corresponds to the orthogonality of the vectors, which is
the case as soon as X and Y are independent but is weaker than independence in general).

Remark 2.2.10. The covariance is bilinear, so the variance satisfies for Xi, ..., X, € L%

n n
Var(Z aka> = Z ai Var(Xj) + 2 Z ara, Cov(Xg, Xp).

k=1 k=1 1<k<f<n

Let { -, - ) denote the scalar product in R", let (X, ..., X,,) € R" and let Cx denote its covariance matrix,
then this reads equivalently: for every a = (ai, ..., a,) € R",

Var({a, X)) = {a, Cxa) = a'Cxa.

Exercise 2.2.11. Let X = (Xj, ..., X;;) be a random vector in R" with covariance matrix Cx. Prove that Cx
is noninvertible if and only if one X} is an affine combination of the other ones.

2.3 Convergence of random variables

In this section, all the random variables are defined on the same probability space (Q, F, P) and take values
in (R% %B(R%)) and we let | - | denote the Euclidean norm in R?. The L? spaces considered are always for

p=1

2.3.1 Definitions and first properties

Definition 2.3.1. We say that X, converges to X:
(i) almost surely (a.s.) if P(X, — X) = P{w € Q: X,(w) — X(0)}) =1,

(i) in L?if X, X € L? and E[|X,, - X|’] — 0,
(iii) in probability if for every ¢ > 0 fixed, we have P(|X,, - X| > ¢) — 0.

Let us observe that {X, — X} = Va1 Uns1 Nan{IXn — X| = 1/k} is indeed measurable so the
a.s. convergence is well-defined.

Proposition 2.3.2. These notions satisfy the following relations:

(i) If X, — X in LP for a given p = 1 then X;, — X in LY for all q € [1, p) and also in probability.
(ii) If X, — X a.s. then also in probability.

(iii) If X, — X and X,, — Y in probability then X = Y a.s. Thus the same conclusion holds if we replace
one or both convergences by a stronger one (a.s. or in L?).

(iv) X, — X in probability if and only if every subsequence has a further subsequence that tends to X a.s.

Proof. (i) By the Holder or Jensen inequality, we have the inclusion L? ¢ LY which reads here E[| X, -
X|7] < E[|X, - X|P]9? — 0. Also, the Markov inequality implies that for every ¢ > 0, we have
P(X, - X| > ¢) < e PE[|X,, - X|[P] — 0.
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(ii) Fix £ > 0 and note that if X;, — X a.s. then 1;x,_x-. — 0 a.s. so P(|X;, - X| > £) — 0 by dominated
convergence.

(iii) By the triangle inequality, for every ¢ > 0,

P(X - Y| > €) < P(X, - X| > /2) + (X, - Y| > £/2) —> 0.

n—oo

Thus
P(X # Y) = ]P(U{|X |- 1/k}) < Y P(X - Y] > 1k =0.

k=1 k=1
(iv) Suppose X,, — X in probability, then define n; = 1 and the iteratively for every k = 1,
M = inf{j > ng: P(X; - X[ > 27®D) < 270y,
Then ¥, P(1X,, - X| > 27F) < o0 s0 by the Borel-Cantelli lemma, with probability 1 only finitely
many indices n; have that |X,, - X| > 27F and so X,,, — X with probability 1.

On the other hand, if X, does not converge to X in probability, then there exists ¢ > 0 and an
increasing sequence of integers (ny)k-1 such that P(|X,, — X| > €) > e for all k = 1 so this subsequence
has no further subsequence that converges in probability and so a.s. O

Let (X,), be independent r.v.s such that P(X, = n'’?) = 1/n = 1 -P(X, = 0). Then X,, — 0 in probability
but not in L? since E[|X,|P] = 1 for each n. It does not converge a.s. either since the Borel-Cantelli lemma
shows that a.s. there exists infinitely many indices n such that X,, = n'/?.

Remark 2.3.3. In a metric space a sequence (x,), converges to some x if and only if every subsequence has
a further subsequence that tends to x. Thus there is no metric on r.vs that corresponds to a.s. convergence.
On the other hand we saw that if one does not distinguish r.vs that are equal a.s. then the L? convergence
corresponds to a metric (even to a norm); this is also the case of convergence in probability, with e.g. the
distance

d(X,Y) = E[max{|X - Y|, 1}].

See also the exercise sheet.
Lemma 2.3.4 (Continuous mapping). Suppose that f : R¢ — R is continuous Px-a.s. then
(i) If X, — X a.s. then f(X,,) — f(X) a.s.
(ii) If X, — X in probability then f(X,) — f(X) in probability.
Proof. (i) Let Cy = {x € R?: f is continuous at x} € B(R?). Then we have
X’l(Cf) ={w € Q: fiscontinuous at X(Q)} € F

and 1 = Px(Cy) = P(X!(Cy)) so if welet A = {w € Q: Xy(w) — X(w)}, then P(A) = 1 so
P(A n X7(Cy)) = 1. Finally for every w € A n X™(Cy) we have f(X,(w)) — f(X(w)).

(ii) If X;, — X in probability then every subsequence (1) has a further subsequence (ny,); that converges
to X a.s. so by the first point (X, ) — f(X) a.s. By the last item in Propositionthis is equivalent
to f(X,,) — f(X) in probability.

Corollary 2.3.5. If X, — X and Y, — Y in probability, then (X,,Y,) — (X, Y) in probability and so
Xn+Y, = X+Y,X,Y, — XY in probability etc. The same holds if all convergences are a.s.

Remark 2.3.6. Deducing f(X,) — f(X) in L? from X,, — X in L? where f is continuous Px-a.s. is not
automatic! We will see in Theorem 2.3.14| that the sequence (|f(X,)|)n-1 must be uniformly integrable. This
is one reason why this notion of convergence is sometimes less interesting than convergence in probability.
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2.3.2 Uniform Integrability (x)

Uniform integrability is the key assumption that allows to improve a convergence in probability to an
almost sure convergence. Let us motivate the forthcoming definition with an observation.

Lemma 2.3.7. A rv. X is integrable if and only if
lim E[1X] 1x-1] = 0.
Proof. Notice that E[|X] 1|x)<x] = K, so in [0, co] it makes sense to write
E[1X] 1x-x] = B[IX]] - E[[X] 1|x)=x]-

Then either E[|X|] = co and then E[|X| 1 x|-x] = oo for all K, or E[|X|] < co and by monotone convergence,
the right-hand side converges 0 as K — oo. O

Definition 2.3.8 (UL r.v’s). A collection (X;);c; of integrable r.v.’s is said to be uniformly integrable when
lim supE[|X,-| H\Xi|>K] =0.
K—0o et
The next result is a useful reformulation of the UI property.

Proposition 2.3.9. A collection (X;)ics of integrable rv’s is Ul if and only if sup,.; E[|Xi|]] < oo (we say it is
bounded in L') and for every e > 0, there exists § > 0 such that for every A € F,

if P(A)<6 then supE[|Xj|1a]=<e.

iel
Proof. First suppose that (X;)r is UL then for K large enough, we have

sup E[|Xj|] = sup]E[|Xl-| ]l|x,-\sK] + sup]E[|X,~| ﬂ\xi|>1(] <K+1
i€l iel iel

Fix now ¢ > 0 and let K be large enough so sup,; E[|Xi| 1|x,-x] < €/2. Put § = ¢/(2K) and take any A € F
such that P(A) < &, then for any i € I it holds

E[1Xi[ 14] < E[|Xi| Ljx;-x] + KP({|Xi| < K} n A) < e.

Conversely, suppose that sup,.; E[|Xj|]] = C < oo, fix ¢ > 0 arbitrary and § > 0 as in the second property.
Let K be large enough so P(|X;| > K) = E[|X;|]J/K = C/K = § for all i € I, then by the second property,
E[Xi| Ljx-x] < eforall i € I. O

Remark 2.3.10. As an example of a family of r.v.s bounded in L! but not UI, take P(X,, = n) = 1/n and

P(X,, = 0) = 1 - 1/n. Then for every K = 0,

n=1

sup E[|X,|] = 1 and sull)]E[|X,,| ]l|Xn|>K] =1.
nz=

One can also check that the second property of Proposition [2.3.9] fails here.

The next result gives an explicit way of checking wether collection of r.v’s if UL Of course the converse
implication is the one useful in practice.

Theorem 2.3.11 (de la Vallée Poussin). A collection (X;);c; of integrable r.v’s is Ul if and only if there exists
¢ : R, — R, such that ¢p(x) — o as x — oo and

SquE[lXiWquD] < oo,
i€
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Proof. Suppose that there exists such a function ¢, then for every K > 0, for every i € I, we have:

ol1Xi) (1) E{Xio(X)]
gt o] = Bl ] = Sy

inf .k (x) 4
The numerator is bounded uniformly in i € I and the denominator tends to co as K — co.

E[|IXi| Lix,-x] = E|I1Xi|

>

Conversely, suppose that (X;)r is UI and build inductively an increasing sequence K,, — oo such that

sup E[|Xi[ 1jx-x,] < 27"
i€l

for every n = 1. Put ¢(0) = 0 and for x > 0,
1 . K,
o) = = YK = Y (1720 L,

n=1 n=1

Then for every N = 1, if x > 2Ky, then the sum contains at least 2N terms and each of them is larger than
1/2 so ¢(x) — oo. Moreover, for every x > 0, we have

xp(x) = Y (x - Kp) Lok, < . % Lk,

n=1 n=1

Recall the construction of (K}),, then we conclude that

sup B[|Xilp(1Xi)] = sup > E[|1Xi| Lix}-,] < 1,
i€l

i€l p>1

which ends the proof. 0

Remark 2.3.12. One can show that the previous function ¢ : x — x¢(x) is convex, increasing, and with
moderate growth in that 1/(x) < x? for all x = 0 so in the theorem, one can restrict to those functions.

We now list some sufficient conditions that imply uniform integrability.

Exercise 2.3.13 (Sufficient conditions). Prove the following:

(i) If the X;’s have the same law and are in L!, then they are UL
(ii) If Gy,..., B, are collections of Ul r.v.’s, then so is | Ji_; 6.
(iii) If (Xi)ier and (Y;)ier are UL, then so is (aX; + bY;);er for any constants a, b.
(iv) If there exists Y € L! such that |X;| < Y for all i € I, then (X;);e; is UL
(v) If there exists p > 1 such that sup,.; E[|Xj|] < oo, then (Xj);er is UL

The reason to consider Ul r.v’s is the next result which is the central result of this section. Indeed,
combined with the previous exercise, this theorem extends the dominated convergence to the best possible.
Of course again, the implication [(i)] = [(ii) is the one useful in practice.

Theorem 2.3.14. Fix p > 1, a sequence (X,)n=1 of rvs in LP, and a r.v. X. Then the following assertions are
equivalent:

(i) X, — X in probability and (| X,|P)ns1 is UL
(ii) X e L? and X,, — X in LP.

Proof. Let us only prove the claim for p = 1. For p > 1, all the arguments still apply, one can simply replace
the triangle inequality in R¢ by the easy bound |x + y|P < 2°(|x|? + |y|) for all x, y € R?.
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Assume first that X,, — X in probability and (X;)= is UL In particular (X;),-1 is bounded in L'. Let us
extract a subsequence X,, — X a.s. Then by Fatou’s lemma,

E[|X]|] = E[li}{ninf | X, |] < lilzn inf E[| Xy, |] = sup E[|Xp|] < co.

n=1
Hence X € L!. Consequently (Y,), = (X, - X), is UI (Exercise [2.3.13) and converges to 0 in probability, and
we aim at showing that it converges in L!. For any ¢, K > 0, it holds
E[|Yn|] = E[|Yn| ]1|Y,,\se] + E[|Yn| ]1€<|Yn\sK] + ]E[|Yn| I[\Y,L\>K]
< e+ KP(|Y,| > &) + sup E[|Y,| L}y, |-k ]-
n=1

Let us make n — oo, then K — oo, and finally ¢ — 0, then the probability at the last line tends to 0 since
Y, — 0 in probability and the expectation tends to 0 by the UI property.

Suppose next that E[|X,,- X|] — 0. Recall that the Markov inequality implies that X,, — X in probability.
Also E[|X,|] < E[|X, - X|] + E[|X]] — E[|X]] so (Xu)n is bounded in L'. We focus on the UI property. Let us
write for any K, L > 0 the simpler but clever inequalities:

(Xnl Lx, -k = [Xn = X[ Lx ok + 1X| Dix ok xisn + X Lk XL
L
< X = X| Ljx, |-k + X | Xl Ljx, 5k x1<2 + 1X] Lix, -k XL
L

= |Xn - X| + E |Xn| + |X| ]l|X|>L-

Consequently, with L = vK, we obtain
1
E[|1Xa| 1jx,-x] = E[|X, - X[] + Nid sug) E[|X,]] + E[|X] H\X\>R]-
n=

Fix ¢ > 0 and let N be large enough, so E[|X, - X|] =< ¢ for all n = N. Recall that sup,,_; E[|X,[], that X € L
is U, and similarly that the finite collection (X,),<n is UL Then for K large enough, we have

sup E[|X,| 1jx,-x] < € and sup E[|Xp| Ljx,-x] = 3¢,
nsN n>N

so indeed (X},), is UL O

Corollary 2.3.15 (Boundedness in L?). Suppose that X, — X in probability and sup, E[|X,|P] < co for some
p>1 Then X, — X in L9 forall q € [1, p).

Proof. By Exercise[2.3.13} for any q € [1, p), the family (|X,|%),-1 is bounded in L" for r = p/q > 1 so it is UL
Then Theorem [2.3.14)implies the convergence in L9. O

Remark 2.3.16. Under the assumptions of Corollary2.3.15] Fatou’s lemma implies E[|X|F] < sup, E[|X,|f] <
oo but it may be the case that X, does not converge to X in L”. Just adapt a previous example and take
P(X, = n'?) = 1/n = 1 - P(X,, = 0); in this case X,, — 0 in probability so if it converges in L?, then the limit
must be 0 a.s. by Lemma [2.3.2] but E[|X,,[P] = 1 for all n.

2.4 Law of Large Numbers

The Law of Large Numbers formally links the mathematical notion of expectation and probability of an
event with the conceptual idea of asymptotic frequenct. We restrict ourselves to real-valued random
variables, but it extends to vectors by applying it separately on each component.

Let us start with a weak version, where convergence holds in probability, we next prove the strong law,
with an almost sure convergence. The L? part of the statement uses the notion of uniform integrability
from Section [2.3.2]

35



Theorem 2.4.1 (WLLN). Let (X,,)ns1 be ii.d. rv’s in R with finite mean E[X;] = m € R. Then

X;+ -+ X,
—— —> m

n n—oo

in probability and in L'. If X, € LP for some p > 1, then the convergence also holds in LP.

Proof. The L? case is immediate: Suppose in addition that o = Var(X;) < o, then by independence,

X+ + X, 2 X;+-+X,\ Var(Xp) + -+ Var(X,) o2
Eifl ———-m = Var = 5 =— — 0.
n n n

n n—oo

Thus n! Y§_; Xk converges to m in L? and so in probability as well.
Now suppose only that X; € L!. For every K > 0, for every i > 1, let us set

XlK = Xl' :[]-\X,-|5K and YIK = Xi ]]-\Xi|>K~

On the one hand, by Lemma 2.3.7,

|2

< E[|Y{)] = E[IX,| k] — 0.

On the other hand,
Im - E[X ]| < B[1X; - Xi jx,=x]] = E[Y{[] — o.

K—o

Furthermore, by the L? case, for every K > 0 fixed, we have

XK 4+ ...+ XK
e M E[XX] in L? and thus in L'.

n n—o0
Hence
Xi + -+ X, XK 4.4 XK 1 &
limsup E ‘1" - m] < limsupE ‘1" - E[XX]|| + |m - E[XK]| +]EH Z Yy
n—oo0 n n—o0 n n i=1
<2E |Y1K| 0,

s0 (Xi + -+ + X,,)/n — min L' and thus in probability.

Suppose now that X; € L? for some p > 1. Since n™! Y'}_, X; converges to m in probability, it suffices to
prove that the sequence (|n™* Y ;_; Xk|P)n is UI to deduce the L? convergence from Theorem Let us
use the characterisation from Proposition Since the X,’s have the same law, then by Exercise
the sequence (|X,|?)n=1 is UL Then for every ¢ > 0, there exists § > 0 such that for every A € F

if P(A)<d& then supE[|Xif1a]<e
k=1

Using the Minkowski inequality, we infer that
J QAT 1/P
Ell- Y Xl 1] < [1Xe? 14177 < €',
IR R

and the sequence (|n"! Y }_; Xk|P)n is indeed UL O]
Let us next strengthen the convergence to an almost sure one.

Theorem 2.4.2 (SLLN). Let (X;)ys1 be i.i.d. r.rv’s with E[|Xi|] < o and E[X;] = m € R. Then
)(1 4o + Xn

n n—oo

m

a.s. and in L'. If X; € LP for some p > 1, then the convergence also holds in LP.
Conversely, if n”1(X; + - + X,,) converges a.s. to some limit X which is a.s. finite, then X is a.s. constant
equal to some m € R and the r.v’s have finite mean E[X;] = m
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Let us point out that the fact that the limit of n71(X; + -+ + X;,) has to be constant can be shown by
Theorem [2.1.16]

Proof. The idea is to introduce a cut-off, namely write:
1 & 1 & 1 & 1 &
- Z Xk == Z(Xk Lix<k = E[Xk Lxger]) + = Z Xk Lok + = Z E[Xk 11x,=k]- (2.1)
= = = =

Let us prove that the first two terms tend to 0 a.s. while the last one tends to m. Indeed, first by monotone
convergence applied to each expectation, we have:

E[X; Lix,j<] = E[X] Ljxjek] - E[X] Ly j<k] = E[X;]-E[X{]=m.

This implies further that
1 n
= Y EXi L] — m,
n k:1 n—oo

and since the X}’s have the same law, then E[ X} 1|x,\<x] = E[Xi 1 x,)=«] for each k, hence the convergence
to m of the third term in the right-hand side of (2.1).
Similarly:

E[kz ]l|Xk|>k] = ;E[ﬂ\xk|>k kZE Lix, k] [kz ]l|X1|>k] < E[|X]] <
>1 >1 >1 >1

Consequently };.; 1jx,-k < o a.s. so with probability one, only finitely many indices k satisfy |X;| > k
and in particular:

1 & as.
- Z Xe Lok —> 0,
n =1 n—o0

since the sum a.s. only contains finitely many nonzero terms.
It remains to take care of the first term in our decomposition (2.1). Let us put

n
Y
Vi = Xi Tix<k — E[Xk 11x<k] and  Z,= Z "
k=1

Let us prove that n”! })}_; Y converges to 0 a.s. We shall rely on Kronecker’s lemma, namely write
Y, = n(Z, - Z,_1), so

1 n n 1 n
~ > Ye= Zkzk—zk I (Zkzk—z —1>Zk1—ZZk1) = Zn=— 3 Zi1.
n =1 k=1 k=1 n k=1
We shall prove that a.s. Z, converges to a finite limit, which implies that n™' }'}_; Z_; converges to the

same limit, which finally implies that n™! }}_; Y; converges to 0. Note that the Y;’s are independent and
have E[Y¢] = 0, and each Y} is bounded (by 2k), so

Yi\2 Vi (Y)
E[(Z ?k) ] _ kZZ; all;z k EE[Xz H\X1|< = [ Z 2 H\X1\<k

k=1 k=1

Now for any k = 1 and t € [k, k + 1] we have ¢ < (k + 1) < (2k)? = 4k?, so for any x € R, it holds:
k+1 )
4 4 4
Tixek = / =1 Skdt:‘/ —dt = ——.
Z; K2 e ; 2 M max((x)1) 2 max(|x], 1)
Consequently, since X; € L!, then, combining the last to displays, we have

(5]

Xt
max(|Xi|, 1)

] <4E[1+|X|] < o0
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This implies that a.s. the series Y., k™! Yk is convergent, namely that Z, has a finite limit as we wanted.
Let us finish with the converse implication: assume n™!(X; + - + X,,) converges a.s. to some limit X
which is a.s. finite and let us prove that the r.v’s have finite mean and X = E[X;] a.s. By our assumption,

we have
X, Xi+--+X, Xi+--+Xy1 oas
an _ _ 4

n n n n—oo

X-X=0.

In particular, a.s. for n large enough we have |X,| < n, that is P(lim sup,, {|X,| = n}) = 0. Since the X,,’s are
independent, then this probability is either 0 or 1 by the Borel-Cantelli lemma, according as wether the
series of the probabilities converges or not. We infer that

E[Xi[]< D P(Xi|+12n) =1+ ) P(Xy| = n) < eo.
n=1 n=1

Hence X; € L! and thus n7!(X; + -+ + X,;) — E[X;] a.s. by the first part of the proof. Since we asuume that
n }(Xq + - + X;;) — X a.s. then we conclude that X = E[X;] a.s. ]

The almost sure convergence remains true in the case of infinite (but well-defined!) mean.

Corollary 2.4.3. Let (X,)ns1 be iid. rrv’s with E[X[] < oo and E[X{] = oo so we can make sense of

E[X;] = co. Then
)(i + oo )(n a.s.
-

n n—oo

o0,

Proof. Fix K > 0, then the r.v's (max{Xj, K}); are i.i.d. with finite mean so by the previous strong law,

1< 5.
- ZX > - Z max{X;, K}) 25 E[max{X;, K}].
n i1 n—oo

i=1

By monotone convergence, the right-hand side further converges to E[X;] = oo as K — co. O]
Finally, if the mean is not defined, then three possible cases may occur.

Proposition 2.4.4. Let (X,)ns1 be ii.d. rrv’s with both E[X[] = co and E[X{ ] = oo, then a.s.

X+ + X X+ + X
either liminf 22— — 2" = —oo or lim sup AT

n—oo n n—s00 n

Proof. Indeed fix any integer K = 1. Then

S P(KXy = n) = > P(K'X] = n) = E[K'X;] = o

nx=1 n=1
Since the r.v’s X, are independent, then the Borel-Cantelli lemma shows that a.s. the events {X > Kn}
occur for infinitely many indices n. Then obviously so do the events {X,, = Kn}. Now for any such index n,
we have either X; + -+ X,,_; < -Kn/2 or X; + - + X;,_1 = —Kn/2 and in this second case Xj + --- + X, = Kn/2.
We infer that a.s.

X +-
either lim inf =——— " < — or lim sup S

n—oo n n—oo n

+ -+ Xy K X1+ + Xy
2

0 |

Then finally this holds a.s. simultaneously for all integers K since there are countably many of them. [J

Let us mention that that actually, depending on the law of X, either n™}(X; + - + X;) — o0 a.s. or
nY(X; +-+X,) — —oo as. or we have both lim sup n™}(X; + -+ X;;) = co and liminf n71(Xj + -+ X,;) = -
a.s. and we have necessary and sufficient conditions to tell which case occurs. The interested reader can look
at the original article by Erickson “The strong law of large numbers when the mean is undefined” at ht tps
//www.ams.org/journals/tran/1973-185-00/S0002-9947-1973-0336806-5/home.htmll.

38


https://www.ams.org/journals/tran/1973-185-00/S0002-9947-1973-0336806-5/home.html
https://www.ams.org/journals/tran/1973-185-00/S0002-9947-1973-0336806-5/home.html

2.5 Convergence in distribution

In this section, the random variables all take values in (R%, B(R%)) (but let us mention that this generalises
to separable and complete metric spaces) but may be defined on different probability spaces (2, &, P). We
denote by Cy = C,(R%, R) the set of continuous and bounded functions from R? to RR.

2.5.1 Definitions and first properties

Definition 2.5.1 (Weak convergence of measures). Let yzand (i,),>1 be probability measures on (R?, B(R?)).
The sequence (pi,),21 is said to converge weakly (or narrowly) to p when

#n(f)=/fd#n — /fdﬂ=ﬂ(f> for all f € C.

A sequence (X,,)p»1 of r.vs in R is said to converge in distribution to a r.v. X when their laws converge
weakly i.e. when
E[f(X,)] — E[f(X)] for all f € Cp.
n—oo

Remark 2.5.2. Note that speaking of convergence of r.v’s is an abuse of language since only their laws
converge. For example, if X, has the same law as -X,,, then they both converge to the same limit so one
cannot simply take sums and products through this notion of convergence.

Convergence in distribution is the weakest notion we have seen, as shown in the next result.

Proposition 2.5.3. Suppose that the r.v.’s are defined on the same probability space. Then
(i) If X, — X in probability, then X, — X in distribution.
(ii) If X, — X in distribution and X is a.s. constant, then X,, — X in probability.

Proof. (i) Suppose that X;, — X in probability and let f be continuous and bounded, then f(X,) — f(X)
in probability, and then by dominated convergence, E[f(X,,)] — E[f(X)].

(ii) Suppose that X, — X in distribution and P(X = ¢) = 1 for some ¢ € R%. Fix ¢ > 0 and let f. be
a continuous and bounded function that satisfies f.(x) = 1 when |x - ¢| > ¢ and f.(x) = 0 when
|x - c| = ¢/2. Then

P(X, - d| = €) < E[f()] — Bl(e)] =0. -

Viewing a probability measure on R? as a function %(R?) — [0, 1], a natural notion of convergence
would be a pointwise convergence, i.e. i, — p when yi,(A) — p(A) for all A € B(R?). This is actually quite
strong because of boundary effects, for example, if U, has the uniform distribution on {k/n: 1 < k < n}
and U the uniform distribution on [0, 1], then for f continuous and bounded,

n 1
CUCAEED WIS L)
k=1

so U, — U in distribution, however
P(U,€Q)=1 whereas P(U € Q) = 0.
The next result compares this notion with the weak convergence.

Theorem 2.5.4 (Portmanteau). Let i and (jp)ns1 be probability measures on (R%, B(R?)), then the following
are equivalent:

(i) pn — p weakly,
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(ii) For every open set O ¢ RY it holds liminf , 1,(O) = (O),
(iii) For every closed set C < R? it holds lim sup,, y,(C) < p(C),
(iv) For every Borel set B < R? such that u(aB) = 0 it holds lim y1,(B) = u(B).

Proof. Suppose that p, — p weakly and fix an open set O. For every k = 1 define the function
fi(x) = min{kd(x, O°), 1}
which is continuous and bounded on R?. Moreover as k — oo it increases to the function 1. Thus
lim inf () = lim inf pin(fic) = p(fi) —>  w(O),

by monotone convergence.

The 2nd and 3rd items are clearly equivalent by taking the complement. Suppose that they both hold
and fix B with u(dB) = 0. Let O < B denote is interior and C > B its closure, so dB = C \ O. Then we know
that

lirrlll) igf Un(B) = li’?l)igf 1n(O) = p(0) and lim sup p,(B) =< lim sup p,(C) = p(C),

n—oo n—oo

and furthermore p(C) = p(0) + p(C \ O) = p(O) so it also equals p(B) and thus
Lim 4u,(B) = (B).

Finally, suppose lim y,(B) = p(B) whenever pu(oB) = 0 and fix f € Cp. Replacing f by f —inf f if necessary,
let us assume that f € [0, K] for some K > 0. Observe that for any x € R? we have

K
flx) = / Lyefx dt
0

so by Fubini’s theorem, if we let A{ = {x €R?: f(x) = t}, then

K K
. _ _ f
p(f) = /R fEu(d) /0 < /R d]ltsf(x)y(dx)) dt /0 p(A) d.

Note that aA{ = {x € R?: f(x) = t} which are disjoint sets for different values of t. Therefore, for any
k = 1, since u(R%) = 1, then there can only be at most k values of t for which ,u(aA]; ) = 1/k. Thus the set
D={te[0,K]: ,u(aA{ ) # 0} is at most countable and in particular has zero Lebesgue measure. Now for
any t € D¢ we have ,u(aA]: )=0so0 p(Aj: ) = lim, ,un(A{ )- By dominated convergence,

K K
() = / i A) Liepe dt —> / WA Liepe dt = u(f),
0 n—e - Jo

thus p, — p weakly. O

In practice, it may be useful to check the convergence of integrals of even more restrictive functions
than all continuous and bounded ones. The next result shows many possibilities. It is very important here
that both p, and p are probability measures, even if their are finite, it fails if they do not have the same total
mass.

Theorem 2.5.5 (Restriction of test functions). Let y,, u be probability measures on (R¢, B(R?)), then the
following are equivalent:

(i) pn(f) — p(f) for all f continuous and bounded,

(ii) un(f) — p(f) for all f continuous and with compact support,
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(iii) pn(f) — p(f) for all f € H c Cy such that the closure of H for the sup norm contains all continuous
functions with compact support,

(iv) pun(f) — p(f) for all f uniformly continuous and bounded,
V) pn(f) — u(f) for all f Lipschitz and bounded,

i) pun(f) — p(f) for all f continuous p-a.s. and bounded.

Proof. Clearly, (i) = (iv) = (v). Suppose (v) holds, and recall the sequence of functions
Jfi(x) = min{kd(x, O%), 1}

where k = 1 and O is a fixed open set. Then this function is actually k-Lipschitz and the argument from the
proof of Theorem [2.5.4] shows that the convergence p,(k) — pu(k) for all k implies lim inf, y1,(0) = p(O),
which implies (i).

On the other hand, clearly, (i) = (ii) = (iii). Suppose (iii) holds and let f be a continuous function
with compact support. Then f is the limit for the sup norm of a sequence of functions in H so we can build
a sequence (fx)x in H such that |f - fi|. = 1/k for all k = 1. We infer that

tim sup [1n(f) - ()| = Lim sup aa(F) = piafil + lnCfi) = KO+ aFi) = (P

n—oo n—oo

< 2|f - frloo + lim sup |, (fi) — 1(fe)]

n—oo

<2/k — 0,

k—o00
hence (iii)) = (ii).
Suppose next that (ii) holds and fix f continuous and bounded. Let (gx )« be continuous functions with
compact support which satisfy 0 < g < 1 and g 1 1. Then fgj is continuous with compact support and

fer 1 fso

lmgWMHWWHMMWMU%MQMHWM&%MQMHN@%MM

— n—oo

< 2|f oo lim sup(1 - pn(gx))

n—oo

< 2||ffloo(1 = p(gx)),

which further converges to 0 as k — oo by monotone convergence.

Finally, (vij = (i) so it remains to prove the converse implication. Suppose that (i) holds, fix f
continuous p-a.s. and bounded and fix ¢ > 0. Let K > 0 be such that |f| = K and note that as in the
previous proof, for any k > 1 there can only be at most k different values of t € R such that p({f = t}) =
/ Lf(x)=¢ p(dx) = 1/k so the set D = {t € R: p({f = t}) > 0} < [-K, K] is at most countable. Then there
exists k = 1 and values ay < --- < a; such that: gy < -K, a; > K,and a; - a;_1 < c¢and a; € D for all i < k.
Define then A; = {x € R?: a;_; < f(x) = a;} so dA; c {x € RY : f(x) e {ai1,ai}}u CfC where we recall the
notation Cr = {x € R? : f is continuous at x}. By our assumption /J(CJ?) = 0 and by our construction of A;
we get p(dA;) = 0 so py(A;) — u(A;) for each i < k and so

k k
Z aipin(Ai) e Z aip(A;).
i=1 i=1
Finally, from the construction we have f < Z{;l a; 14, < f + € so we infer that
k k
lim sup pn(f) =< Z aip(A;) < p(f) + ¢ and hrl,ll)iololf”"(f) > Z aipu(A;) = p(f) - &,
n—oo i=1 i=1
0 tn(f) — u(f) since € > 0 is arbitrary. O
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Thanks to the last item, we can generalise easily Lemma [2.3.4]to convergences in distribution.

Lemma 2.5.6 (Continuous mapping). Suppose that X, — X in distribution and that f : R? — R® is
continuous Px-a.s. then f(X,) — f(X) in distribution.

Proof. Let g be a continuous and bounded function, then gof is bounded and continuous Px-a.s. so by

Theorem [2.5.5 we have
E[g(f(Xn)] = Elgef(Xn)] —> Elgof(X)] = E[g(f(X))],

ie. f(X,) — f(X) in distribution. O

2.5.2 Distribution functions (*)

Although the discussion in this subsection can be made in R¢, let us restrict to R for the sake of clarity.
Recall that a function F : R — [0, 1] is a distribution function when it is nondecreasing, right-continuous,
and such that F(x) — 0 as x — —o0 and F(x) — 1 as x — oo. Recall that for any function F we let
Cr = {x € R: Fiscontinuous at x} denote its continuity set. Recall finally that every r.r.v. X has a
distribution function Fx : x — P(X =< x) and that for each distribution function F, there exists a r.r.v. X
such that F = Fx.

Definition 2.5.7 (Weak convergence of distribution functions). A sequence (F,),»; of distribution function
is said to converge weakly to a distribution function F when

F.(x) — F(x) for all x € Cr.

n—oo

As for discontinuity points, basically one has to decide wether we take the left-limit or the right-limit.

Example 2.5.8. If F,(x) = (1 - e"l"x) 1.0 with A, — oo, then F,(x) — 1., for all x € R and the limit is
left-continuous. However F, converges weakly to F : x — 1, which is a distribution function.

Proposition 2.5.9. We have X, — X in distribution if and only if Fx, — Fx weakly.

Proof. Note that for every x € R we have 9(-co, x] = {x} and Px({x}) = P(X = x) = F(x) - F(x-) so the
direct implication is a particular case of Theorem|2.5.4] For the converse implication, suppose that Fx, — Fx
weakly and let a < b. Then

lim inf Py, ((a, b)) = hrrlgigf(FXn(b—) - Fx,(a))

n—oo

= lim inf Fy, (b-) - lim sup Fx, (a+)
n—oo 00
2 Fx(b-) - Fx(a) = Px((a, b)).
Recall that any open set of R is a countable union of disjoint open interval, say O = | Ji(ax, bx), then

lim inf P, (0) = lim inf > P, ((ar be) = ) lim inf Px, (ax. bv)) = > Px((ax, br)) = Px(O).
k k k

By Theorem 2.5.4] again, this is equivalent to X, — X in distribution. O
The next theorem is quite useful in practice, but one should not misunderstand its statement.

Theorem 2.5.10 (Skorokhod’s representation). Suppose that F,, F are distribution functions such that F,, —
F weakly. Then there exists a probability space (Q, F,P) and rv.’s X,,, X all defined on it, which have distribu-
tion function F,, F respectively and such that X, — X a.s.
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Proof. Recall from Theorem [2.1.3|that given the distribution function F we can construct X on the space
(Q,F,P) = ((0,1),%(0, 1), Leb) by setting for any u € (0,1)

X(u) = G(u) = inf{t € R: F(t) > u} = sup{t € R: F(t) = u}.

Define also
H(u) =inf{t e R: F(t) = u} = sup{t € R: F(t) < u} = G(u).

Define similarly G, H,, and X, from F,,.

Fix u € (0, 1). For t < G(u) such that F is continuous at t we have u > F(t) = lim, F,(t) so for every n
large enough, F,(t) < u and thus t = G,(u), i.e. liminf,, G,(u) = t. Recall that F has at most countably many
discontinuity points so there exists a sequence of such t’s converging to G(u), and passing to the limit, we
get liminf, .. G,(u) = G(u). The same reasoning with t > H(u) leads to lim sup, H,(u) < H(u). Thus for
every u € (0, 1),

G(u) < h,?l,ic,l}f Gpn(u) < lim sup G,(u) < lim sup H,(u) = H(w).

n—oo n—oo
Notice that (G(u), H(u)) is the largest open interval (a, b) such that F(t) = F(u) for all ¢ € (a, b) so these
intervals are either disjoint or equal for different values of u. In particular there can only be at most countably
many non empty ones (since each one contains a rational number) so the set Qg = {u € (0,1) : G(u) < F(u)}
is countable and in particular has Lebesgue measure 0. We conclude that for every u € Q\ Qy, which has
probability 1, we have X,(u) = G,(u) — G(u) = X(u). O

If one starts with r.v.s X, X in the first place with X;, — X in distribution, then the theorem states that
there exists another probability space with new r.v.s X/, X’ defined on it, with the same law as X,,, X and
such that X; — X’ a.s. This does not mean that X, — X a.s!

Example 2.5.11. To see how this reasoning works, let us give another proof of Lemma [2.5.6 Suppose
that X, — X in distribution and that f : RY — R€ is continuous Px-a.s. Then there exist X/, X’ with
the same law as X, X and such that X, — X’ a.s. Then f(X}) — f(X’) a.s. by Lemma [2.3.4) and so
f(X]) — f(X’)in distribution. Since f(X}), f(X’) have the same law as f(X,), f(X) respectively, we conclude
that f(X,,) — f(X) in distribution.

Similarly, any theorem which assumes that X, — X a.s. and conclude about the behaviour of quantities
of the form E[f(X,,)] also generalises to assuming only X,, — X in distribution.

2.6 Characteristic functions

In this section, the random variables all take values in (]Rd, %(]Rd)). Recall that we denote by ( -, - ) the
scalar product in R?, also | - | denotes the associated square norm (as well as the modulus in C). We use t to
denote a real number and u for a vector in R%. We let (us, ..., ug) denote the coordinates of u and (u"),s1
denote a sequence of vectors (uf, ..., u}j). We stress that we use the line notation for vectors when writing
in the text, but think of them as columns when it comes to matrix operations.

2.6.1 The characteristic function

Definition 2.6.1. The characteristic function of a r.v. X in R? is the function ¢x : RY — C defined by

ox(u) = E[e ] = E[e! Tt 45,

i(wX) is continuous and bounded for every given u € R¢.

It is well-defined since x +— e
We leave the proof of the basic properties as an exercise.

Proposition 2.6.2. The characteristic function of X satisfies the following properties:
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(i) ox(0) = 1,

(ii) ox(~u) = ox(u) for every u € R,

(iii) |ox(u)| < 1 for every u € R?,

(iv) |ox(u+ h) - ox(u)| < E[le’"X> ~1|] for every u, h € RY so ¢x is uniformly continuous.
(v) If X has dimension d,, then for every d; x d matrix C and vectors u, v € R%, we have

. . At .
(PCX+Z}(u) — E[el(u,CXH))] _ E[ez<u,v>+l<C u,X>] — el<u,v> (pX(Ctu).

In particular,
(a) If d; = d» = d and C = al; with a € R, then @,x.,(u) = el{ww) ox(au).
(b) Also, ifdy =1,thenC =c€ R% gnd CX = {c, XY, and so for every s, t € R, we have (¢ xy+s(t) =
e’ px(te).

(i) If X',..., X" are independent random vectors with dimension dy, ..., d, respectively, then for all u' €
R%, ..., u" € R%, we have

n . k k n
W%m@kwﬂFEﬁhmxﬂﬂjwwﬂ
k=1

k=1

Combined with the previous item, if d; = - = d, = d, then for every u € R?, we have

Oxtaaxr(w) = | | oxe(w).

k=1

Indeed, X! + -+ X" = CX where C is the d x dn matrix with all entries equal to1 and X = (X!, ..., X")

is the concatenation of the X*’s.

The characteristic function corresponds to a Fourier transform of the law of the random vector. For
explicit calculations, by the transfer lemma, if X takes countably many values, say in Z¢ for example, then

ox(w) = Y e OP(X = x),

xezd

whereas if X admits a density fx with respect to the Lebesgue measure in R?, then

ox() = [ e i) dx
]Rd
The next exercise is treated in the exercise sheet.

Example 2.6.3. The characteristic function of a Gaussian r.v. Z ~ N (m, ¢?) is given for every t € R by

)= [y e(itz - E Yz = exp(itm - )
= —(F—€exXp\ iz — zZ=exXp\ium-—- ———|).
v R N2ro? P 20° P 2

More generally, if Zi, ..., Zy are ii.d. with the law W (0, 02), by independence we get for every u € R¢:

2

1 . z ul?o?
. ragron(icu - ) s - e 152),

We shall use this identity now to prove the main result of this section, which is that the characteristic

function does indeed characterise the law.
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Theorem 2.6.4. If X and Y have the same characteristic function then they have the same law.

Proof. Let X and Y both have characteristic function ¢ and independently, let Z = (Z3, ..., Z;) be i.i.d. stand-
ard Gaussian r.r.v.s. The key point is to prove that X + Z/k has the same law as Y + Z/k for any given k = 1.
Indeed, for all measurable and nonnegative functions g we have

z|*

E[g(X + Z/k)] = /JRd » g(x + z/k) Px(dx) ® (zl)d/ze p(_L) dz

Fugini/Rd<Ad (x+z/k)( )d/ze p( |z |2>dz> Py (dx)
y=ralk /Rd< /Rd g(y)(zﬂl)d/z exp(_k2|x2‘3’|2)kd dy> Px(dx).

By the exponential term can be rewritten as

K&

. ( K? |x—J/|2) / 1 . (i(x 2 )
xpl ————— ) = —————ex - - —
P 2 o (2rkzydz P V2T ok
|z|*

Using Fubini’s theorem again, we arrive at

E[g(X + Z/k)] = [Rd (/Rd g(y)<(271z)d /Rd exp(i{x, z)) exp(—i(y,z} - %) dz) dy) Px(dx)
2
= [Rdg(y)<(27ll')d/Rd <P(Z)eXp(—i<y,Z> |2k|2)dz) dy.

Therefore the term in parenthesis is a density for X + Z/k and it only depends on ¢ so X + Z/k does have
the same law as Y + Z/k.

Now observe that X + Z/k — X a.s. and thus in distribution; similarly Y + Z/k — Y in distribution and
since X + Z/k and Y + Z/k have the same law, then the limit law is the same: X has the same law as Y. [

Remark 2.6.5 (Lévy’s inversion formula). One can recover more explicitly the law of a random variable
with a given characteristic function ¢. In dimension d = 1 to simplify, one always has

1 [K eiat _g-ibt _ F(®)+F(b-) _F(a)+ Fa)

— [ () dt
21 Jx P OL e 2 2

5

where F is the corresponding distribution function. Moreover, if [ |¢| < oo, then the law admits a continuous
density given by

s 5 [ e ot

27

A consequence of the previous theorem is that the characteristic function of a vector characterises the
independence in the following way, stronger than in Proposition [2.6.2}

Corollary 2.6.6. Let X',..., X" be random vectors in R%. They are independent if and only if for every
ul, ..., u" € RY it holds

[exp( (ul, X'y + - +<u”,X”>))] = Efexp(i{u’, X' ))] x - x E[exp(i {u", X" ))].

Proof. The direct implication is clear since if the vectors X* are independent, then so are the exp(i {u*, X*))’s
and thus

E|[ expi<u®, x*))| = ] ] Elexp(i (u*, X*)].
k=1 k=1

Conversely, suppose that this identity holds for all u*’s, then because the characteristic function characterises
the law then the vector (X1, ..., X") in R9" has the same law as the concatenation of n independent vectors
so indeed these vectors are independent. O
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Let us end with a useful computation: the moments of a r.v. can be obtained by differentiating the
characteristic function at 0.

Proposition 2.6.7 (Moments). Suppose that E[|X|"] < co, then px € C" and every u € R¢, every k < n, and
forevery ji, ..., jx € {1,...,d}, it holds

ak

-k i<u,X)
———ox\u) =1 ElX:, - X; e .
3 jl"'s i X( ) [ M1 Mk ]

In particular, for u = 0, the right-hand side equals i* E[Xj, - X;, .

Proof. Itis a matter of exchanging derivation and expectation; we use that E[|X|¥] < co to get the domination
[ TTem X €4 = T X € 1. O

2.6.2 Characteristic functions & Convergence in distribution

A second reason of the success of characteristic functions is that they characterise the convergence in
distribution.

Theorem 2.6.8. We have X" — X in distribution if and only if px» — @x pointwise.

Proof. The direct implication follows from the fact that the function x + e!<“*” is continuous and bounded
for every fixed u € R%. For the converse one, we argue as in the proof of Theorem and we consider
X" + Z/k where Z is an independent random vector which has the same law as d i.i.d. standard Gaussian
r.r.v’s. Recall from that proof that X" + Z/k has a density given by

| 2

n 1 .
70 = i [, exe@esp(-in - ;) d

If px» — @x pointwise, then by dominated convergence, f;' converges pointwise to fi, the density of
X + Z/k. By a second application of the dominated convergence theorem we infer that for any continuous
and bounded function g,

E[g(X" + Z/k)] — E[g(X + Z/k)],

n—oo

i.e. that X" + Z/k — X + Z/k in distribution for any k = 1 fixed.
It remains to prove that X" — X in distribution. Fix g bounded and L-Lipschitz, then for every k = 1,

IE[g(X,)] - E[g(X)]]
< E[|g(Xa + Z/k) = g(Xu)|] + [E[g(Xn + Z/k)] - E[g(X + Z/k)]| + E[|g(X + Z/k) - g(X)|]

< 2L B{171) + [BLa(X, + Z/K)] - ELg(X + ZIR)]|

The second term tends to 0 as n — oo and further the first one tends to 0 as k — 0. Hence E[g(X,,)] —

E[g(X)] for every Lipschitz and bounded function, which is equivalent to the convergence in distribution

by Theorem [2.5.5| O

This theorem shows that, given a sequence (X),), and a candidate X for its limit in distribution, in order
to prove the convergence one may rely on the characteristic functions, and we shall use this idea to prove
the Central Limit Theorem in the next section. However sometimes one does not have a priori a candidate

X. In this case, we have the following powerful extension.

Theorem 2.6.9 (Lévy). Let X,, have characteristic function ¢, for every n = 1 and suppose that there exists
a function ¢ : R — C which is continuous at 0 and such that ¢, — ¢ pointwise. Then there exists X whose
characteristic function is ¢ and such that X, — X in distribution.
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We will omit the proof of this result. The key point is to prove that there exists a subsequence (X, )«
which converges in distribution to some X (key word is tightness). Then by Theorem|2.6.8|the characteristic
functions converge along this subsequence, and by our assumption and Theorem [2.6.4 this means that X
has characteristic function ¢. A second application of Theorem [2.6.8| allows us to conclude that X, — X in
distribution.

Recall that the characteristic function of a random vector is always continuous at 0 so by Theorem[2.6.9|
if ¢, does not converge, or converges to a limit which is not continuous at 0, then X,, does not converge in
distribution.

2.7 Central Limit Theorems & Gaussian vectors

2.7.1 Central Limit Theorems in dimension 1 (*)

Let us start with the dimension d = 1. Recall that the Law of Large Number states that if (X;),. are
iid. r.v's with mean E[X;] = m, then

X+ Xy
—_—— — m

n n—o0

in probability for the weak law and almost surely for the strong law. One then wonders at which speed does
this convergence occur, or equivalently asks for the second order term. The Central Limit Theorem shows
that under a finite variance assumption, these fluctuations are of order /n, and remain random in the limit.

Theorem 2.7.1 (Standard CLT). Let (X;)n1 be iid. r.v’s with E[X;] = m € R and Var(X;) = o2 € (0, ).
Then we have the convergence in distribution

n(X1+~-~+X,, ) Xi++X,-nm (d
—|—-m]) = —>

. — —> Z~N(,1).

o n

We shall prove actually a more general version by removing the assumption that the r.v’s have the same
law. In the sequel we are given for every n = 1 a collection (X, x)k<n of independent r.r.v’s with E[X,x] = 0
(otherwise subtract the mean) and ]E[Xi o] = Var(Xp, k) = ai ¢ € [0,00), and with at least one index such that
orzl’k # 0. We let

n
2 2
Sp = Z Op € (0,00).
k=1

The following statement and first proof are due to Lindeberg, and Lévy then proposed a proof based on
characteristic functions.

Theorem 2.7.2 (Lindeberg’s CLT). Assume the so-called Lindeberg condition: for any ¢ > 0,
1 n
= 2 B[Xurl Lo ] =2 0 (2:3)
Sn =1 n—oo

Then we have the convergence in distribution

Xn,l L Xn,n ﬂ

Sn n—oo

Z ~ N(0,1). (2.4)

Let us defer the proof to the next section and immediately deduce the CLT for i.i.d. r.v’s from this
statement.

Proof of Theorem[2.7.1 In this case, the X, all have the same law so s? = no? and moreover, for any ¢ > 0,

n=

we have by dominated convergence

1 ¢ 1
7 2Bl xpes] = B[ mf Ly ] =2 0.

n—oo
n k=1

Thus is satisfied and we can apply Theorem |2.7.2] O
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The Lindeberg condition (2.3) may be hard to check in practice and other stronger conditions, but
simpler to verify, exist such as the Lyapunov condition.

Theorem 2.7.3 (Lyapunov’s CLT). Suppose that there exists § > 0 such that

1 n
=5 LE[Xul] — 0 (25)

n—oo
no k=1

Then (2.3) holds so we have the convergence in distribution

Xn,l R Xn,n ﬂ

Sn n—oo

Z ~ N(0,1).

Proof. Put p = (2 + 6)/2and q = (2+ )/ so 1/p + 1/q = 1. Then the Holder inequality and then the Markov
inequality yield

1/p
E [|Xn,k|2 I[\X,,yk|>£sn:| = E[|Xn,k|2+5] ]P(|Xn,k| > gsn)l/q

+ /q
vo110 ( EDXnil7T\
= B[] (B

(gsn)2+5
_ ElXi™)
(gsn)(S

Thus

1y 2 1 - 248

5 D (Xl Uxioes] = 55 D, BIXnil*,

Sn k=1 €5 kA
which tends to 0 under (2.3). O

The Lyapunov condition (2.5) is often checked with 2 + § = 3 or 4 in practice (provided such a moment
exists).

2.7.2 Proof of the Lindeberg CLT (*)
The proof of Theorem [2.7.2] will use the following two elementary results.

Lemma 2.7.4. For every n = 0 and every x € R, it holds
) n ix k 2 x| x n+1
elx_z() < min( 2P M .
= k! n' (n+1)!

Proof. Put Ry(x) =e* -3, (i,f!)k the rest of the Taylor expansion of e™*. Then for n = 0 we have

Ro(x) = e™ =1 = cos(x) - 1 + isin(x) = /x(— sin(y) + icos(y))dy = /x ie”dy
0 0

so indeed |Ry(x)| = min(2, |x|). Then for n > 1, we have

R = [ iRes()
0
and the result follows by induction. O

Remark 2.7.5. We shall use this lemma with n = 2 and infer that, for any § > 0 and any x € R, we have:

2

- x
e’x—<1 +ix - —)
2

| 3

3
) x
< mln(xz, %) < x? Lixpss + e Lixj<s < x* Lixps + Sx?.
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Lemma 2.7.6. Let oy, ..., &y, B1, ..., Pn € C be such that |ak|, |fx| = 1 for all k < n. Then

n n n
Tl -TIA| =Dl - Bil-
k=1 k=1 k=1

Proof. The claim is obvious for n = 1 and for n > 2, we have

-1

n n n-1 -1
Hak_H,Bkz(an_ﬁn) ak“’,Bn(Hak_ ,Bk),
k=1 k=1 k=1 k=1

S
S

k=1
hence
n n n-1 n-1
TTo-T15 <lem=Bul+|[Tew- ] ] 5
k=1 k=1 k=1 k=1
and the claim follows by induction. O

Let us make one last observation.

Lemma 2.7.7. Under (2.3) we have

Proof. For every ¢ > 0, we have

2
1
Supi’ = sup — 32 ]E[|Xnk| H\Xnk\<53n] + Sup ]E[|Xnk| H‘Xnk‘>gsn]

ksn °n <n °n n
1
2 2
=&+ Z ) E[|Xn,k| ]]‘lxn,k|>53n:|’
k=1 Sn
which converges to % according to (2.3). t

We are now ready to prove Theorem[2.7.2]

Proof of Theorem/|2.7.2 By independence, for all n > 1 and all ¢ € R, we have that
[ itsy! k=1 nk] — E[ eztsn Xn,k] - E[el Sy tXn,k].
k=1 k=1

Recall Theorem our aim is thus to prove that this converges to E[e/?] = e 2,
We deduce from Remark [2.7.5)and after taking the expectation that for every ¢ > 0 and every ¢ € R,

2 2 2v2
‘E[ei(sglt)xn,k] _ (1 _ t°o nk) < ]E[min(t Xn,k |t|3 p(n,k|3 )]
2s2

S S
According to Lemma [2.7.6] we have then for any t € R,

‘ [/ tyn X, W] ﬁ(l_tzaik>‘<zn:
252 B

k=1

2
3nk

tZ
= ?E[Xnkﬂ|xnk|>esn] + €t
n

n

2 2
]E[ l’(S;lt)Xnyk] _ 1= t O-n,k
2s2
n

o2
J 3%n,k
Z(Z Xnk ]]'lxnk|>53n] + €|t| n >
k=1 \ Sn S5
t2
sa

IA

n

]E[Xn,k H‘Xn,k‘>gsn] + £|t|3’

IA

k=1
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By the assumption (2.3) the last line tends to |t]*¢ and as ¢ > 0 is arbitrary, we infer that

its;t YRy Xk - t* Cyr?,k
E[e"n &&= ’]—H 1- 5s2 e 0 (2.7)
n

k=1

as soon as is satisfied.

Now let (Z,, k)1<k<n be independent Gaussian r.v’s with Z, x ~ N (0, Uﬁ, 1) respectively. We claim that they
satisfy (2.3). Indeed, if Z ~ N (0, 1), then Z, ; has the same law as 0, xZ and so, by the Cauchy-Schwarz
inequality,

n

1 1 2 1 , )
7 B2 Vzeen] = 5 20 ok B2 Lizicoyon]
n k=1 n k=1
1 n
= 5 2 neNEIZFTP(Z] > es1/on)
n k=1

IA

\/IE[IZI‘*] P(Z| > & inf sp/on ).

Recall from Lemma that infy_, sp/0,x — 0, then the last line tends to 0 and so indeed (Z,, x)1<k=n
satisfy (2.3). We infer that they satisfy (2.7) and thus by the triangle inequality:
|E[eit5;1 Yk-1 Xn,k] _ E[eits,;l Y-t Zn,k]| — 0.
n—oo
It remains to observe that since the Z, ;’s are independent Gaussian random variables, then s;' Y7, Z, «
has the Gaussian law with mean s,' Y'3_; E[Z, ] = 0 and variance s,* Y'i_, E[Z7 ] = 5,° Y., 07 = 1, that
is s;' Y°7_, Z,x is a standard Gaussian and so

]E[ei“;l > Zn,k] _ E[eitZ] — e*tz/Z ]
This completes the proof. O

Remark 2.7.8 (Minimal assumption). We have proved that the Lindeberg condition implies both the
Central Limit Theorem and the fact that no one variable dominates the others in the sense that the
largest variance is small compared to the sum of the variances (2.6). Feller has proved conversely that
and combined imply the Lindeberg condition which is therefore the minimal assumption one
can make in order to have a CLT after rescaling by the square-root of the sum of the variances. Let us
mention that the convergence to a Gaussian law under a different rescaling may hold, even for i.i.d. r.v’s
with infinite variance (key words are domain of attraction of a Gaussian law).

2.7.3 Higher dimensions: Gaussian vectors

We now aim at considering CLT’s in dimension d = 2. The first question to address is: what is the analogue
of the Gaussian law in higher dimension? From now on, in dimension 1, a constant random variable will be
seen as a Gaussian random variable with variance 0, that is we agree that N (c, 0) = §, is the Dirac mass at ¢
for any c € R.

Definition 2.7.9. A random vector (Xj, ..., Xy) is called a Gaussian vector when any linear combination of
its coordinates has a Gaussian law in R, i.e. for every a = (ay, ..., ag), we have that {a, X) = Zle ar Xy is
Gaussian distributed.

By taking a to be a vector in the canonical basis of R¢, we deduce that if X is a Gaussian vector, then
each coordinate X has a Gaussian law. The converse is not true in general! See the exercise sheet for an
example.

Proposition 2.7.10. Suppose that (X, ..., Xy) are independent r.r.v. each with a Gaussian law, then the vector
(X1, ..., Xy) is a Gaussian vector.

50



Proof. Fix a = (ay, ..., aq4) and t € R, then by independence, the characteristic function of {a, X) at ¢ equals
d 2
Var(X
]E[exp(itZaka)] = m

: ) =exp<it<a,E[X]>—%(a,CCD)’

d
exp(itak E[Xi] -

k=1 k=1
where we have set C the diagonal matrix whose diagonal coordinates are Cy x = Var(Xk). This proves that
{a, X has the Gaussian law N ({a, E[X]), {a, Ca)). ]

Gaussian vectors whose coordinates are independent standard Gaussian will be the building blocks
of the more general ones, in the same way in dimension 1, any Gaussian random variable X ~ N (m, a?)
can be written in law as m + 0Z where Z = N (0, 1). Let us now characterise Gaussian vectors by their

characteristic function.

Theorem 2.7.11. A random vector X is a Gaussian vector if and only if there exists a vector m € R and a
d x d symmetric positive matrix C such that for all u € R?,

(pX(u)=exp<i<u,m>— %(u, Cu}). (2.8)

In this case, my = E[X)] and C, = Cov(Xk, X;) forall1 < k, ¢ < d and we write X ~ N(m, C). Finally, for
any m € R and any d x d symmetric positive matrix C, there exists a Gaussian vector X ~ N (m, C).

Some linear algebra. Recall that a matrix C is said to be symmetric when C' = C, and further positive
when for all a € R, it holds {a, Ca) = a'Ca = 0. If further a’Ca = 0 only when a = 0, then we say
that C is definite positive. A symmetric positive matrix C has nonnegative eigenvalues and can always be
diagonalised in a othornormal basis, i.e. it can be written as PDP!, where P! = P! and D is diagonal, with
diagonal coordinates given by the eigenvalues of C. Then write v/D for the diagonal matrix whose entries
are the square-root of those of D, and let A = P\/DP™!. Then A’ = A and A’A = C. Finally, C is definite
positive if and only if all its eigenvalues are nonzero, which is equivalent to D being invertible, in which
case Cisand C™! = PD!P!,

Proof of Theorem[2.7.1] Let us start with the last statement and construct for any m € R? and any d x d
symmetric positive matrix C a random vector whose characteristic function is given by the formula (2.8).
Let Y = (Y1,..., Yy) be a vector whose coordinate are i.i.d. standard Gaussian. We have seen in the proof of
Proposition that Y has characteristic function

oy(u) = E[ei<”’y>] = exp(—% {u, u)) = exp(—% |u|2).
Consequently, letting A be the symmetric matrix A’ = A such that A? = C, we get
pay(u) = E[e/4AD] = B[l AwD] 2 E[efAuD)] = exp(_% |Au|2) _ exp(_% . Cu)).
Then X = m + AY has characteristic function given by (2.8).
This form of characteristic function implies that X is a Gaussian vector since for any a € R? and t € R,
2

o xy(t) = px(ta) = eXp(it<a, my - %(a, Ca)),

so{a,X) ~ N({a, m),{a, Cay). By taking a to be the k’th vector in the canonical basis of R?, we deduce
that X ~ N(myg, Crx) so m = E[X] and the diagonal of C is given by Ciy = Var(Xy). Similarly, by
taking a to be the sum of the k’th and ¢’th vectors in the canonical basis of R?, we deduce that Z + Z; ~
N(my + mg, Cyx + Cpp + 2Cr ) and so

Var(Zy + Zy) — Var(Zy) - Var(Z,)  (Cxx + Cep +2Ciy) — Ckk — Crp

Cov(Zy, Z,) = = = Cry.
ov(Z, Zy) 2 2 k.t
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Finally, suppose conversely that X is a Gaussian vector, let m = E[X] and C denotes its covariance
matrix, and let us prove that its characteristic function is given by (2.8). First note that m and C are
well-defined since each coordinate has a Gaussian law so is square-integrable. Moreover, for any u € R,
the r.v. (u, X) has a Gaussian law with mean m, = E[{u, X)] = {u, E[X]) = {u, m) by linearity, and with
variance o2 = Var({u, X)) = Cov({u, X »,{u, X)) = {u, Cu) by bilinearity. Therefore

1
ox() = o (1) = exp((imy - 2,
which equals the right-hand side of (2.8). O

Recall that Gaussian random variables have a density with respect to the Lebesgue measure, except the

degenerate ones with variance 0. This can be generalised to higher dimension.

Proposition 2.7.12. A Gaussian vector X ~ N (m, C) has a density with respect to the d-dimensional Lebesgue

measure if and only of C is invertible, and in this case it takes the form: for every x € R,

1 ( 1 .
x)=———exp|l-——<x-mC (x-m >).
fX( ) (271)‘1/2 m P 2 ( )
Proof. Recall that we can represent the law of X in the form m + AY whereY is a collection of i.i.d. standard
Gaussian r.v’s. and A = Py/DP~! with P! = P! and /D is diagonal and made of the square-root of the
eigenvalues of C. If C is invertible, then so is A so the affine transformation y — x = m+ AY is a

diffeomorphism and the change of variable formula yields for any measurable and bounded function g:

2

E[g(m + AY)] = /Rd g(m +Ay)H< \% exp(—);k)> dy; & - @ dyy

k=1
1 lyl°
= /Rd g(m+ Ay)(zﬂ)d/2 eXp<—7) dy
1 [A™! (x = m)]® -
= /Rd g(x)(zﬂ)d/2 exp(— 5 ) |det A7!|dx
~ 1 {x-m, ClY(x-m))
= /Rd g(x)—(zﬂ)d/2 e exp( 5 ) dx.

Thus when C is invertible, X has indeed the given density.

On the other hand, if C is not invertible, then there exists a € R such that Ca = 0. Consequently,
Var({a, X)) = {a, Ca) = 0 so X almost surely belongs to the hyperplane H = a* = {x € R?: (a,x) = 0}
which has d-dimensional Lebesgue measure 0. In particular X has no density. O

Recall that the covariance between two independent r.r.v’s is zero, but a null covariance does not imply

independence in general. It does for Gaussian vectors!

Proposition 2.7.13 (Independence). Let (X, ..., Xy) be a Gaussian vector. Then the variables (X, ..., Xy) are

independent if and only if the covariance matrix of X is diagonal.

Proof. The direct implication is known as just recalled. Suppose conversely that the covariance matrix C of
X is diagonal. Subtracting the mean E[X] if necessary, suppose that E[X] = 0. Then we know that for any
u€RY,

d d d
' ' 1 1 :
E[:]I;[ ezuka] — E[ez<u,X>] - exp(_5 {u, Cu>) = exp(_5 Z uiCk,k> - ] ]E[emkxk],
=1 k=1 k=1
which characterises the independence by Corollary [2.6.6] O
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Remark 2.7.14. More generally, the same proof extends (with more notation) to show that if we partition
X into sub-vectors, say (X', ... ,Xk) where X' € R%, ..., X* € R%, where d; + - + dir = d, then the vectors
X1 ..., Xk are independent if and only if the covariance matrix C is block-diagonal with block sizes d, ..., dy,
i.e. if and only ifCov(Xi;,X;) =0foranyl<i<j<kandanyl=<i,=<dand1<j, <d,.

q

We can now easily deduce the CLT for i.i.d. random vectors from the dimension 1 case in Theorem|[2.7.1]

Theorem 2.7.15 (Multivariate CLT). Let (X"),s1 be ii.d. random vectors with E[X'] = m € R? and
Cov(X1) = C a symmetric positive definite matrix. Then we have the convergence in distribution:

Xi++X,-nm ()

Jn e

Proof. Assume m = 0 without loss of generality. Let u € R? and t = Var({u, X')) = (u, Cu) by bilinearity
of the covariance. We deduce from Proposition [2.6.2] that

Z ~ N (0, C).

Pprzyn Xk(u) = Qoyn-1r2 22:1Xk>(1) = Qp-1 Zz:1<u,Xk>(1)-

Note that the random variables {u, X¥) are i.i.d. with mean 0 and variance {u, Cu). Therefore by the CLT
in dimension 1, Theorem [2.7.1] the previous characteristic function converges to that of a Gaussian random
variable with variance {u, Cu) evaluated at 1, namely:

{u, Cu)?
Ppinyn k(1) - exp(—?) = pz(w),
where Z ~ N (0, C) and we conclude by Theorem O

One can get multivariate extensions of Lindeberg’s or Lyapunov’s CLT in a similar way. For every
n = 1let (X™F);., be independent random vectors with E[X"™¥] = 0 (otherwise subtract the mean) and with
covariance matrix C™F with |C™| < co, where we recall the norm | - | on symmetric positive matrices given
by the largest eigenvalue. Thus |[C™¥| < oo if and only if {a, C"*a) < oo for all a € R%. Assume also that at

least one of them is invertible and set
n

s"=y ck.
k=1
Note that S is the covariance matrix of ¥'}_; X™* and it is invertible. Then it admits an invertible square-root
matrix +/S" and |(S")"V2|? < oo equals the inverse of the smallest eigenvalue of S™.

Theorem 2.7.16 (Lindeberg’s multivariate CLT). Assume the so-called Lindeberg condition: for any ¢ > 0,

n
ZE[H(Sn)*l/ZXn,kHZﬂu(sn)fwxn,k”»] — 0. (2.9)

—00
k=1

Then we have the convergence in distribution

d
(S V2 (Xs + e+ Xp) 2 Z = (0, 1), (2.10)
n—oo
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Part 11

Markov Chains
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Chapter 3

Discrete Markov Chains

In words a Markov chain is a random process such that, at any given time, the future evolution only depends
on the curent position and not on the whole past trajectory. This lack of memory phenomenon appears
in many contexts and Markov chains are therefore a very important object in modelisation. They can be
studied in fairly general spaces, and this has important applications in probability and statistics in R¢ or
more abstract spaces, but this leads to several technicalities involving measure theory, even just to define
the basic objects of interest. We shall therefore restrict ourselves to a countable set of values and thus
discrete random variables, which eliminates a lot of technicalities (and is already interesting!). We refer the
interested student to the books we suggest in the beginning of these notes for more general contexts.

In this chapter and in the next two, we assume that the random variables take value in a countable set X,
equipped with the o-algebra X of all subsets of X.

Contents
[3.1 The Markov property] . .. ... .. ... ... . i 55
[3.2 Transition matrices| . . . . .. ... . . .. ... .. e e e 57
[3.3 Markov chains as random recursive sequences| . . . ... ... ........... 60
[3.4 Stopping times and the strong Markov property] . . ... .............. 63
[3.5 Harmonic functions and the Dirichlet problem (»)[ . . . . . ... ... ....... 64

In Section [3.1 we first define formally Markov chains by three equivalent formulation of the Markov
property. Section|3.2]introduces the main technical tool associated with Markov chains, that is the transition
matrix which encodes the one-step displacement probability into an infinite matrix. Section [3.3/shows that
a Markov chains can be seen as random dynamical systems, which explains their success in modelising
various phenomena. Section [3.4] presents a generalisation of the lack of memory of Markov chain from a
fixed time to a random time. The correct notion of random time here being so-called stopping times, which
will play a central role. We end by presenting in Section [3.5{an application of this property to solve the
discrete Dirichlet problem, related to the question of the first exit or entry point in a given subset, which
has many applications from physics to finance.

3.1 The Markov property

The term stochastic process is meant to describe the evolution of a single random variable as time passes. The
formal definition is very simple and does not say much, but we include it since we are going to extensively
use this expression, although we shall often drop the adjective “stochastic”.

Definition 3.1.1. A stochastic process is a sequence of random variables X = (X,),-¢ defined on a common
probability space (Q, F, P) and with value in the same measurable space (X, ).
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Recall that for any event B € & with nonzero probability, the formula:

P(A|B)=]I)$‘(;)B)

for all A € F defines a probability measure P(- | B). Below, we implicitly assume that all the events by
which we condition have nonzero probability.
Recall that we will restrict ourselves to stochastic processes (X;),=0 Which take values in a countable

space X. Here is our object of interest.
Theorem 3.1.2. Let (X)), be a stochastic process with values in X. The following assertions are equivalent:

(i) For every n = 0, for any xy, ..., xn+1 € X, we have:

P(Xni1 = Xne1 | Xi = x3,0 < i < n) = P(Xpi1 = Xpe1 | Xin = x0).

(ii) For everyn = 0, for any k = 1 and any xq, ... , Xp+x € X, we have:

P(Xni1 = Xnat, oo Xnak = Xnak | Xi = %3,0 < i< n) = P(Xne1 = Xnets oo, Xk = Xnake | Xn = X3).

(iii) For everyn = 1, for any k = 1 and any xy, ..., X,+1 € X, we have:

P(Xo = x0, ... s Xn-1 = Xn-1, Xn+1 = Xnats oo s Xnak = Xnak | Xp = xn)

=P(Xo = x0, ..., Xn-1 = Xno1 | Xi = %) x P(Xps1 = Xt oo, Xnak = Xnake | X = 2x).

These properties are each called the Markov property and such a process is called a Markov chain.

In words, a Markov chain is a process in which the random evolution at the next step X,.; (Property [{D),
or all next steps (X,),-n (Property only depends only the current position X, and all the rest of
information from the past is irrelevant. Property is often stated as “the future and the past are
conditionally independent given the present”.

Proof. Let us first prove that[(ii)| is equivalent to Indeed [(ii)| reads by definition of the conditional

expectation:
P(Xi=x,0<i<n+k) PXj=xi,n<is<n+k)

P(X;=x;,0<i<n) P(X, = x,)
After multiplying both sides by P(X; = x;,0 =< i = n)/ P(X,, = x,), this is equivalent to:

P(Xi=x,0<i<n+k) PXi=x,0<i<nPXi=x,n<i<n+k)
P(X; = xn) Pz P(X, = xn)
which is the claim [(iiD)}
Next notice that|[(i)]is weaker than [(ii)| since it corresponds to the case k = 1 in the latter. This therefore
provides the base case to prove that [(i)]implies[(ii)] by induction on k. Suppose thus that the claim [(ii)| holds
for some k = 1. By applying|{i)]at time n + k, we get:

5

P(Xniks1 = Xnake1 | Xi = x5, 0 < i < n+ k) = P(Xpik41 = Xniko1 | Xnsk = Xnik),
which we can rewrite as:
P(Xi=x,0<i<n+k+1)=P(X;=x;,0<i<n+k)PXnirs1 = Xniks1 | Xnak = Xnsk)-
On the one hand, if we divide both sides by P(X; = x;,0 < i = n), then we get:

P(X;=xj,n+l<isn+k+1|X;=x,0<i<n)
=PXi=x,n+l<isn+k|Xi=x,0<i<n)PXniki1 = Xniks1 | Xnck = Xnek)

=PXj=x,n+1<isn+k|X,=x)PXpiks1 = Xnske1 | Xnsk = Xnek)
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by the induction hypothesis. On the other hand, if we go back to the preceding display and sum over all
values of xp, ..., x,_1, then we get:

PXi=x,n<isn+k+1)=PX;j=x;,n<i<n+k)P(Xpiki1 = Xnske1 | Xnsk = Xnik)s
so, after dividing by P(X,, = x,),

PX;=x,n+l<isn+k+1|X,=x,)

=PXj=x,n+1<sisn+k]|X,=x)P(Xnits1 = Xnsks1 | Xnsk = Xnsk)s
and we prove that thisequals P(X; = x;,n+1<i<sn+k+1|X;=x,0=<ix<n). ]
One can actually drop some indices in the Markov property, except the last one.

Proposition 3.1.3. If(X;)us0 is a Markov chain, then for every n = 1 and every subset of indices {ii, ..., iy} ©
{0,...,n— 1} we have for any xp, xp.1 € X,

]P(Xn+1 = Xn+1 | Xi1 = Xigs een ;Xik = Xi» Xn = xrl) = ]P(Xn+1 = Xn+1 | Xn = xn)-

Proof. By the Markov property we have for all xy, ..., x;.1 € X:

P(Xn = Xn» Xn+1 = xn+1)

n — n

P(X; = xj,0 < j < n).

By summing over all values x; for j € {0,...,n -1} \ {ij, ..., ix }, we obtain:

]P(Xn = Xp, Xn+1 = xn+1)
P(X, = xn)

]P(Xil = xils'"’Xik = xikaxl’l = xn,Xn+1 = xn+l) = ]P(Xil = xi15 aXik = xiern = xn),

and the claim follows. O

3.2 Transition matrices

The key tool to study Markov chains and the central object in this theory is the transition matrix associated
with it.

Definition 3.2.1. A transition matrix (or stochastic matrix, or transition kernel) is a measurable function
P: X xX — [0, 1] such that P(x, ) is a probability on X for every x € X.

Recall that a measure p1 on a countable set X is simply a nonnegative sequence (p(x), x € X). A probability
is a measure with ) .x p(x) = 1. Hence, P is simply a (possibly infinite) matrix with nonnegative entries,
such that the sum over each row equals 1.

Theorem 3.2.2 (Chapman-Kolmogorov Equation). A stochastic process (Xp)n=0 is a Markov chain if and
only if there exist transition matrices (Py)r=1 such that for every n = 0 and every xy, ..., x, € X, we have:

n
P(Xp = x0, ..., Xn = %) = P(Xp = XO)HPk(Xk—l,Xk)-
k=1

Proof. Suppose first that (X, is a Markov chain and let us prove the identity by induction. The latter is
trivial for n = 0, further, we have by the Markov property:

]P(X() = X0, --- ,Xn+1 = x,,+1) = ]P(Xo = Xo, ...,Xn = xn)]P(X,,+1 = Xn+1 | XO = Xo,...,Xn = xn)
=P(Xo = x0, ..., Xpn = x0) P(Xps1 = xna1 | Xu = xp).
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Note that P(X,+1 = xp+1 | Xi = x,) only depends on the joint law of X, and X,,.1 as well as on x, and x.1.
Further, for x, fixed, it defines a probability, thus as a function of both x,, and x;.1, it defines a transition
matrix P,.; and the claim follows by induction.

Suppose conversely that there exist transition matrices (Px)x-; such that for every n = 0 and every
Xo, ..., Xn € X, we have:

n
P(Xo = X0, X = Xn) = P(Xo = %0) [ | Palxic1, 1),
k=1

Then
P(Xo = X0, ..., Xn = Xp, Xpe1 = xn+1) = ]P(XO = X0, s Xn = xn)Pn+1(xn: xn+1)'

Let us sum over all values x, ..., x,-1 to obtain:
P(Xyn = xu, Xns1 = Xns1) = P(Xn = %) Pr1 (%0, Xns1)-
Combining the last two displays, we infer that:
P(Xn+1 = Xne1 | Xo = X050, Xn = Xn) = Pra1(Xn, Xne1) = P(Xpi1 = 41 | X = ),
hence (X,) -0 is a Markov chain. O

From now on, one should view a function f on X as a column vector and a measure y as a row vector.
Then we can define what, when X is finite, is simply the matrix multiplication as follows.

Definition 3.2.3. Let P, Q be transition matrices, let f : X — R be a function, and let ; be a measure on
X. Let us define three operations:

« When it makes sense, let Pf be the function given by:

Pf(x)= ) P(x,y)f(y)  forallxeX,
yeX

which is the expectation of f(Y,) when Y, has the law P(x, -).

« Let yP be the measure given by:

uP(y) = Z u(x)P(x, y) forall y € X.
x€X

When p is a probability, say the law of a random variable Z, then pP(y) is the expectation of P(Z, y).

+ Let PQ be the matrix given by:

PQ(x,z) = Z P(x, v)O(y, z) for all x,z € X.
yeX

Exercise 3.2.4. If P is a transition matrix and y is a probability, then so is pP. If Q is another transition
matrix, then so is PQ. Consequently [];_; Pk is a transition matrix if the P}’s are.

Remark 3.2.5. A consequence of Theorem is that the law of a Markov chain (X},), is entirely
characterised by the transition matrices

Pn(xn—l, xn) = IP(X” = Xn | Xp-1 = xn—l)
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for every n > 1 and the initial distribution, that is: the law of Xj. In particular, for every n = 1 and x, x, € X,

lP(anxn|X0=x0)= Z ]P(X1=X1,...,Xn=xn|X0=X())

X15-5Xn-1

> T Pexir, =)

X155 Xn-1 k:l
n
(TT 7)o 0,
k-1

where the product of transition matrices is that defined above. Consequently, if 7 is a probability on X,

then for all x € X, we have
n n
(7 TTR) = 3 (T Pe) o) = 3 7x0) POG = x| Xo = 30),
k=1 X0€X k=1 x0€X
which equals the probability that X, = x when X has the law 7.

Definition 3.2.6. A homogeneous Markov chain is a Markov chain in which all the transitions matrices
are equal, say P, = P for all n. We then speak of a P-Markov chain.

From now on we only consider homogeneous Markov chains. The general case is not more complicated
in this chapter and mostly adds more notation, but it becomes intractable in the next chapters. For x € X,
we shall write P, to mean that the Markov chain starts from X, = x and more generally if 7 is a distribution
on X, then we shall write P, to mean that the Markov chain starts from X, with the law 7. We then write
E, and E, for the associated expectation. Note that in a P-Markov chain, we have for every n = 1 and
every initial distribution x, for every x, y € X:

Pr(Xni1 =y | Xon = x) = P(x, y) and P.(X, = x) = (nP")(x)
Also, for every function f : X — R for which the expectations are well-defined, we have
Eq[f(Xns1) | Xn = xa] = (Pf)(xn) and E;[f(Xn)] = 7P"f.

Theorem 3.2.2|allows to see any P-Markov chain as a random walk on a weighted graph, as in Figure
draw elements of X as points, and draw an arrow from x to y with the weight P(x, y) if the latter is nonzero.
By Theorem |3.2.2] the probability that the Markov chain follows a given trajectory, conditionally on its
starting point, is simply the product of the weights on the arrows along this path.

@ @ 1 2 3 4 5 6

1/3
1/ s P 1 /1212 0 0 0 0
L 1 0 0 0 0 0

v}

@ @ 3 0 0 0 23 0 1/3
O 4 0 0 1 0 0 o0
1/2 3 0 0 0 1/4 1/2 1/4
i o 1/2 5 1/4 1/2 1/
1
1/4 6\ 0 0 34 0 14 0
1/4

Figure 3.1: A weighted graph on the left and the corresponding transition matrix on the right.
The probability of any given trajectory is the product of the weights on the corresponding edges.

Theorem also allows to extend the third formulation of the Markov property in Theorem
Precisely: a P-Markov chain is a process such that at any time n, conditionally on the value of X, the futur
process (Xy.k)k=0 is also a P-Markov chain, started afresh at position X}, independently of the past.
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Corollary 3.2.7 (Restarted process). Let (X,)ns0 be a P-Markov chain, n = 1, and x € X. Then conditionally
on {X, = x} the process given by Yy = X,.r for k = 0 is a P-Markov chain started from Y, = x and is
independent from (X, ..., Xp-1)-

Proof. The conditional independence was proved in Theorem [3.1.2} it only remains to check that (Y)so is
a P-Markov chain starting from x. By Theorem 3.2.2] for every yi, ..., yx € X, we have:

P(Yo = x, Y1 = y1,..., Yk = ¥i) = P(Xy = X, Xpe1 = Y1, -0, Xuik = Vi)
= Z ]P(XO = xO;---:Xn = xerHl = Y1,---:Xn+k = yk)

X050 -5 Xn-1
n-1 k
= Z P(Xo = xo) H P(xi-1, x1)P(%p-1, x)P(x, y1) H P(yj-1, yj)-
K05+ s Xn-1 i=1 j=2
Next notice that Theorem [3.2.2]also yields:
n-1
> P = x) [ [ Pt x)P(n1,x) = Y. P(Xo = %o, Xp = Xn) = P(X, = %) = P(Y = x).
X050+ Xn-1 i=1 X05e s Xn-1
We have thus proved that
k
P(Yo = x, Y1 = 1., Yie = y) = P(Yo = x)P(x 1) [ | P31 ),
=2
and we conclude from Theorem again. O

3.3 Markov chains as random recursive sequences

Markov chains are in some sense the random analogue of recursive sequences, defined iteratively by
Xn+1 = f(x4), as shown in the next result. This provides a natural motivation to study Markov chains as
well as an easy way to prove that a given process is indeed a Markov chain; it also helps to simulate them
in practice.

Proposition 3.3.1 (Random recursion). For any X, any sequence (&,)n=1 of i.i.d rv’s with values in some
space (E,€) and independent of Xy, and for any measurable function f : X x E — X, the process defined
iteratively by:

Xn1 = f(Xn’ §n+1)
is a homogeneous Markov chain started from Xy, with transition matrix given by P : (x,y) — P(f(x, &) = y).
Conversely for any transition matrix P and any random variable X, in X, there exist such a sequence (&,)ns1

and such a measurable function f : X x E — X such that the corresponding Markov chain has transition
matrix P.

Proof. For every x, ..., x,, since the variables Xy, &, ..., &, are independent and &, ..., &, have the same law,
then we have:

]P(Xo = X0, ...,Xn = Xn) = ]P(Xo = X(),f(X(), §1) = xl,...,f(xn,l, §n) = Xn)

= P(Xo = x0) | [ P(fCak-1, &) = i)
k=1

=P(Xo = x0) HP(xk—hxk)-
k=1

We conclude from Theorem that (X,), is a P-Markov chain.
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Now suppose that we are given a transition matrix P. Let us enumerate the state space as X = {xp, x1 ... }
and for any k = 0, let us decompose the interval [0, 1) as the disjoint union:

-1 £
(0.9 = U |3 Pl 0. 3 Pl

Further for u € [0, 1), let f(xy, u) = x, where £ = 0 is the unique index such that

-1 4
u€ [Z P(xk, x31), Y P xi))~
i=0 i=0

Let (U,)ps1 be iid. with the uniform distribution on [0, 1) and independent of Xy. By the first part of
the proof, the sequence defined recursively by X,.1 = f(X, Us+1) is @ homogeneous Markov chain with
transition matrix given for every k, £ = 0 by:

{—

t
P(f(xi. Un) = x0) = P(Ur € | Y- Pl ). ) P i) ) ) = Pl )

i=0 i=0

_

hence its transition matrix is indeed P. O

In the next chapters, we will be interested in the asymptotic behaviour of a Markov chain. Recall that
recursive sequences, of the form x,.; = f(x,), say with f continuous, if convergent, necessarily converge to
a fixed point of the function f. The analogue here is given by the notion of stationary measure.

Definition 3.3.2. A measure y on X is said to be stationary or invariant for the transition matrix P when
for every y € X,

(y) = . m(x)P(x, ),

xeX

which we shall simply write in the matrix form py = pP.

Every measure p on X will be implicitly assumed to be o-finite and non identically equal to zero, which
means i(x) < oo for every x € X and u(x) > 0 for at least one x € X.

Notation. We will denote by y1 a stationary measure, and by 7 and stationary probability, that is a stationary
measure with 7(X) = 1.

The adjective ‘stationary’ comes from the following observation: if r is stationary, that is 7 = 7P, then
by iterating this identity we have more generally 7 = zP" for every n = 1, which is the law of X, when X,
has the law 7. Hence, we start from a stationary law, then at every time, the Markov chain is distributed as
this law. This can actually be strengthened as follows.

Proposition 3.3.3. Let (X,,)n=0 be a P-Markov chain and suppose that Xy has the law 7. Then r is stationary
if and only if for any k = 1, the process (X,+k)n=0 has the same law as (Xp,)ns0-

Proof. Suppose first that 7 is stationary, that is 7 = 7P = 7P¥ for every k = 1. Then for every X1, ..., Xg.n €
X, we have by Theorem

Pr(Xk = Xk, oo s Xion = Xpan) = Z Pr(Xqi = x1, ..., Xksn = Xkan)

X15eesXf—1
k k+n
= > o) [ [ PG %) T Pxics %)
X05eeesXk_1 i=1 i=k+1
k+n
= P () [ ] Pl )
i=k+1

n
= 7(xx) H P(Xieri-1, Xfeai)-
i=1
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Theorem|3.2.2 then shows that (X,,+)ns0 is a P-Markov chain with initial distribution 7, exactly as (Xn)ns0-
Conversely, if (Xj+1)n=0 has the same law as (X,) -0, then in particular X;, which has law 7P, has the

same law as X;, which is 7. O

The next result shows that, as fixed points for recursive sequences, stationary distributions are in some
sense the only possible limits of a Markov chain.

Proposition 3.3.4. Let (X,),-0 be a P-Markov chain with any initial distribution and let = be a probability
on X. Suppose that for every x € X, it holds:

n-1

% Y PXe=x) — ).
k=0

Then r is stationary.
Proof. Let m,(x) = n”! Y723 P(Xx = x), which defines a probability as a convex sum of probabilities. Fix
y € X and let us prove that 7,P(y) converges both to 7P(y) and to x(y) so these quantities are equal.

First, fix ¢ > 0; since 7 is a probability, then there exists a finite set A ¢ X such that 7(A°) = 1- z(A) < e.
It follows that 7,(A€) = 1 — 7,(A) — 1 - ©(A) < &. Suppose that n is large enough so 71,(A°) < 2, then:

TP(y) ~ 7PO)| = 3 () - AP y) + Y, ma(@)P(x.y) + Y w(x)P(x, y)

x€A X€EA® X€EA®
< Z |70 () — (x)|P(x, y) + 3.
x€A

The last sum converges to 0 as n — oo since A is finite. Since ¢ is arbitrary, then we conclude that
7 P(y) — nP(y).
Next, we use the precise form of 7,. Recall that P(x, y) = P(Xi+1 = y | Xg = x) for any k, then

1 n-1 1 n-1 1 n-1
mP(y) == > Y P(Xi = )P(x,y) = = . Y P(Xe = %, Xpu1 = ¥) = = Y. P(Xes1 = ¥).
M =0 xex M =0 xex n o
The right-hand side equals precisely
n+1 P(X, = n+1 P(Xy =
— Tn+1 y) - X y) = 7Tn+1(y) - M
n n n n
which converges to n(y) as n — oo, so indeed x,P(y) — 7(y). O

Let us note that the assumption is satisfied in each of the following two cases:

(i) If for every x € X, we have the convergence in probability of the proportion of time spent at x,

namely:
19 P
- Z Tx-x — (x).
= "

Then n"! Y13 P(X; = x) — m(x) follows from dominated convergence (the sequence is clearly
dominated by 1).

(i) If the law of X, converges to &, namely for every x € X,

P(X, =x) — n(x).

n—oo

Then n™! Y123 P(X;. = x) — 7(x) follows from basic calculus.

In the next chapters, we shall provide conditions under which the stationary probability exists and is unique

(Corollary [4.2.11), and under which these two cases occur (Corollary [5.1.2]and Theorem [5.2.8| respectively).
Proposition simply shows that the limit has to be a stationary probability.
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3.4 Stopping times and the strong Markov property

Recall from Corollarythat given a P-Markov chain (X},)0, for any fixed time N = 1, the futur process
(XN+n)ns0, conditionally on the value of Xy, remains a P-Markov chain, started from position Xy and
independent of the past (Xp, ..., Xn-1). Now imagine that we follow the Markov chain until it reaches a
given point x for the first time, it is natural to believe that the futur evolution after this random time is
again that of a P-Markov chain, started from position x and independent of the past. The good notion of
random times to extend to the Markov property is the notion of stopping time.

Definition 3.4.1. A stopping time relative to a stochastic process (X,)ns0 is a random variable T taking
values in Z, = {0,1,2,..., 00} such that for any n = 0, the event {T < n} is completely characterised by the
random variables Xy, ..., X,,. Formally, for any n > 0, there exists a measurable function ¢, : X"*! — Z.
such that

lrep = (Pn(XO: cees Xn)‘

In words, a stopping time is a random time which is determined by the past: the trajectory up to the
present time is sufficient to tell wether is has already occurred or not yet.

Exercise 3.4.2. Prove that if we replace {T =< n} by {T = n} then the two definitions coincide.

One can notice that constant random variables T = N for any given N € Z, are stopping times: simply
take ¢, to be equal to 0 for n < N and to 1 for n = N.

Example 3.4.3. Important stopping times are given by the first entry time of the process: fix A a subset of
X, then
T=inf{n=0: X, € A}

is a stopping time, with the convention that inf @ = co. Indeed, we have simply:

{T<n}={J{XeA},

k<n

which only depends on Xy, ..., X,,.

It is important to be able to deal with multiple stopping times and we encourage the reader to prove the
following elementary results.

Exercise 3.4.4. Let (Ti)k-1 be stopping times relative to the same stochastic process. Then Y, Tk, infy Tk,
supy Tk, liminfy Ty, lim sup, Tj are all stopping times. In general, the difference is not, even in the case
T-1where T = 1as.

The next extension of the Markov property is very useful since it allows to restart the process afresh at
any random stopping time.

Theorem 3.4.5 (Strong Markov property). Let (X,)n=0 be a P-Markov chain and let T be a stopping time.
Fix x € X. Then conditionally on {T < oo} n{Xr = x} the process given by Y, = Xr., forn = 0 is a P-Markov
chain started from Yy = x and is independent from (X, ..., X1-1).

Proof. Recall that if T = N is a deterministic time, then the claim corresponds to Corollary[3.2.7} Now let
us split according to these events:

]P(T = N3X0 = xO’""XN—l = xN—l;XN = x’XN+1 = y1,---9XN+n = Yn)
=P(T =N, Xy = x0,..., XN-1 = XN-1, XN = X) P(XN+1 = Y1500 XNon = Y | XN = X)
= ]P(T = N,X() = X(],...,XN_l = xN—l’XN x)]P(X1 = yl,...,Xn =Yn | X() = x).
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Summing over all values of N, we obtain for every (x)r-0 and (Vi)x=o»

P(T < 00, Xo = X0, ..., X721 = %7-1, XT = %, X741 = Y150, XTtn = Yn)
= P(T < OO,XO = x()’"'aXT—l = xT—lsXT = x)]P(Xl = J/hm’Xn = }/n | XO = x)5

and the result follows by dividing by P(T < oo, X1 = x). O

Remark 3.4.6. The extension of Corollary [3.2.7/to stopping times may seem unnecessary since in each
case one can always condition on the value of T and use the simple Markov property, when the time is
fixed. However if this is true for discrete-time Markov chains, it is no longer for continuous-time Markov
processes (studied next semester).

3.5 Harmonic functions and the Dirichlet problem (*)

This section relates Markov chains and discrete harmonic functions. We use probabilistic tools to solve the
so-called discrete Dirichlet problem. In the same spirit, one can solve partial differential equations using
random processes that evolve in continuous time and space. This is a very active topic of research, for
its own sake but also for application to physics, biology, epidemiology, finance, etc. that allows to derive
theoretical results but also provides numerical schemes for simulations.

Definition 3.5.1. Given a transition matrix P, a function h : X — R is said to be harmonic at x when
Ph(x) = h(x). It said to be harmonic on A c X if it is so at every x € A.

We can also define similarly subharmonic (Ph(x) = h(x)) and superharmonic (Ph(x) < h(x)) functions,
but we shall only consider harmonic functions.

Remark 3.5.2. Recall that if (X,),-0 is a P-Markov chain on X, then Ph(x)

= E,[h(X1)]. A function h is
thus harmonic at x when the average value after one step from x is again h(x).

Let A c X be nonempty and let g : X\ A — R be a function. The Dirichlet problem raises the question:
does there exist a function h : X — R which coincides with g on X'\ A and which is harmonic on A? if so,
is it unique? The harmonicity of such a function s can be rewritten as (P — I)h = 0 where I is the identity
matrix. This can be in many cases seen as a discretised differential equation (as in the finite difference
method), as shown in the following example (see also the exercise sheet).

Example 3.5.3. Let X = Z and let P(i,j) = % 1Lj;ji=1. This corresponds to the case where the increments of
the Markov chain are i.i.d. with P(X,;.1 = X, + 1) = P(Xj+1 = X;, — 1) = 1/2. Then (P - I)h = 0 if and only if

_%(h(x +1) - 2h(x) + h(x - 1)) = 0,

which is the discretised heat equation ~Ah = 0. The condition h = g on X\ A is interpreted as a boundary
condition (here a source of heat) of the equation and we aim at finding the solution in A. See Figure [3.2]for
a representation.

Although the Dirichlet problem is deterministic, we may solve it using Markov chain theory. Recall
indeed from Proposition that there exists a Markov chain with transition matrix P. We shall follow its
trajectory until it exits A for the first time. Let us start with the easy case g = 0.

Lemma 3.5.4. Let A ¢ X be nonempty and finite and let T4 = inf{n = 0: X, € X\ A} be its first exit time.
Suppose that for every x € A, we have Px(T4 < o0) = 1. Then the only function which is P-harmonic on A and
null on X\ A is the constant null function.
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Figure 3.2: The Dirichlet problem consists in finding the values of a harmonic function in the
domain A with the given boundary value in X'\ A.

Proof. Clearly the null function is a solution to the problem. Suppose that 4 is also a solution. We only
assume that A is finite to infer that & admits a maximum on A: let xo € Abe such that h(xy) = maxyea h(y)and
suppose that h(x) > 0. Then h(x) = max,ex h(y) and since it is harmonic, then ZyEX P(x0, y)(h(y)-h(x)) =
0 which yields h(y) = h(xp) = max h for every y € X such that P(x, y) > 0.

Recall that we assume that P, (T4 < o0) = 1, which is equivalent to P, (T4 < n) — 1; in particular
this probability is not 0 for some (deterministic) n and thus there exists a path xy, xi, ..., X, such that
X1, ..., Xp—1 € A and x, € X\ A and which has P(x;_1, x;) > 0 for every 1 < i < n. But the previous point then
implies by induction that 0 < h(xy) = h(x1) = -+ = h(x,) = 0.

We conclude by contradiction that h(xy) = 0 and so h(x) < 0 for every x € A. Notice finally that if h is a
solution, then so is —h, so the same argument implies h(x) = 0 for every x € A. O

Let us next turn to the general case; this lemma shall provide the uniqueness argument.

Theorem 3.5.5. Let A c X be nonempty and finite and let Ty = inf{n = 0: X, € X\ A} be its first exit time.
Suppose that for every x € A, we have P,(Ty < ) = 1. Let g: X\ A — R, be a bounded function. Then
there exists a unique bounded function h on X that is P-harmonic on A and coincides with g on X\ A. It is
given by the formula:

h(x) = Ex[g(X1,)]

for every x € X.

From a numerical point of view, the trajectory of a Markov chain is usually easy to implement (recall
Proposition ; let us simulate a large number, say K, of P-Markov chains all started at some x € A
and until they first leave A, and let us evaluate for each one the function g at their terminal value. Then
the Law of Large Numbers shows that the average over these K trajectories converges as K — oo to
E.[g(Xt,)] = h(x). Let us note that if we assume that E,[T4] < oo, then the Law of Large Numbers also
shows that the sum of the length of these K trajectories, i.e. the total number of iterations of the K random
recursions, is close to K x E;[T4] when K is large. The key point that explains the success of this approach
is that, as opposed to algebraic schemes, the complexity of the algorithm is quite insensible to the dimension
of the space.

Proof. Let us start with the uniqueness of the solution: if h; and h;, are two solution, then h = h; - h; is
P-harmonic on A and null on X'\ A4, so it is the constant null function by the previous lemma.

Let us next prove that the function 4 is harmonic on A. Fix x € A, and start from X, = x. There are two
possibilities for X;: either X; € A, and then the process after time 1 starts from this value and is stopped
when exiting A, or X; ¢ A and the process is stopped here. Formally, we infer from applying the Markov
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property at time 1 that:

h(x) = Ex[g(X1,)]
= E.[g(X1,) Ixiea] + Ex[8(X1,) Lx,¢a]
= E+[Ex, [8(X1,)] Lxiea] + Ex[g(X1) Lx el
= Ex[A(X1) 1x,ea] + Ex[g(X1) 1x,¢a]
= Ex[h(X1)]
= Ph(x).
Thus h is indeed harmonic on A. It is also clear that h = g on X\ A. O]

Let us next present an application of the previous theorem to the so-called first exit side problem.
Imagine that we are given two subsets B and C, which do not intersect, starting from an arbitrary point x,
what is the probability that a P-Markov chain reaches B before C?

Corollary 3.5.6. Let B, C < X be two sets such that Bn C = @ and (B u C)° is finite and nonempty. Let
g = inf{n = 0: X, € B}, define t¢ similarly and assume that at least one of them is almost surely finite for
every starting point. Let g(x) = 1 for every x € B and g(x) = 0 for every x € C. Then

Px(8 < 7¢) = h(x),
where h is the unique bounded extension of g that is harmonic on (B u C)°, given in the previous theorem.
Proof. Since Bn C = @ then 73 # 7c. Then either 73 < 7¢ and then g(X;,.;.) = 1, or 73 > 7¢ and then
¢(Xepnee) = 0. Thus
P(78 < 7¢) = Ex[8(Xegnre)]-
This indeed equals h(x) by the previous theorem, where A = (Bu C)°, so 5 A 7¢ = Ta. O

A concrete example, known as the ruin problem, is detailed in the exercise sheet. In this problem the
Markov chain is simply a random walk on Z, with i.i.d. increments equal to +1 with some fixed probability
p € (0,1) and equal to -1 with probability —1. We take B = [K, o0) for some fixed K = 2 and C = (-0, 0],
and we let the chain start from some k € {1, ..., K - 1}. We imagine this random walk as the fortune of a
player betting repeatedly on Head or Tails and who wonders if starting with an initial fortune k, they can
reach K before getting ruined, see Figure

K K

or

Figure 3.3: The ruin problem: does the player reach the top boundary before the bottom one?

For p = 1/2, we mentioned that the harmonicity condition is equivalent to solving:
1
_E(h(i +1)-2h(i)+ h(i-1)) =0, equivalently: h(i+1) - h(i) = h(i) - h(i - 1),

that is, the increments are all constant. Suppose furthermore that k(i) = 1 for i = K and h(i) = 0 for i < 0,
then the increments h(i) - h(i — 1) for 1 = i = K are all equal to 1/K, that is:

i
h(i) = — 0<i<K.
()= 0=is
Finally, by the previous corollary, for each 1 < k < K, we have:
k
ruin probability = Pi(zp < 7x) = 1 - e
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Chapter 4

Classification of states

In this chapter, we consider the following questions: How many times does a (discrete) Markov chain visit
a given point? does it always come back to its starting point or not? if so, how long does it take? We
shall relate the answer to the problem of existence and uniqueness of a stationary measure or stationary
probability which describes the asymptotic behaviour of the chain as shown in the next chapter. We shall
also prove a famous result of Pélya: wandering randomly on the ground will always get you back home,
but you may get lost in space!

Contents
[4.1  Recurrence and Transience| . . . . . .. ... ... ... ... ... ... .... 67
[4.2  Stationarymeasures| . . . . ... ... ... L o e 71
[4.3 The Simple Random Walk| . ... ... ..... ... ... . ... ... ... .. 78

In Section[g.1]] we present a first dichotomy: recurrence vs. transience, that is wether a Markov chain
always comes back to its starting point or it escapes and leaves forever. This makes an extensive use of
the strong Markov property from the previous chapter. Then in Section |4.2) we discuss the existence and
uniqueness of the stationary measures and distributions and we distinguish further between two different
behaviours for recurrent points. Section[4.3|finally presents an application in the case of the simple random
walk in the discrete d-dimensional space Z%: the walk always comes back to its starting point in dimension

d = 1or d = 2, but not in dimension d = 3.

4.1 Recurrence and Transience

Let us start by introducing the notation we shall use throughout this chapter and the next one.

Notation. For each x € X, let us define inductively the hitting times of x by H? = 0 and for k > 0:
Hk+1 N f k . —
O =inf{n=H; +1: X, = x}.

For k = 1, simply write H, for H! = inf{n = 1: X, = x}. Note that the starting point does not count and
H, = 1. Also,
H)]f =inf{n=1: #{ie{1,..,n}: X; = x} =k}.

Let also

Vi = Z ILXn:x

n=0

denote the number of visits of x. Finally, for x, y € X let us denote by

pxy =Px(Hy, <o) =P,(3n=1: X, = y)
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the probability to reach y when starting from x. When p,,, > 0, we say that x leads to y and we denote this
by x — y. When a Markov chain is described as a walk on a graph, x — y means that there exists a path
of arrows from x to y. Note that x may not lead to itself.

4.1.1  Number of visits

A point is called ‘recurrent’ when the Markov chain always comes back to it when starting from it and
‘transient’ otherwise.

Definition 4.1.1. For every x € X, we have the dichotomy:

« either py, = 1, then x is said to be recurrent,

e OT pyyx < 1, then x is said to be transient.

The next result shows that the recurrent/transience dichotomy is quite strong: if x is recurrent, then the
chain visits x infinitely many times whereas if it is transient, it only visits it a random geometric number of
times.

Proposition 4.1.2. The following holds according as wether x is recurrent or transient:

(l) prxx = 1, then ]Px(Vx = oo) =1.

(ii) If pxx < 1, then P, (V, < o) = 1, and precisely V, has under P, the geometric law with mean

1 1

E [Vy] = = .
<LVl 1-pex  Pyx(Hyx = )

The proof is based on the following idea: In order to visit k times the point y when starting from x, one
first has to reach y and then come back to it k - 1 times. The next lemma formalises this idea thanks to the
strong Markov property.

Lemma 4.1.3. Foreveryx,y € X and k = 1, it holds:
]Px(HJI; < o0) = ]Px(Hy < 00) ]Py(Hy < oo)k71 = pxypl;;/l.
In particular P (HF < c0) = pk .

Proof. According to Theorem|3.4.5, under Py, conditionally on {H), < oo} and since Xp;, = y a.s. the process
givenby Y, = XH,+n for n = 0 has the same law as (X,,),-0 started from Y; = y. Moreover, the quantity HJ’f
for the chain (X,), equals the quantity Hyk’1 for the chain (Y,), and thus:

P (Hf < 00) = Py(H, < o0, Hf < )
= Py(Hy < 00) Px(Hy < 0 | Hy < o)
= Py(Hy < 00) Py(H,™" < o).

Taking x = y and k - 1 instead of k, we then get ]Py(H}’f‘1 < ) =P,(Hy < o) ]Py(H}’f‘2 < o0) and the claim
follows by induction. O

Proposition then easily follows.
Proof of Proposition[4.1.2, According to Lemma4.1.3 we have for every k > 1:
Po(Vie = k +1) = Po(Hy < 00) = Py(Hy < o) = pf..
(i) Letting k — oo in the previous equation, by monotonicity, we conclude that

P, (Vy = o) =lkli_rgolPx(Vx =k+1)=1
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(ii) In this case, the identity P,(V, = k+ 1) = pfx for every k = 1, with py, < 1 shows that V, has the

geometric distribution with parameter 1 - py, > 0. 0

Remark 4.1.4. Since x has to be either recurrent or transient, then we see that it is recurrent if and only if

Ex[Vi] = ) Pe(Xn = x) = ) P'(x, %) = oo,
n=0 n=0
and in this case we actually have P,(V, = c0) = 1. This criterion is often easy to check in practice given the

matrix P.

Remark 4.1.5. Notice that if y is transient then for any x # y, we have since 1p,- V), = 0:
]Ex[vy] = Ex[]lHy<ooVy] = ]Px(Hy < o) IEx[vy | Hy < o).

By the strong Markov property, since Xp, = y, then the last conditional expectation equals E,[V}]. We
thus have:
Ey[Vy] = Px(Hy < ©)E)[V,] < E)[V)] < .

Hence, whatever the starting point X, = x, the number of visits of a transient point y has finite expectation
(in particular it is finite almost surely).

Let us turn our attention to recurrent points.

Proposition 4.1.6. If x is recurrent and py, > 0, then y is recurrent as well and we have P,(V, = o) =
Py(Vy = 00) = 1.

Proof. Fix x # y. Let us first prove that p,, = 1. Since x is recurrent, then a.s. we have HF < coforall k = 1

SO we may write:

Pu(Hy = 00) = o ({HE < 00} 0 {y € (X1, Xig )

i=1
k

= Llim Py (()((HE < ) 0 {y € (igans s X} ) ).

i=1
By induction, applying the strong Markov property at time H¥"!, then H*2, etc. since Xpi = x, we see that
the last probability equals
]Px({Hx < °°} n {Hy > Hx})k = Px(Hy > Hx)k-
By letting k — oo, we obtain that

]Px(Hy = 00) = lklglgo ]Px(Hy > Hx)k,

which equals either 0, when P,(H, > Hy) < 1, or 1, when P,(H, > H,) = 1. Since we assume that
pxy = 1= Py(Hy, = o) > 0, then py,, = 1.

Let next us prove that P,(Vy = ) = 1. Indeed, recall that P,(Vy = o) = 1 from Proposition Since
P.(Hy < o) = 1, then

1= lPx(Hy <00, Vy = o) = ]Px(Hy < o0, Z Ix,-x = 00) = ]PX<Z ]ley+n:x =00 | Hy < 00).
n=H,

y n=0

Let Y, = Xpen for every n > 0. Then Theorem states that conditionally on {H,, < oo}, since Xu, =y,
then (Y,), is another Markov chain with the same law as (X,), but started from y. Hence the right-hand
side above equals P,(Vy = o0) = 1.
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As a consequence, letting H, ,, = inf{n = H, +1: X, = y} denote the first return time to y after visiting
x, we have:

Py (H, < o) = P,,(Hy < 00, Hy,, < 00) = P,,(Hy < 00) P,(Hy,, < o0 | Hy < 00).

First note that
Py(Hy < ) = P)(Vy = 00) = 1.

Next, by Theorem |3.4.5}
Py (Hy,y < 0o | Hy < 00) = Py(Hy < o) = 1.

Thus P, (H, < o) = 1 and y is recurrent. The identity P,(V, = o) = 1 then follows by exchanging the role
of x and y. O
4.1.2 Communicating classes

Recall the notation x — y when py), = Py(H, < o) > 0. If both x — y and y — x, we write x <> y
and say that x and y communicate with each other. We then set x ~ y if x = y or x <> y. As the notation
suggests, the relation ~ is an equivalence relation.

Lemma 4.1.7. For every x, y € X we have x — y if and only if there exists n = 1 such that P(X,, = y) > 0.
Moreover the relation ~ is an equivalence relation.

Proof. We simply write for n = 1:

PuX, = y) < IPx(U{Xn = y}) < ) Po(X, = ).

n=1 n=1

Therefore if x — y, that is, the probability in the middle is nonzero, then there necessarily exists n = 1
such that P,(X, = y) > 0. The first inequality shows that this is an equivalence. Consequently, if x — y
and y — z, then there exist n, m = 1 such that P,(X, = y) > 0 and P,(X;;, = z) > 0. We then infer from the
Markov property that

Py(Xnim = 2) 2 Px(Xy = y, Xpim = 2) = Py(Xy = ) P)(Xin = 2) > 0,
hence x — z. This suffices to conclude that ~ is indeed an equivalence relation. O

We may then partition X into the equivalence classes, which we call the communicating classes. Pro-
position[4.1.6] shows that starting from a recurrent position we can only visit recurrent states. This leads to
the following classification.

Theorem 4.1.8. There exists a partition of the space into disjoint subsets:

X:EJTUUQL-

i€l
such that:

« Foreveryie€ I and every x € R;, we have Py-a.s.

V) = oo forall y € R; and Vy,=0forally e X\R,.

« Foreveryx e J,ift =inf{n 2 1: X, €y Ri}, then Py-as.

— either r = coand V), < oo forall y € X,

— or T < oo and there exists a random index i € I such that X, € R; for everyn = 1.
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Proof. The set T is that of all transient states, whereas R = [ J;; R; is that of recurrent states. By
Proposition[4.1.6] the relation defined on & by x ~ y if and only if p,,, > 0 is an equivalence relation, then
the R;’s are the corresponding equivalence classes.

Fix such an equivalence class &; and x € R;. Then Proposition shows that P,(V), = o) = 1 for all
¥ € R;. On the other hand if y ¢ R, i.e. if py,, = 0, then clearly P,(V}, = 0) = 1. Finally fix x € 7. If 7 = 00
then V), = 0 for every y € R; also V), < oo for all y € T by Proposition Suppose next that 7 < oo, then
there exists a random index i € I such that X; € R; and by the strong Markov property (Theorem|3.4.5), we
are back in the first case where the chain starts from a point in R;. O

Definition 4.1.9. If p,), > 0 for every x, y € X then we say that the Markov chain is irreducible.

In what follows we will always assume that our chains are irreducible, otherwise we can study each

class separately.

Corollary 4.1.10. If the chain is irreducible, then we are in one of the two following situations:

« Either every x € X is recurrent and P (V), = c0) = 1 forall x, y € X,

« Orevery x € X is transient and Ex[V,] < oo forall x, y € X.
Note that if X is a finite set, then we are necessarily in the first case.
Proof. If there exists x € X which is recurrent, then by Proposition[4.1.6]so is every other y € X so indeed

either every state is recurrent or every state is transient. In the latter case we have then E,[V)] < oo for all
y € X by Remark [4.1.5] whereas in the first case we have V, = co for all y € X by Proposition [4.1.6|again.

Finally,
OOZZZHX,[:x: Zleﬁx: va-
n=0 xeX x€X n=0 xeX
Therefore, if X is a finite set, then V, has to be infinite for at least one x € X. ]

Definition 4.1.11. If the chain is irreducible, then we say that it is recurrent or transient according as

wether every state is recurrent or transient.

4.2 Stationary measures

Recall that Markov chains are random analogues of recursive sequences of the form x,,; = f(x,), which
converge (when they do) to a fixed point of the function f (if the latter is continuous). The analogue of fixed
points is given by the notion of stationary measures defined in Section|[3.3] that is, a measure y solution to

p = pP.

In this section we analyse the existence and uniqueness of such measures in general, a more precisely of
such probabilities & = 7P.

Every measure y on X will be implicitly assumed to be o-finite and non identically equal to zero, which
means i(x) < oo for every x € X and u(x) > 0 for at least one x € X.

4.2.1 An easy subcase: reversibility

The stationarity property will be very important, but in practice it can be hard to check: one has to solve
the equation p = pP, that is find a eigenvector associated with the eigenvalue 1 for the transpose matrix P'.
Even in a finite set X, but with a large cardinal, this system can be difficult to solve exactly. A simpler, but
stronger, property is that of reversibility.
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Definition 4.2.1. A measure p on X is said to be reversible for the transition matrix P when for every
x,y€X,
Hx)P(x, y) = p(y)P(y, x).

This condition is also often called “detailed balance condition”.
Proposition 4.2.2. A reversible measure is stationary.

Proof. Simply sum the reversibility identity over x:

3 HEP(x, y) = Y p()P(y, ).

xeX xeX

The left-hand side equals pP(y) and the right-hand side u(y). O

Example 4.2.3. Fix N = 1 and let (X,,),, be the following process: let p € (0,1) and g = 1 - p, let Xy = xp be
a fixed value in X = {0,..., N - 1}, and then iteratively set:

P(Xp+1 =Xy +1mod N | X)) = p, P(Xy+1 =Xy, -1mod N | Xp) = q.

Then this process is a Markov chain, with transition matrix

p 0 - 0 gq
qg 0 p -~ =~ 0
P O q 0 -~
Dot p 0
00 -~ ¢qg 0 p
p O -« 0 g 0

Let 7(j) = 1/N for every j € X denote the uniform distribution, then

N 1
7T(])P(], k) = ﬁ(p ]lk:j+1 mod N + 4 ]lk=j—1 mod N)a

for all j, k € X. Thus on the one hand for any k € X, one has

N-1
Ny g+p 1
nP(k) = kzo 7()P(j, k) = N TN n(k),

so 7 is always stationary. On the other hand, one has 7(j)P(j, k) = z(k)P(k, j) only in the case p = ¢ = 1/2
so 7 is reversible in this case and when p # g, there is no reversible distribution.

Proposition 4.2.4. Suppose that u is stationary for the transition matrix P and define for every x, y € X:

F@W=ﬁ£ﬂxw

Then P* is a transition matrix and u is also stationary for P*. In addition u is reversible for P if and only
if P = P". Suppose moreover that y is a probability and let (X,), denote a P-Markov chain with initial
distribution p and (X)), a P"~Markov chain with initial distribution yi. Then for every n = 0, we have the
identity in law:
. o (d
G X)) 9 X, Xo).

Finally the probability y is reversible for P if and only if we have the identity in law:
(X5, Xn) = (X oo, X0)

foreveryn = 0.
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This explains the name ‘reversible’: if one starts with a reversible initial distribution, then the time-
reversed process at any time has the same law as the original one.

Proof. Clearly P*(x, y) = 0 and further, since p = pP, then:

Y Py =), ZX;P(% %) = ——pP(x) = 1.

yeX yeX H (x)

Hence P* is indeed a transition matrix. Next,

pP'(y) = Y p()P'(x,y) = Y, p(n)P(y, x) = p(y),

xeX xeX

so y is P’-stationary. Finally,

H(x)P (x,y) = w(y)P(y,x)  and  u(y)P(y,x) = p(x)P(x, ),

so u is P*-stationary if and only if it is P-stationary.

Suppose next that 4 is a probability and let (X,), and (X},), be Markov chains with initial distribution y
and with transition matrix P and P* respectively. Then by the Chapman-Kolmogorov Equation (twice), we
have:

n
P(Xy = %0, X;, = %) = p(x0) | | P Coe-r, )
k=1

=uxo) [ T ) P(x, xk-1)

k=1 :u(xk—l)
n
= (o) [ T PG xic1)
k=1
= ]P(X() = Xp, ... ,Xn = X()).

This proves the identity in law: (X, ..., X)) = (Xy, ..., Xo). Finally, we have shown that y is reversible if and
only if P = P*, which is equivalent by the previous identity to (X, ..., X;) = (Xp, ..., Xp) in law. O

Example 4.2.5. Let V be a set, either finite or countable, and let E ¢ {{u, v} : u,v € V,u # v} be a set
of unordered pairs of elements in V. We call V the vertices, E the edges, and the pair G = (V, E) a graph.
Suppose that each edge e = {u, v} € E has a weight c, € (0, ) and define for every u € V:

,u(u) = Z Clu,v}-

veV

Let us assume that p(u) < co for every u € V and define then for u,v € V:

Plu,0)= —
U, V) = ——Clypl-

)
This is a transition matrix, and the corresponding Markov chain is called the random walk on the weighted
graph G. In words, at every step, the walk moves from its position u to a neighbour v in G with a probability
proportional to the weight ¢y, 1. Since the edges are undirected, then ¢, ) = ¢{,,,) and thus:

)u(u)P(ua U) = Cluv} = Clou} = p(U)P(U’ u)’

so u is reversible.

Conversely, given a transition matrix P and a reversible measure y, one can consider the graph G = (V, E)
with V =X, E = {{x, y} : P(x,y) > 0}, and with the weights c( ) = (x)P(x, y). Then the random walk
on this weighted graph is exactly the P-Markov chain.
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4.2.2 Existence and uniqueness

Recall that we exclude the trivial measure p(x) = 0 for every x € X from the stationary measures. Our first
result shows then that if a stationary measure gives a nonzero mass to some point x, then it also gives a
nonzero mass to any point y where x leads. In particular, in an irreducible chain, any stationary measure
gives nonzero mass to every state.

Lemma 4.2.6. Let i be a stationary measure, let x, y € X be such that j(x) > 0 and py, > 0, then p(y) > 0.

Proof. Recall that writing:
Py(H, < o) = JPX(U{X,, - y}) <Y P(x,y),

we infer that if P,(H, < o) > 0, then there exists n = 1 such that P"(x, y) > 0. Then for such an index n,
assuming that p(x) > 0, we have

) = uP"(3) = Y W(@P"(z.y) = p(x)P"(x, y),
zeX

and the right-hand side is nonzero. O

In the exercise sheet, we shall see examples of transient Markov chains which have no stationary
measure, or have infinitely many of them. Then next result shows however that it can never have a
stationary probability measure (with total mass 1).

Lemma 4.2.7. Let j1 be a stationary measure with finite total mass: p(X) = )., pi(x) < oco. If x € X is transient,
then p(x) = 0.

Proof. Let us write:

Do) =Y Y P (%) = Y p(y) Y Py x) = ) () Ey[Vi].

nz0 n=0 yeX yeX n=0 yeX

By the strong Markov property, we have:
IE':y[Vx] = Pyx E,[Vi] = Ex[Vi].
Now recall from Proposition that if x is transient, then

Y ux) = Y p(y)ExlVi] < oo.

n=0 yeX

This implies that u(x) = 0. O

As mentioned above, if the chain is irreducible and transient, nothing can be said in general on the
existence and uniqueness of stationary measure. This problem can however be solved for recurrent chains.
The main theorem of this subsection is the following.

Theorem 4.2.8. If the chain is irreducible and recurrent, then all stationary measures are proportional to
each other and they all give nonzero and finite mass to every state.

The proof takes several intermediate steps and is based on the following key observation: for every
k = 1, for every x,y € X,

Po(Hy 2 k, Xk-1 = 2, Xg = y) = Po(Hy 2 k, Xj—1 = 2)P(z, y). (4.1)

Indeed, this follows by applying the Markov property at time k - 1 since the event {Hy = k, Xj_; = z} only
depends on X, ..., Xi_1.

First, given one recurrent state, we can construct explicitly one stationary measure. Note that if the
chain is not irreducible and has several recurrent classes (recall Theorem [4.1.8), then Lemma [4.2.9| provides
invariant measures which are supported by each disjoint class.
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Lemma 4.2.9. Let x € X be recurrent, then the measure defined by

He-1 H,
x Z Lxe=y x Z L=y
k=0 k=1

is stationary. Moreover it has vx(x) = 1, vx(X) = Ex[Hy], and finally v,(y) > 0 if and only if px, > 0, and in

(4.2)

this case vy(y) < oo.

Proof. To prove that v, is stationary, let us write:

() = Bxe| > Lkant, ) Ux e Iximy| = D, D, Pulk < He, X1 = 2, X = ).

k=1 zeX k=1 zeX
Then by (g.1),
ve(y) = Z Z]E [(Lier, 1x, ,--]P(z,y) = Z]E Z Iy, ,-z|P(z,y) = Z ve(2)P(z, y).
k=1 zeX zeX zeX

Thus v, is indeed stationary and so v, = v, P" for every n > 1.

The properties vy(x) = 1 and vx(X) = E,[H,] are clear, and so is the fact that if p,, = 0, then
Vx(y) = Ex[V,] = 0 since in this case P,(V, = 0) = 1. Suppose now that p, > 0, then there exists n > 1 such
that P"(x, y) > 0. We infer for this n that

() = ). va(2)P"(2,y) = v(x)P"(x, y) = P"(x,) > 0
zeX

Similarly, we have
1= vi(x) = ve(y)P"(y, x).

Recall from Proposition that if x is recurrent and py,, > 0, then py, = 1 and p,, = 1, so again there
exists n = 1 with P"(y, x) > 0, which shows that v,(y) < co. O

We next prove that this particular stationary measure v, is the smallest one that assigns mass 1 to x.

Lemma 4.2.10. Let x € X be recurrent and let v, be the stationary measure defined in (4.2). If u is another
stationary measure, then for any y € X, we have:

() = p(x)ve(y).

Proof. Let us first prove by induction that for any n = 0 and any y # x, we have

() = p(x) Y Po(Hy > K Xp = ) = pu(x) D Po(Xa # 5,00, Xi # 5, X5 = ).
k=0 k=0

For n = 0 the right-hand side vanishes for any y # x. Suppose the identity holds for some n, then we can
write since y is stationary:

n

HO) = X PG y) = Y () Y PelHy > kX = 2) )Pz ).

zeX zeX k=0

On the other hand, by (4.1), we have for each 0 < k < n:

Py(He > k, Xpe1 = ¥) = ). Pel(Hy > &, X = 2, Xpee1 = ¥) = Y, Pu(Hy > k, Xi = 2)P(z, ).
zeX zeX

75



Since y # x, then Py(Hy > k, Xi+1 = ¥) = Px(Hy > k + 1, Xj41 = y), so we conclude from the two displays
that

p(y) = p(x) ) D Po(Hy > K, Xi = 2)P(2, )

k=0 zeX

= ,U(x) Z]Px(Hx >k+1, X = Y)
k=0

n+1

= p(x) > Po(Hy > k, Xic = ).
k=1

The sum could as well start from k = 0 since the probability vanishes in this case. This completes the
induction. Letting n — oo, we conclude that

[ee]

H,-1
H(y) = p(x) Z Ex[1h,>k Lx,=y] = p(x) Ex [ Z ]le=Y] >
k=0 k=0

and the expectation equals precisely vy(y). O

We can now prove our main result.

Proof of Theorem|4.2.8 Let p be a stationary measure and let x € X be such that y(x) > 0. For every y € X,
we have py, >0, so Lemmaimplies that p(y) > 0. Recall that Formula (4.2) provides one stationary
measure vy, which satisfies moreover 0 < v,(y) < oo for every y € X. By the previous lemma, we have

H(y) = p(x)ve(y),

for every y # x, and equality for y = x since v(x) = 1. Then using that both y and v, are stationary, we
obtain for every n = 1:

p(x) = )P (3, x) = Y p()ve(@)P" (3, %) = p(x)ve(x) = p(x).

yeX yeX

This implies that the inequality must be an equality and so

() - p)ve(y)P"(y, %) = 0,

yeX

for every n = 1. Recall that the chain is irreducible, so for any y € X, there exists n = 1 such that P*(y, x) > 0,
then we must have

H(y) = p(x)v(y)

for the previous sum to vanish. Recall that we chose x so that u(x) > 0, hence y is indeed proportional to
Vx, and since 0 < v,(y) < oo for every y, then 0 < p(y) < oo for every y. O

4.2.3 Positive recurrence and null recurrence

By Theorem in an irreducible and recurrent chain, all stationary measures are proportional so a
stationary probability is necessarily unique. We now investigate wether it exists or not.
Corollary 4.2.11. Suppose that the chain is irreducible and recurrent, we have a further dichotomy:

« Either all stationary measures have finite total mass and there exists a unique stationary probability 7.
The latter never vanishes and moreover for any x € X, we have the identity:

E,[H,] = ﬂ_(lx) < 0o.
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+ Or all stationary measures have infinite total mass and moreover for any x € X, we have:

Ey[Hy] = oo.

When X is a finite set, we are necessarily in the first case.

Proof. By Theorem all stationary measures are proportional so either they all have infinite mass, or
there exists one with finite mass and then they all do. In the latter case, by rescaling any of them by its total
mass we obtain a probability. The latter is necessarily unique since two different probabilities cannot be
proportional since they both sum up to 1. Precisely, this unique probability r is given for every x, y € X by:

oy 1 £
)= 160 " B | & e

In particular, since vy(x) = 1, then

B 1 B 1
"0 =) T BN

On the other hand, if all stationary measures have infinite mass, then for every x € X we have similarly
Ex[Hy] = vx(X) = co.

Finally, since we assume that each measure only gives finite mass to every x € X, then if the latter is a

finite set, then each stationary measure must have finite total mass. t

Definition 4.2.12. A recurrent irreducible chain is said to be:

« positive recurrent if Ex[H,] < oo for all x € X,
o null recurrent if E,[Hy] = oo, but still P,(H, < o) = 1, for all x € X.

This denomination will be explained by Corollary 5.1.2] we can observe already that a positive recurrent
chain has 1/ E,[H,] > 0 for all x € X whereas a null recurrent chain has 1/E,[H,] = 0 for all x € X.

Proposition 4.2.13. If the chain is irreducible and positive recurrent, then E,[H,] < oo for all x, y € X.
Proof. Fix x,y € X with x # y. Observe that for every n = 1, we have by the Markov property at time n:
Ex[Hy] = Ex[Hy ]le>n,Xn=y] =Py(Hy > n, X, = y)(n + Ey[Hx])-

Since E,[Hy] < oo, then it suffices to prove that there exists n with P,(H, > n, X,, = y) > 0. Recall from the
proof of Proposition that

P.(Hy, > Hy)* = Po(H, > HY) < Py(H, > k) —> P.(H, = ) = 0.

k—o00

Therefore P,(H, > H,) < 1. By taking the complement, we conclude that:
0 < Po(Hy < H) = P (| {He = X =y} ) = ) PulHe = 1. = 9),
n n

and so at least one term in the sum must be nonzero. O
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Figure 4.1: The first 1000 steps of a walk in dimension 2 and in dimension 3.

4.3 The Simple Random Walk

The simple random walk in dimension d = 1 is the Markov chain (X,), on Z? started from 0 and with

transition matrix P given by:
1

P(x, y) = g ]]-|x—y\:1,

for every x, y € Z%. In words, at every step, we move from the current position by one in a uniform random
direction. The following famous result characterises the asymptotic behaviour of the walk.

Theorem 4.3.1 (Pdlya). The simple random walk is null recurrent in dimension d = 1 and d = 2 whereas it
is transient in dimension d = 3.

Proof. Tt is clear that in any dimension the walk is irreducible. Moreover, for every x, y € Z¢, we have
P(x,y) = P(y,x) so the measure given by u(x) = 1 for every x € Z? is reversible, hence stationary by
Proposition Since y has infinite total mass, then Corollary implies that the walk cannot be
positive recurrent: it is either null recurrent or transient, and this behaviour is dictated by the expected
number of visits of 0: according to Proposition the walk is null recurrent if this expectation is infinite,
and it is transient otherwise. By parity, we starting from 0, the walk can only be at 0 at even times, so we
may write:
Eo[Vo] = Eo [Z 11XZn=o] = Y, Po(Xzn = 0).
n=0 n=0

The claim then reduces to check wether this series converges or not.

Let us start with d = 1. For every n = 1 we have X,, = 0 if and only if there are n increments equal to
+1 and n increments equal to -1, so, according to Stirling’s formula, we have:

Po(Xn = 0) = L <2n> 1@t 1 Jarn(2n/ e)*" 1

22 i 2 (N2mn(n/e)r)?  Jmn'

The corresponding series diverges, so the walk is (null) recurrent.

22n\ p

In dimension d = 2, the same reasoning applies: here, X;, = 0 if and only if there exists 0 < k < n such
that the walk has k increments to the right, k increments to the left, n — k up and n - k down, so now:

IR (2n)! RN CATYAYERNEN A
]PO(XZ"_O)_W%k!k!(n—k)!(n—k)!_42”<">Z<k><”_k>_42"<n>’

k=0
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where the last identity is easily understood: choosing n objects among 2n possibilities amounts to choosing
k in half of them and n - k in the other half for some k. We see that Po(X3, = 0) in dimension 2 is the square
of the same probability in dimension 1! This can easily be seen by rotating the trajectory by 45°: if the
walks moves along the diagonals, then we easily see that the two coordinates evolve like two independent
walks in dimension 1; moreover the walk in dimension 2 lies at 0 if and only if both coordinate lie at 0
simultaneously. More importantly here, we have ), Po(Xz, = 0) = 0o again so again E¢[ V] = oo and the
walk is recurrent.
In dimension 3, we now have:

1 (2n)! 1 (2n n! \21
Po(Xen = 0) = 2, iZjizgz - 12( n) 2 (i!j!k!) 30’

i+j+k=n i+j+k=n

Roughly speaking, we expect this quantity to be of order n~>2, which is now a convergent series so the
walk is now transient. However exact calculations become harder and we will only upper bound this
probability (which is sufficient). Let us start by considering the case where n is a multiple of 3. We shall use
the following input:

=3 an ——— forany i+j+ k=3¢

3 n! i L 6o e
ijlk! ikl = o3

i+j+k=n

Indeed for the first one, each summand counts the number of ways to put n objects in three boxes with
respectively i, j, and k in each box, so summing over all possibilities, each object can be put in any box. For
the second one, suppose that i < j < k, otherwise rename them; if i < £ - 1,thenk=¢+1soi+1 < kand
thus (i + 1)!j!(k — 1)! < i!j'k!, therefore the denominator is maximal at i = j = k = £. Applying Stirling’s
formula again, we read that:

Po(Xer = 0) < ! (

T 123¢

66\ (30! 1 (60)! 1
3¢) 013 1230 (30)1613  2(we)32

It remains to deal with the cases n = 3¢ + 1 and = 3¢ + 2. Notice that if the walk is at 0 at some time 2k,
then makes any move and immediately after its opposite (which has probability 1/6), then it is back at 0 at
time 2k + 2. This implies that:

Po(Xsr = 0) = %]PO(XM—Z =0) and Po(Xsr = 0) = é]Po(Xétux =0).
Thus for any value n, the probability Po(X,, = 0) is asymptotically bounded by some constant times n~>/?
so indeed 0 is transient.

Finally in dimension d = 4, one could extend the previous reasoning. We propose another approach by
comparison with the case d = 3. Let X;, = (Xipn, ..., Xgn) and let Y, = (Xj », X2.n, X3,») denote the path that
follows only the first three coordinates. At each step, one coordinate of X, chosen uniformly at random
changes by either +1 of —1 uniformly at random and independently of the choice of the coordinate. If this
coordinate is one of the first three, then the corresponding coordinate of Y, changes accordingly, as for
the walk in dimension 3. However if the coordinate of X, that changes is not one of the first three, then
Yn+1 = Yy Hence (Y,), has the law of the walk in dimension 3 with additional independent random delays,
that is time-intervals during which it stays constant. The lengths of these intervals are i.i.d. geometric
distributed (on Z.) with parameter 3/d. Since we know that the three dimensional walk only visits 0 finitely
many times, and since the delays are all finite, then (Y,,), also only visits 0 finitely many times. This implies
that (X,), only visits 0 finitely many times. O
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Chapter 5

Convergence of Markov Chains

We study more specifically in this chapter the asymptotic behaviour of Markov chains. One of the reason
to introduce them was to extend the Law of Large Numbers and the Central Limit Theorem when the
increments are not independent or identically distributed. The so-called ergodic theorem stipulates that
under suitable assumptions the Markov chain forgets its starting point and it also describes the limit, in
several different senses, in terms of the transition matrix. We shall describe precisely this type of result and
finish with some applications to numerical simulations.

Contents
[5.1 Law of Large Numbers & Central Limit Theorem| . . . . . ... ... ... ..... 8o
[5.2 Convergence to the equilibrium| . . . . . ... ... ... ... .. .. ... .. .. 83
[5.3 Monte—Carlo simulations| . . . . . ... ... .......... ... . ........ 94

In Section 5.1 we present analogues of the Law of Large Numbers and the Central Limit Theorem for a
sequence (f(Xp,))n=0 Where f is a real-valued function. We shall see that the empirical average of f along the
trajectory of the chain converges almost surely to its expectation with respect to the stationary distribution
(when it exists), and with Gaussian fluctuations. Then Section [5.2|discusses another aspect of the ergodic
theorem, which shows that the stationary distribution is indeed the limit law of X,, as n — oo; we also
discuss there the speed of the convergence. Finally Section [5.3| presents some numerical applications and
introduces the Monte Carlo method.

5.1 Law of Large Numbers & Central Limit Theorem

Recall from Remark [4.1.5| that if x € X is transient, then whatever the starting point, the chain a.s. will
never visit x again after a long time. We then ask about the behaviour when x is recurrent. Thanks to
Theoremwe may assume that the chain is irreducible, otherwise we work in the class that contains x
and we ignore the other states. We will be interested in two different aspects. Here we first consider the
average of a real-valued function along the trajectory of the chain, and extend in this context the LLN and
CLT. In the next section, we shall discuss the convergence of the law of X;,.

Recall that for a measure p on X and a function f for which the integral is well-defined, we write p(f)

for the integral [ fdy =Y ox f(x)u(x).
5.1.1  Almost sure convergence

Let us state straight away the main result of this section. Recall from Theorem that all stationary
measure are proportional to each other, so the limit below is unique and does not depend on the choice of y.

Theorem 5.1.1. Suppose that the chain is irreducible and recurrent and let u be any stationary measure. Let
g X — [0,00) with 0 < p(g) < oo and let f : X — R with either f = 0 or y(|f|) < co. Then for any initial
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distribution, we have:

Yoo (X s 1)
Yiog(Xe) noe p(g)

Before proving this result, let us derive an immediate corollary that shows that the stationary distribution
arises as the asymptotic proportion of time spent at each state.

Corollary 5.1.2. Suppose that the chain is irreducible and recurrent and let f and g be as above.

(i) Ifthe chain is positive recurrent and if = denotes its unique stationary probability, then for every x € X,
we have Py-a.s.

1 n-1
=N X0 — 2.
n n—oo
k=0
In particular, for every x, y € X, we have Py-a.s.

1

n-1
— 1 .
" Z Xi=y r:; n(y) = E,[H,]

(ii) If the chain is null recurrent then any stationary measure necessarily has infinite mass and for every
x € X, we have P;-a.s.

1 n-1
~ Y 8X) — 0.
o :
In particular, for every x, y € X, we have Px-a.s.

1 n-1
- Z ﬂxk:y — 0.
n k=0 n—oo

Proof. Simply apply Theorem[s.1.1to g = 1 or f = 1 respectively. O

Remark 5.1.3. More generally, if the chain is not irreducible and if y is positive recurrent, then we have:

1 Z 1 as. 1 1
- Xesy T Ty LHy<oo-
nig T o EylH]

Moreover, the left-hand side always lies between 0 and 1 so we can take the expectation by dominated
convergence, which reads:
n-1
LY b=y — )
n & n—eo  Ey[H,]
With the convention that 1/c0 = 0/co0 = 0, this still holds for null recurrent y’s, as well as for transient ones
since then E,[H,] = co and we have seen that ) ;" P+(Xj = y) < co.

Proof of Theorem[5.1.1 Let us fix the starting point X, = x. If X, is random, then we simply apply the result
to any fixed x and then average with respect to the law of Xj.

The idea is to cut the trajectory at every visit of x. By successive applications of the strong Markov
property at each time HZ, the random variables defined by:

HF-1

Ye= ), g(X)

i=Hk1

for k = 1 are i.id. Recall from Theorem[4.2.8]that all stationary measures are proportional, and precisely

every such measure p takes the form p(y) = p(x)v.(y), where v, is the only stationary measure that has
vx(x) = 1 and is given by (4.2). Then

H,-1 H,-1

B[] = Ex[z g(Xi)] = Ex[z >, 8 1x, y] Y e =) &ly zg; - He)

i=0 =0 yex yEX yEX px)
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Recall that p(x) > 0 and that we assume that p(g) < oo, then the Y;’s are integrable and by the usual Law of
Large Numbers we have under P,

& 1 &, as g
x) =~y =5 M8
800 =5 2 % 2

S =
o

i=
We aim at comparing the sum on the left with that up to a fix number of steps. Let us denote by V,(n) =
> iro Lx—x the number of visits of x up to time n and observe that:

H)Yx(n)_l <n< H;/x(”)

Since g = 0, then we infer that

-1 n-1 1 Mg

1 H)Yx(")l
Vi 2 f 800 =y 2, 8K

iz0 Va( i=0

i=0

Recall that x is recurrent, so Vi(n) T, Vy = o a.s. Then combined with the above LLN for the Y;’s, we infer
that both the lower and upper bound converge a.s. to p(g)/u(x) and so

LSy o5 HE)
Vam) 280 20y

If f is a nonnegative function with p(f) < oo, then the same holds with f in place of g, from which we
conclude that

Ticof(Xe) s M)
Yiog(Xe) noe p(g)

If f is not necessarily nonnegative but has p(|f|) < oo, we may decomposing as f = f* — f~, apply the above
convergence to f" and to f~ separately, and conclude by linearity.

Finally, if f = 0 and p(f) = oo, then we can apply the previous result to a sequence (fy)n»1 of nonnegative
functions that satisfy u(fyy) < o and fy Tn f and conclude by comparison. Such functions can be explicitly
given e.g. by taking (x;);»1 an enumeration of X and setting fx(x;) = (f(x;) A N) Licn (recall indeed that
1(x) < oo for every given x so u(fy) < oo for each N). O

5.1.2 A Central Limit Theorem

Recall from Corollary [5.1.2| that when the chain is irreducible and admits a stationary probability 7, for any
function f : X — R integrable for x, it holds whatever the starting point Xj:

n-1

a.s.
f&e) — 7(f).
n n—o0
k=0
The CLT below shows that the deviations away from this limit are asymptotically Gaussian. For simplicity,
we restrict here to finite state spaces. In this case, any irreducible chain has a unique stationary probability
« and any function f is 7-integrable.

Theorem 5.1.4 (Markov chain’s CLT). Suppose that X is a finite set and that the chain is irreducible, with
stationary probability m. Let f : X — R and define

u(x) = Z Pkf(x) and then ol = 7T(Pu2 - (Pu)z).

k=0

Then for any starting point of the chain, we have the convergence in distribution:

9D w0, 1).

—00
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The proof of this CLT relies on a CLT for martingales, proved in Chapter o] It is therefore differed to
Section Let us here only discuss the variance o which appears in the statement.
Recall that Pu(x) = E[u(X;) | Xo = x]; define then the conditional variance by:

Var(u(X;) | Xp = x) = B[(u(X)) - E[u(X1) | Xo = x])* | Xo = x]
= E[u(X)* | Xo = x] - E[u(X)) | Xo = x]°
= Pu?(x) - (Pu(x))*.

Then the constant o in the theorem equals

o’ = Z 7(x) Var(u(Xy) | Xo = x),
xeX
that is, the expectation of this conditional variance when X; has the law 7. Beware that this is not equal to
the variance of u(Xj), for which we need to add Var,(Pu(Xy)), which corresponds to the variance of the
conditional expectation E[u(X;) | Xy = x] when X, has law 7. Notice that if the Xj’s are i.i.d. with law ,
then this additional term vanishes and indeed o = Var(u(X;)). Let us mention that expressing o2 is not
simple in general, and one often approximates it numerically.

5.2 Convergence to the equilibrium

As we observed in Remark[5.1.3] if the chain is irreducible and positive recurrent with stationary distribution
7, then we have the convergence in Cesaro mean: for every x € X,

1 n-1
=Y P(Xk=x) — (x),
nio e

for any initial distribution. We now aim at the convergence of P(X,, = x) for every x, that is the convergence
in distribution of X, to the law x. There is however a simple technical issue that can prevent such a
convergence called periodic behaviour that we first discuss.

5.2.1 Aperiodicity

Take a simple random walk on a cycle of length 4, that is X,.; = X,, £ 1 mod 4 with probability 1/2 and
1/2. If Xy = 0, then X,, € {0,2} and X;,.1 € {1,3} so the sequence cannot converge in distribution. In this
example, the chain can only come back to its starting point after an even number of steps. This motivates
the next definition.

Definition 5.2.1. A Markov chain or a transition matrix is said to be aperiodic when for every x, y € X,
there exists m = 1 such that for every n = m, we have P*(x, y) = P,(X, = y) > 0.

The aperiodicity condition is stronger than irreducibility which only asks the existence for each pair
x, y of one index n with P"(x, y) > 0. Here we require that they all work except finitely many. When the
chain is irreducible, it suffices to check the definition above with a single point x for it to be aperiodic.

Lemma 5.2.2. A Markov chain is aperiodic if and only if it is irreducible and there exists x € X such that
there exists m = 1 with P*(x, x) = Px(X,, = x) > 0 for every n = m.

Proof. The direct implication is clear, let us only prove the converse one. Let y, z € X. Since the chain is
irreducible, then there exist i, k = 1 such that P/(y, x) > 0 and PX(x, z) > 0. Moreover for any j > m we have
P/(x, x) > 0. We infer from the Markov property applied at time i + j first and then at time i that:

Py(Xisjsk = 2) 2 Py(Xi = x, Xiyj = x, Xisjuk = 2)
=Py(Xi = x, Xiij = x) Px(Xi = 2)
= Py(Xi = ) Px(Xj = x) Po(Xi = 2),
which equals P(y, x)P/(x, x)P(x, z) > 0. O
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Remark 5.2.3. A simple case is when the assumption holds with m = 1, that is P(x, x) > 0 for some x € X.
A way to force such a behaviour consists in adding random ‘delays’, for example, suppose that at each
time with probability 1/2 we move according to the chain, and with probability 1/2 we stay at the current
position. This defines a new Markov chain, whose transition matrix is (P + I)/2, where I is the identity
matrix. Note that a measure is stationary for (P + I)/2 if and only if it is for P so the new chain has the
same asymptotic behaviour as the original one, simply slowed down roughly by a factor 2.

Our definition of aperiodicity is not the usual one but is the one that is useful here. The link between
the two definitions uses some arithmetics. Recall that if A ¢ IN is a nonempty and finite set, we let GCD A
denote the greatest integer d = 1 such that each element of A is a multiple of d. If A ¢ IN is infinite, then let
dy, = GCD(An {1,..., n}) for every n > min A and observe that d,.; = d,. Hence (d,), converges to some
d = 1 and, since they are integers, we have actually d, = d for every n large enough; we set GCD A = d.

Definition 5.2.4. For each x € X let
I(x)={n=1: P"(x,x) > 0} and d(x) = GCD I(x).
If I(x) # @, then d(x) = 1 is called the period of x.
In our simple example with four states, each point has period 2.

Proposition 5.2.5. Suppose that the chain is irreducible. First for every x,y € X, we have d(x) = d(y).
Moreover, the chain is aperiodic if and only if d(x) = 1.

Proof. Fix x,y € X. Since the chain is irreducible, then there exists ny, n; = 1 such that both P™(x, y) > 0
and P™(y, x) > 0. As in the previous proof, we infer from the Markov property that

P™(y,y) = P™(y, x)P™(x,y) > 0
0 ny + ny € I(y). Similarly, for every n € I(x), we have
P (y, y) = P™(y, x)P"(x, x)P™ (x, y) > 0

so ng + n + ny € I(y). Thus d(y) divides both n, + ny and ny + n + ny and thus divides n for every n € I(x).
Therefore d(y) divides d(x). By a symmetric argument, d(x) divides d(y) and so d(x) = d(y).

Next, if the chain is aperiodic, then for every x € X there exists n(x, x) such that n € I(x) for every
n = n(x, x), which implies that d(x) = 1 (since for example I(x) contains two prime numbers). Suppose
finally that d(x) = 1. With the same argument as above, I(x) is stable under addition, namely if n, m € I(x),
then n + m € I(x) since P"*™(x, x) = P"(x, x)P™(x, x). Thus the claim follows by combining Lemmals.2.2|
above and Lemmas.2.6| below. O

Lemma 5.2.6. Suppose that A c IN is an infinite set stable under addition: ifn,m € A, then n + m € A.

(i) If A contains two consecutive integers, say a, a + 1 € A, then A contains all the integers n = a°.

(ii) If A has GCD A = 1 then it contains two consecutive integers.

Hence, if A is stable under addition and has GCD A = 1, then it contains all the integers but finitely many.

Proof. (i) Suppose a,a+ 1 € A. Since A is stable under addition, then every multiple of a belongs to A;
in particular ka® + fa € Aforall k = 1 and ¢ = 0. More generally, any integer n > a? can be written
uniquely as

n=ka*+r=ka*+ta+s=(ka+t-s)a+s(a+1)

withk=21,0=< ¢ <a-1,and 0 = s < a - 1. Indeed take first the Euclidean division of n by a® and
then that of the rest r by a. Notice then that ka + £ — s = 1; since a,a + 1 € A and A is stable under

addition, then the right-hand side belongs to A which therefore contains all the integers n > a?.
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(ii) Suppose GCD A = 1 and take two elements a < bin A. If b = a+1 we are done so suppose k = b—a = 2.
Since GCD A = 1, then there necessarily exists ¢ € A which is not a multiple of k, as otherwise k
divides A. Write the Euclidean division ¢ = ik + r with i = 1 and 1 < r < k - 1. Since A is stable under
addition and b € A, then b’ = (i + 1)b € A, and since both a,c € A, then @’ = (i + 1)a + ¢ € A so we
found two elements a’ < b” in A whose difference is:

bV -ad =(Gi+Dk-c=k-r<k-1.

If k-r = 2 we can iterate this argument and construct a’” < b” in A whose difference is b’-a” < k-r-1.
After at most k - 1 iterations, we find two consecutive elements of A. O

5.2.2 Periodic chains (*)

Recall that for any d = 2, the process (X;,4)n=0 is a Markov chain with transition matrix P4 If the original
chain is irreducible and has period d, then (X,4),-0 is almost aperiodic. Actually it may not be irreducible
so the precise statement is the following. To ease notation, if d > 2 and k € {0,...,d - 1}, we let k; =
(k + 1) mod d, that is precisely ky = k+ 1 when0 < k<d-2and k; =0when k=d - 1.

Proposition 5.2.7. Let d = 2 and let P be the transition matrix of an irreducible and d-periodic chain. Then
there exists a partition X = Xy u - u X4-1 such that for every k € {0,...,d - 1}, for every y € X, we have
v € X, if and only if there exists x € Xy such that P(x,y) > 0. Moreover for every k € {0,...,d - 1}, the
matrix (P%(x, Y))x,yex, is irreducible and aperiodic.

Proof. STEP 1: the partition. Fix x € X and for every k € {0,...,d - 1}, let
X = {y € X: 3n = 0 such that P*""(x, y) > 0}.

Since P is irreducible, then for every y € X, there exists m = 1 such that P™(x, y) > 0. Writing the Euclidean
division m = nd + n, we obtain that Ui;i Xk = X. We then claim that these sets are disjoint. Indeed, suppose
that there exists y € X; nX;. Then there exist n, n; > 0 such that both P**™9(x, y) > 0 and P**"4(x, y) > 0.
By irreducibility, there also exists m = 0 such that P™(y, x) > 0 so by concatenating the paths, we infer
from the Chapman-Kolmogorov equations that both k + ngd + m € I(x) and ¢ + n,d + m € I(x). Recall
that d = GCD I(x) so both k + ngd + m and ¢ + n,d + m are multiple of d and thus so is their difference
k-1t +(ng—ny)d so finally k- ¢ is a multiple of d. However recall that k, £ € {0,...,d-1}s00 =< |[k-¢| = d-1
and the only possibility that this is a multiple of dis k- £ = 0. Thus X n X, # @ = k= ¢.

STEP 2: the equivalence. Fix 0 < k < d - 1 and fix z € X. We aim at proving that there exists 3y € X
such that P(y, z) > 0 if and only if z € Xj,. Recall the definition of k; and X, then z € X}, means that
there exists n > 0 such that P¥*1*"(x, z) > 0. Notice then that for every 0 < k < d - 1 and n = 0, we have:

Pk+1+nd(x’ Z) _ (Pk+ndP)(x, Z) - Z Pk+nd(x’ y)P(y, Z)-
yeX

Hence PF*1*"d(x, z) > 0 if and only if there exists y € X such that both P**"?(x, y) > 0 and P(y, z) > 0,
namely if and only if there exists y € Xj such that P(y, z) > 0.
STEP 3: the position at time n. Fix 0 < k = d - 1, y € Xy, and z € X, we show by induction that for
every n = 0,
PYy,2) >0 = 2z € X(n+k) mod d- (5.1)

Hence, starting from Xy € Xj, we have X, € X(n.k) mod ¢« almost surely for every n = 0. Indeed, for
n = 0 we have P"(y, z) = 1,-, so this is clear. For n = 1, this is also a consequence of the previous step
since (1 + k) mod d = k,. Suppose that this holds for some n = 0, then as before, we have P"*(y, z) =
Y vex Py, v)P(v, z) which is positive if and only if there exists v € X such that both P"(y, v) > 0 and
P(v, z) > 0. By the induction hypothesis P"(y, v) > 0 implies that v € X(+) mod 4- Then by Step 2, the fact
that there exists v € X, mod ¢ such that P(v, z) > 0 is equivalent to z € X(n+k mod d)+1 mod d = X(n+k+1) mod d-
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STEP 4: the restricted matrices. Fix 0 < k < d - 1 and let us prove that the matrix (P%(y, z))y,zex;, is an
irreducible and aperiodic transition matrix. Obviously the entries are nonnegative. For every y € Xy, we
infer from the previous step that P%(y, z) = 0 for every z & Xy, thus:

Z Pd(y, z) = Z Px,z) = 1.

z€Xy yeX

Hence (P4(y, z))y,zeX, is a transition matrix.
Next fix y, z € Xy, since P is irreducible then there exists n = 1 such that P"(y, z) > 0. Let us write the
Euclidean division n = md + r with 0 < r < d - 1. Then by the Chapman-Kolmogorov equations, we have

m-1
P’"d”(y,z)= Z Pd(y,ul)HPd(ui,u,-+1)P’(um,z).
i=1

Ug,...,Um€X

Since the left-hand side is positive, then there exist uy, ..., u,, € X such that each matrix entry on the right
is positive. By the previous step, since y € Xy then P4(y, u;) > 0 implies u; € X} as well and this further
implies by induction that u; € Xy for each 1 < i = m. Hence u,, € Xy and P"(up, z) > 0 which implies
that z € X(ks) mod - But since z € Xj and these sets are disjoint, then necessarily (k + r) mod d = k,
namely r is a multiple of d and since 0 = r =< d - 1 then r = 0. We have thus proved that n = md satisfies
P™(y, z) = (PY™(y, z) > 0 so indeed (P%(y, 2))y.zex; is irreducible.

It remains to prove that it is aperiodic. Fix y € Xy and recall that P is d-periodic, that is d = GCD I(y).
The latter is defined as limy GCD(I(y) n N), where, since GCD(I(y) n N) is integer-valued, the limit is
achieved and d = GCD(I(y) n N) for every N large enough. Therefore there exist j > 1 and integers
ni, ..., nj € I(y) such that GCD(ny, ..., nj) = d. Let us write n; = m;d for each 1 < i < n, then (PYYmi(y, y) > 0
and GCD(my, ..., m;) = 1, hence y has period 1 for Pl O

/

\

Figure 5.1: lllustration of an irreducible 5-periodic chain: the space X is partitioned into 5 dis-
joint subspaces along which the chain rotates as shown in (5.1). If we flash the chain every 5
steps, it always falls into the same subspace and it defines an irreducible and aperiodic chain.

5.2.3 Convergence to the stationary distribution

The next theorem proves that periodicity of an (irreducible positive recurrent) chain is the only issue
that can prevent its convergence in distribution. The limit is the stationary probability as we saw in

Proposition|[3.3.4]
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Theorem 5.2.8. Suppose that the chain is irreducible, positive recurrent, and aperiodic. Let 7 denote its
unique stationary probability measure. Then for any initial distribution, we have:

D IP(X, = x) - m(x)| —> 0.

x€X nme

In particular, whatever the initial distribution, (X,), converges in distribution to .

Remark 5.2.9. The convergence above is stronger than convergence in distribution, it is called convergence
in total variation. The total variation is a notion of distance between two probability measures on X, say =
and 7/, given by 1 ¥ o |7(x) - 7/ (x)].

The proof of Theorem 5.2.8|is based on the coupling of two independent Markov chains. Let us refer to
Section [5.2.6] for some discussion relating this notion and the total variation distance. Let us split the proof
into several intermediate results.

Lemma 5.2.10. Let (X;,;)ns0 and (Y,)ns=0 be two independent Markov chains, with transition matrix Px and
Py respectively.

(i) The pair (Xu, Yn))n=0 is a Markov chain on X.
(ii) If (Xy)n and (Y,), are both irreducible and aperiodic, then so is (X, Y,)n.

(iii) If moreover (X)), and (Y,), are both positive recurrent, then so is (X, Yp)n.

Proof. (i) Fix any possible trajectories xy, ..., x, and yy, ..., yu, then by independence:

ng,yo(é{(xi’ Y;) = (xi’Yi>}) = ]Pxo(é{xi = xi}) Pyo(é{Yi = Yi})

n n

= H Px(xi-1, x;) H Py(yi-1, yi)
P i-1
n

= H (Px(xi_l, Xi)PY(yi—h yl))

i=1

One easily checks that
(Px ® Py)((x, ), (x", y")) = Px(x, x")Py(y, y')

is a transition matrix on X2, so indeed the pair ((X,, Y,))ns0 is a Px ® Py-Markov chain.

(if) Suppose Px and Py irreducible and aperiodic, then for any xi, x3, y1, y», there exist i, j = 1 such that
for any n = i, we have P¢(x1,x;) > 0 and for any n = j, we have P{(y1,y2) > 0, therefore for any
n = max(i, j), we have (Px ® Py)"((x1, y1)(x2, y2)) > 0 and Px ® Py is thus irreducible and aperiodic.

(iii) If the chains are positive recurrent, then there exist a Px-stationary probability measure zx and a
Py-stationary probability measure 7y and one easily checks that the product probability measure
(mx ® my)(x, y) = mx(x)my(y) is then Px ® Py-stationary so the pair is positive recurrent. O

Observe that the fact that each chain is aperiodic is crucial to deduce that the pair is even irreducible,
as otherwise it may be the case that {X,, = x} n {Y, = y} = @ for all n. For a concrete example, take again
two independent walks on the cycle of length 4, started at (1, 1), it will never reach (1, 2).

Lemma 5.2.11. Let (X;;)n0 and (Yy,)n=0 be two independent P-Markov chains and define their coupling time:
T=inf{n=0: X, =Y,}. (5.2)

Define also for every n = 0,
Zn=Xn Tper + Y Lot

Then (Zy)nso is a P-Markov chain with same initial position as (Xp)ns0, S0 they have the same law.
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Proof. By the previous lemma the pair (X,, Y,), is a Markov chain. Observe that
T=inf{n=0: (X, Y,) € {(x,x),x € X}}
is a stopping time for this process. Fix n = 1 and z, ..., z, € X and let us write:
P(Zy = zg,.0c Zn=20) =P(Zy = 29y, Zn = 2n, T 2 n)+ Y P(Zy = z0,...,2, = 25, T = k).
When T > n we have Z; = X; for every i < n, including i = n so the first probability on the right equals
P(Xy = zp,..., X = 24, T = n). Next, for 0 < k < n - 1 fixed, the summand on the right equals:
P(Xo = zo, ..., Xk = 2k, Yo # 205 v Yio1 # Zh-1> Yk = Zksoees Y = Zny),
which, by independence of the chains, can be split as:
P(Xo = zo, ..., Xg = zk) P(Yo # 20, ..., Y1 # Zk1, Yk = Zky oo, Y = Z).
By applying the Markov property to the chain (Y,), at time k, the very last probability equals
P(Yo # 2o, .., Yio1 # 2k-1, Yi = 20) P2 (Y1 = Zjots oo Yook = 20)

and since the chains (X},), and (Y,), have the same transition matrix P, then appealing e.g. to Theorem
we have:
]sz(Yl = Zhetlsoees Yn—k = Zn) = ]sz(Xl = Zk+1,~~~,Xn—k = Zn).

Wrapping up, we infer that

]P(Zo = Zo,...,Zn = Zp, T= k)
= ]P(Xo =20, Xk = zi) P(Yo # 2o, ..., Y1 # Zk—1, Yi = Zk)]sz(Xl = Zkits oo Xk = Zn)

=P(Xo = 20, ..., X = 20) P(Yo # 20,0y Yot # Zg-1, Y = 21)
= ]P(X() = Z(),...,Xn = Zn, Y() F 20y e Yk*l F Zg-1, Yk = Zk)
= ]P(XO = Z(),...,Xn = Zn, T = k)

Gathering our findings, we conclude that

n-1
P(Zy = 20 » Zn = 20) = P(Zo = 20,0, Zn = 20, T 2 ) + Y P(Zg = 20,..., Zn = 20, T = k)
k=0

n-1
=P(Xo=zp,.... Xn=2n, T 2 n) + Z]P(Xo =20, Xn =2z, T = k)
k=0

=P(Xo = zp,..., Xy = zn),
and the claim follows from Theorem [3.2.2} O
We can now easily derive Theorem|s.2.8|

Proof of Theorem[5.2.8 Suppose the chain is aperiodic and positive recurrent, with stationary probability
7. Let us use the previous notation. Let (X)), start from an arbitrary distribution and independently let
(Yn)nso start from the stationary distribution x. Then Y, has the law 7 for every n = 0. Since Z, has the
same law as X, for every n = 0, then

P(Xn = x) = 7(x)| = [P(Zn = x) = P(Y, = x)|
Xn=x,T>n)+P(Y,=x,T=n)-PY, =x)
P(X,=x,T>n)-P(Y,=x,T > n)|
<PX,=x,T>n+P(Y,=x,T > n).

~
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Then summing over all possible values of x, we obtain:

D IP(X, = x) = w(x)| < 2P(T > n).
xeX

Now recall that the chain (X, Y,), is irreducible and recurrent, so a.s. for every initial distribution, we have
T=inf{n=0: (X, Y,) € {(x,x),x € X}} < coand thus P(T > n) — 0as n — oo. O

5.2.4 Null recurrent chains (*)

In the transient or null recurrent case, the limit in the previous theorem is simply 0.

Proposition 5.2.12. If (X,), is aperiodic and either transient or null recurrent, then for every x,y € X we
have P(X, = y) > 0 asn — oo.

Proof. First if the chain is transient, then we know from Remark [4.1.5| that the expected number of visit of
any point is finite, namely, for all x, y € X,

D P = y) = Ex[V,] < o0,
n=0
so in particular P,(X, = y) — 0 as n — oo.

Suppose henceforth that the chain (X,), is null recurrent. From the previous proof, we know that if
we start another independent chain (Y,), with the same transition matrix P, then the pair (X, Y,) has
transition matrix P ® P which is irreducible but now can be either transient or recurrent. Let us note that it
cannot be positive recurrent. Indeed since (X), is null recurrent than it admits stationary measures and
they all have infinite total mass. Now if y is such a measure, then p ® y is stationary for P ® P, and it also
have infinite mass so the claim follows from Corollary [4.2.11]

If the pair is transient, then we infer as above that

]P(x,x)((an Yn) = (y’ J/)) r:; 0.

On the other hand, by independence, the left-hand side equals P,(X,, = y)z which therefore converges to 0.

Suppose henceforth that both P and P ® P are null recurrent. Then exactly as in the previous proof,
whatever the initial distribution of (Xj, Yy), the coupling time T = inf{n = 0: (X, Y,) € {(x,x), x € X}} is
finite almost surely (by recurrence of the pair) and thus

P(X, =)~ P(Yy = )| = 2B(T > 1) —> 0

n—oo

for all initial distributions of (Xp, Yy). Taking X = xp and Y, = y, we read:
P'(x0,y) = P"(y0,y) —> 0. (5-3)

Recall that our aim is to prove that P*(x, y) — 0 for every x, y € X. Fix x € X and let us enumerate X as
{31, ¥2, ... }. Notice that P*(x, y;) € [0, 1] so there exists a subsequence (ny) such that P*(x, y;) — p(y1) €
[0,1] as k — co. Similarly we can then extract from (nk)x a subsequence (ny;); such that P"i(x, y,) —
p(y2) € [0,1] as j — oo, and of course P™(x, y1) — p(y1). By induction (this is Cantor’s diagonal extraction
argument), we obtain that there exists a subsequence, say, (m;); such that P™(x, y) converges to a limit
p(y) € [0, 1] for all y € X. Combined with we may replace x by any other point, namely

P™(u,y) — p(y)

for every u, y € X.
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We claim that p is a finite stationary measure. Indeed:

pP(z) = Y. p(MP(y. 2)

yeX

= > (lim P™(x.3) ) P32 2)

yeX

< liminf Z P™i(x, y)P(y, z),
—o00
yeX

where the inequality follows from Fatou’s lemma (Theorem applied to the measure P(-, z). Now
observe that

> P yP(y,2) = P (x,2) = ) P(x, )P (. 2).
yeX yeX

Recall that P™(y, z) — p(z) for every y, z € X so by dominated convergence, for every z € X, we have:

pP(2) < liminf )’ P(x, y)P™(y.2) = ), P(x.y)p(2) = pl2).
yeX yeX

Let us next sum over z the left-hand side:

D pP(2) = D) pMP(1.2) = Y. > p(MP.2) = Y p(y).

zeX zeX yeX yeX zeX yeX

Hence pP(z) < p(z) for every z € X and the sum over z of both sides are equal. This implies that pP(z) = p(z)
for every z € X so p is indeed stationary. By Fatou’s lemma again, the total mass of p is:

Z p(y) = Z(lim P™i(x, y)) < liminf Z P™i(x,y) = 1.
yeX yeX = o yeX
Hence p is a stationary measure with finite mass. Note that it could be the constant null measure.

To conclude, if there exists y € X such that P"(x, y) does not converge to 0, then it has a subsequence
with a positive limit. Then by starting our diagonal argument with this one, we get p(y) > 0 for this
particular value, and hence p is a nontrivial stationary measure with finite mass, which contradicts the fact
that P is null recurrent. Hence p is the constant null measure and P"(x, y) — 0 along any subsequence,
hence P"(x, y) — 0 as we claimed. 0

5.2.5 Speed of convergence

As always, in practice, a convergence result such as in Theorem [5.2.8]is not enough since n will not tend to
infinity, and quantifying how far from the limit we are at a given n is crucial. This is not an easy question
and often there are no universal response. Let us give a criterion due to Doblin which implies an exponential
rate of convergence; notice the power of this result which provides an explicit bound that applies uniformly
over all starting points and any time n.

Theorem 5.2.13. Suppose that the chain is irreducible and aperiodic and that it satisfies the Doblin condition:
there exist an integer k = 1, a real number § > 0, as well as a probability measure v on X such that:

P.(Xk = y) = Sv(y) forevery x,y e X. (5.4)
Then the chain has a stationary probability = and it satisfies: for every n = 1,

sup 3 [Py, (X, = ) - m(x)] = 2(1- )",
*€X xex
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Since the chain is irreducible, then for every pair x, y € X, there exists k = 1 such that P,(Xy = y) > 0;
in we require a uniform lower bound on this probability. Notice that if X is finite, then this condition
always holds for an irreducible and aperiodic chain. Indeed in this case, there exists k > 1 such that
P, (Xk = y) > 0 for all pairs x, y € X and we may set:

. 1 .
d= Z r){g}g]Px(Xk =y)>0 and then v(y) = 5 min P, (Xi = y).

yeX

This provides a good starting point, but in practice the rate of convergence is often obtained by a specific
analysis of the model which often allows to obtain a better bound than in Theorem 5.2.13]

The proof of Theorem [5.2.13|takes three steps that we separate: we first prove the existence of 7, then
we prove that it suffices to consider the case k = 1, and finally we prove the upper bound when k = 1.

Proof of existence of . Let us first prove that the assumptions ensure the existence of a stationary probability.
Recall that this is equivalent to the existence of a positive recurrent state. Fix henceforth y € X such
that v(y) > 0, which exists since ), v(x) = 1, and let us prove that E,[H,] < co. This is an application of
the “what can happen will happen” principle discussed in the exercises: since the Doblin condition
stipulates that, whatever the current position, there is a probability at least dv(y) to lie at y k steps later,
then this will occur after at most a renom geometric number of trials.

Precisaly, by applying the Markov property at time (n — 1)k, we have:

Py(H, > nk) < > Py(H, > (n - 1)k, X1 = x, Hy > nk)

X#y

= ) Py(Hy > (n= )k Xin1k = %) Px(H, > k)
X#y

= ), Py(Hy > (n= Dk, Xk = %) Px(Xi # )
X#y

< Y Py(Hy > (n= 1)k, X = x) - (1 - 5(y)) by (5.4)
X#Yy

=P,(Hy > (n-1)k)-(1-5v(y)).
We infer by induction that P,(H,, > nk) < (1 - 6v(y))" for every n = 1 and thus:

Ey[Hy] = > Py(H, > n) < k Y Py(H, > nk) < co.

n=0 n=0

Therefore y is positive recurrent and so is the entire chain by irreducibility, so it admits a unique stationary
distribution . O

Proof of the exponential bound. Fix any distribution py on X, let X; be distributed as p,, and then let us
denote by p, the law of X, for every n = 1. By the Markov property at time nk, we have:

p(n+1)k(x) = Z Pnk(2) P (Xi = x).
zeX

In the particular case py = 7 is the stationary distribution, we know that p, = 7 for every n > 1 so

m(x) = Y. m(2) Po(Xi = x).

zeX

Notice that since both p,; and & are probability measures, then

> (oni(2) - w(2)8v(x) = (3 pu(2) = 3 7(2) ) 5v(x) = (1 - DOv(x) = 0.

zeX zeX zeX
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Combining these remarks, we infer that

> 1P = 7@ = 3|3 (pnk(2) = () P(Xi = %) = Sv(x)|

xeX xeX zeX

> 1onk(2) = 7(2)] - | Po(Xi = x) - 5v(x)

x,z€X

> lpak(2) = m(2)] - (P(Xk = x) - 6v(x)) by (5.4)

x,z€X

= lpar(z) - 7(2)] Y. (P2 - 5v(x))

zeX xeX

= lpur(z) - 7(2)] - (1 - 6).

zeX

IA

We infer by induction that

D k() = ()| = (1= 8)" Y |plx) - 7(x)] < 2(1 - )",

xeX xeX

since 3 vexc k(%) = 7(x)] = Yexc(pr(x) = 7(x)) = 2.

Finally, if m = 1 is any integer, then we may write the Euclidean division m = nk + r with0 < r < k - 1,
and the similarly as above:

3 pm(x) - 7(x)| = Z)Z@nk(z) - 7(2) Po(X; = )

xeX xeX zeX
< > lpuk(2) - 7(2)] - Po(%; = x)
x,z€X
= Z |Pnk(2) =
zeX
We conclude from the previous case. O

5.2.6 Coupling and total variation distance (*)

As we mentioned already, Theorem and Theorem |5.2.13 control the total variation distance between
the law of X, and the stationary distribution 7 and the proof relies on a coupling argument. Let us here
discuss more the relation between these two notions.

Definition 5.2.14. Let & and v be two probability measures on X, we define

b= vy = 5 3 20) - v,

xEX

which is called the total variation distance between sz and v.
Exercise 5.2.15. Prove that the total variation distance is a distance between probability measures on X.

This notion of distance is stronger than the convergence in distribution: if one thinks of a probability as
a function from the subsets of X to [0, 1], then the convergence in distribution is a pointwise convergence,
whereas the convergence for the total variation distance is a uniform convergence as we next prove.

Proposition 5.2.16. Let & and v be two probability measures on X, then
|7 = vlrv = sup |7(A) - v(A)],

AcX

where we recall that m(A) = Y, .ca 7(x).
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Proof. Let us first prove that the left-hand side is smaller than or equal to the right-hand side by providing
one subset A which realises the total variation distance. Precisely, let A = {x € X : n(x) = v(x)}, then

b= vy = 5 Sl = v+ o 3 () - vl

x€EA X€EA®
=2 Y - ) - 5 T () - vlx)
x€EA Xx€A®
_ m(A) - (A°) - v(A) + v(A®)
2 .

Since 7 and v are probability measures, then we have 7(A) + 1(A°) = v(A) + v(A°) = 1 and thus

m(A) - 7(A°) - v(A) + V(AC)

5 m(A) - v(A) - *(ﬂ(A) + 71(A%) = v(A) - v(AY)),

=0

and similarly:

m(A) - m(A%) - v(A) + V(AY) _
2

V(A®) - m(A°) + %(gr(A) + m(A€) = v(A) - v(A°)).
=0

Thus, for this choice of A, we have
I = virv = m(A) - v(A) = V(A°) - m(A). (5.5)

Next for any subset B ¢ X, we have since 7 < von A and 7 = v on A:

m(B) - v(B) = n(Bn A) + m(Bn A°) — v(Bn A) — v(B n A°)
< m(BnA)-v(BnA)
< m(BnA)+ m(B°nA) - v(BnA) - v(B°n A)
= n(A) - v(A),

and similarly v(B) — m(B) = v(A€) — m(A°) so
7(B) = v(B)| = m(A) - v(A) = v(A%) - m(A%) = |7 - Vv
for all B c X. O
Let us turn to the notion of coupling.

Definition 5.2.17. Let 7 and v be two probability measures on X. A coupling of = and v is a probability
measure p on X? such that if (X, Y) has the law p, then X has the law 7 and Y has the law v. We shall
denote by C(r, v) the set of all their couplings.

Example 5.2.18. If 7 = v is the Bernoulli law with parameter 1/2, we can take either X and Y independent
with this law, or X = Y, or X = 1 - Y. This provides three different couplings.

Couplings relate to the total variation distance as follows.

Proposition 5.2.19. Let & and v be two probability measures on X. Then

| = vlry = min p(X # Y),
peC(m,v)

where p(X # Y) is the probability that X differs from Y when the pair (X, Y) has the law p.
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Proof. Again, let us first prove that the left-hand side is smaller than or equal to the right-hand side. If X
has the law 7 and Y the law v, then for any coupling and any subset A c X it holds

P(X # Y)=P(X € A Y € A%

X€eEAYEA)-P(X €AY €A
X€EAYEA)+PXEAYEA)-P(XEAYcA-PXeA,YcA)
XeA-P(YeA

(A) - v(A).

v

(
(
(
(

P
P
P
T

Recall from the previous proposition that |z — v|ry is the supremum over A of these quantities, hence
PX#Y)2|r-v|rv

for every coupling. To prove the equality, it remains to find one optimal coupling. Let A = {x € X: 7(x) =
v(x)} and then

p=1- ) min(n(x), v(x)) = 1 - (v(A) + 7(A%)) = 7(A) - W(A) = | - V],
xeX

by (5.5). Let then & have the Bernoulli law with parameter p. If & = 0, then let X = Y be distributed
according to

P(X=x|£=0)= 11p min(z(x), v(x)) = 11p (2(x) Leeac + v(x) Leea).

If £ = 1, then let X and Y be independent and sampled respectively from:

m(x) - v(x) v(y) - (y)

PX=x|¢=1)= | = virv

=iy

which are indeed probabilities by (5.5).
Let us check that this defines a coupling in that X has the law 7 and Y the law v: since p = |7 - v|rv,

Txea and ]P(Y =Y | 'g = 1) = ]lyeA”:

then simply

PX=x)=pPX=x|E=1)+(1-p)PX=x[E=0)
= (7(x) = v(x)) Lea + (7(x) Lxeac + v(x) Lrea)
= 7(x),

and similarly

PY=y)=pP(Y=y[E=1)+(1-p)P(Y=y]|E=0)
= (W(y) - () Lyeac + (1(y) Lyeac + v(y) Lyea)
= v(y).

Finally,if ¢ =0then X = Yandif £ = 1,then X € Aand Y € A°so X # Y if and only if £ = 1, which
occurs with probability p = |7 - v|rv. O

5.3 Monte-Carlo simulations

Up to now, we assumed in this chapter that we had a Markov chain, coming from a modelisation, and we
studied its behaviour. One can conversely use Markov chains to study, and precisely here simulate, exactly
or approximately, a given distribution. This concept is called MCMC for “Markov chain Monte—Carlo”.
Indeed, suppose we have a finite, but large, set X and a probability measure 7 on this set. Even in a simple

94



setting, say if 7 is the uniform distribution on X, it may not be easy to simulate in practice a random
variable with the law s, or close to it.

However in many cases we are able to construct a Markov chain (X,),-o on X that has = as stationary
probability and we are able to simulate it, using e.g. the representation as a random recursion. According
to Corollary if we simulate one trajectory Xj, ..., X, for a large n, then the average amount of time
n" ! Y7 Ix—x spent at a given x approximates 7(x). More generally, the average n™' Y'1_; f(X;) of a
function converges to its integral 7(f) = Y . x f(x)7(x), and Theorem [5.1.4] provides asymptotic confident
intervals, just in the same way we use the CLT for i.i.d. random variables. If one is interested in numerically
computing this limit integral, then this can provide a more efficient way than deterministic schemes
whose complexity grows with the dimension. In another direction, one can sample a large number N
of i.i.d. trajectories (X{,..., X!) for 1 < i < N, and then by the usual Law of Large Numbers, the average
NIYN 1 xi-x approximates P(X, = x) which itself approximates r(x) by Theorem and with an
exponential speed of convergence as shown by Theorem

In the next subsection we describe an algorithm to run such a Markov chain, which we first apply to
particular laws called Gibbs measures. Finally we relate these measures to the problem of minimising a
cost function.

Throughout this section, we assume that X is a finite (but very large) set. One can think of a discretised
compact subset in R¢ with a small mesh size, or to a large finite network for example.

5.3.1 The Metropolis—-Hastings algorithm

Let 7 denote a probability measure on a finite set X and assume that 7(x) > 0 for every x € X (otherwise
simply remove all the points x where n(x) = 0). Let h : (0,00) — (0, 1] be a nondecreasing function that
satisfies h(u) = uh(1/u) for every u > 0; two usual examples are:

u

h(u) = min{u, 1} as well as h(u) = 1

Let Py be an irreducible transition matrix on X that has for any x, y € X:
Py(x,y) >0 = Py(y,x) > 0.

This transition matrix is called a proposal matrix. Let us then define the rejection probability:

(Y)Fo(y, %)
R X, = h( )a
U PTEOT e
which is well-defined for x # y such that Py(x, y) # 0; when Py(x, y) = 0, we simply put R(x, y) = 0. Finally
let us set:

P(x,y) = Py(x, y)R(x, y) for x # y and then P(x,x)=1- Z P(x, y). (5.6)
y#EX

Recall the notion of reversibility from Definition

Theorem 5.3.1. The matrix P from (5.6) is an irreducible transition matrix and the law 7 is reversible for P.
Finally P is aperiodic as soon as either h < 1 or Py is aperiodic.

Proof. Clearly ), P(x,y) = 1 and P(x,y) = 0if x # y. For x = y, we have since h < 1:

P(x,x)=1- Z Po(x, y)R(x,y) =1 - ZPo(x, y) = Py(x,x) 20
VEX yEX

since P, is a transition matrix. Also, since h > 0, then irreducibility of P is inherited from that of Py: for
every x,y € X, there exists n > 1 such that Pj(x, y), and thus P"(x, y) > 0. The reversibility of = follows by
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the property h(u) = uh(1/u), namely for x # y:

w(x)P(x, y) = m(x)Po(x, y) h( y y’ )

JT

<%uy§

T

yP (ﬂxPoxy)
X%Wy 7(y)Po(y x)

- rn o Z )
= 7(y)P(y, x)-

Let us finally focus on aperiodicity of P. Recall from Remark [5.2.3|that an easy case is when there exists
x € X such that P(x, x) > 0. Writing again P(x,x) = 1 - ZWX Po(x, y)R(x, y), this is the case as soon as
there exists y # x, such that both Py(x, y) > 0 and R(x, y) < 1. In particular this holds as soon as h < 1.
Next, if R(x, y) = 1 for every x # y such that Py(x, y) > 0, then P(x, y) = Py(x, y) > 0 for all such pairs, and
P(x,y) = 0 = Py(x, y) for the other pairs, so finally P = P, which is thus aperiodic if we suppose that P, is
aperiodic (!). O

Suppose that we are able to generate a Markov chain with transition matrix P, say using the represent-
ation Py(x, y) = P(f(x, £) = y), then we can generate a Markov chain (X},),-0 Wwith transition matrix P by
running the following algorithm:

o Initialise with some X,
« For k from 0 ton -1, do:

— Sample Y from P(Y = y) = P(f(Xk, &) = y)
— Sample U with the uniform distribution on [0, 1]

— If U < R(X}, Y), then set X,1 = Y, else set X1 = Xi

« Return (Xo, ..., Xy)

According to Theorem [5.3.1] this Markov chain (X,),o has stationary distribution 7 and since the state
space X is finite, then Theorem [5.2.13| applies so there exist § > 0 and k > 1 such that for every n > 1, it
holds:

Z [P(X, = x) - m(x)] < 2(1 - 5)[n/kj’

xeX

uniformly for all initial distributions. Hence this algorithm allows to generate X, with a law close to 7,
with a control of the error, which decays exponentially fast to 0.

Remark 5.3.2. In the first version of this algorithm, the function h was precisely h(u) = min{u, 1} and the
matrix Py was symmetric in that Py(x, y) = Py(y, x) for all x, y. In this case we have simply:

y when 7(y) < 7(x).

1 when 7(y) = 7(x),
ww=[
(x)

Remark 5.3.3. It may be interesting in some cases to take a transition matrix of the form Py(x, y) = Py(y),
that is, sample a proposal move Y,,,; at every step that is independent of X,,. But then the acceptance of
this proposal still depends on X,, through the function R.

5.3.2 Gibbs measures

A very useful particularity of the previous algorithm is that it only depends on x through ratios of the

form 7(y)/m(x). In particular this can be used to approximate 7 when the latter is only known up to a
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multiplicative constant. This is very well suited to study Gibbs measures which come from statistical physics.
Let again X be a large but finite set and let V : X — R be a function which we call a potential. For any
T > 0, we define a probability measure on X by setting for every x € X:

ar(x) = er exp(— V(Tx) ) where Zr = Z exp(— V;x) ) (5.7)
x€X

In many cases the potential V(x) can be computed for any given x € X, but computing Zr requires to
compute V(x) for all x € X, which cannot be done in practice when X is too large. The Metropolis-Hastings
algorithm allows to approximate 7 without computing Zr!

Let us describe here one historical example of application to the Ising model, which is a simplified
version of a magnetic system. Take a large number N of particles placed on a regular grid, say for example
a rectangle in Z?, which represents a piece of metal; each particle i possesses a spin s; € {-1, +1}, which
corresponds to its orientation. A configuration of spins is then an element s = (s;)1<i<n € {-1, +1}V. Let us
write i ~ j when the particles i and j are neighbours in the grid. We then consider the potential:

V(s) = - Z SiSj.
i

Two configurations minimise the energy (the “fundamental states”): s; = +1 for every i and s; = -1 for
every i. More generally, the potential is small when the spins of neighbours tend to align with each other,
and therefore these configurations are given a higher probability in the corresponding Gibbs measure 771.

Computing V(s) for any given configuration s takes a linear complexity, of order N, but computing the
normalising constant Zr requires to compute V(s) for all the 2N configurations! However the Metropolis—
Hastings algorithm can be easily implemented here. As proposal P, given a spin configuration, choose
one particle uniformly at random and replace its spin by its opposite. Formally: for s € {-1,+1}" and
i€e{1,..,N},let st € {-1, +1}N be given by s](»i) = s for j # i and sgi) = —s;. Then set

. 1
Py(s, s(’)) =N for every 1 <i< N.

For two such configurations s and s, we have

. @) 2
VD) - Vis) =25 ) s; and so (s = ex (——si s'>.
(s*) (s) ]Z; j 77(s) p T Z J

j~i

Note that Py(s\?,s) = Py(s,s?); take h(u) = min{u, 1}, then by Remark the Metropolis-Hastings
algorithm works as follows:

« Initialise with some X; = s

« For k from 0 to n -1, do:

Let Xi.1 = Xk

Sample I uniformly at random in {1,..., N} and compute Z = 2X¢(I) 3’ ; Xk(j)

If Z < 0, then set Xp.1(I) := = X1 (1),

Else, sample U uniformly at random in [0, 1], if U < exp(-2Z/T), then set Xi.1(I) 1= —Xk+1(I)

« Return (Xo, ..., Xy)

We see in the loop that every time changing the random spin by its opposite reduces the total energy, we
accept this change so we tend to decrease the energy as time goes by. On the other hand we also allow
randomly to move to a state with higher energy, so we do not get trapped in a local minimum of energy.
Let us push further this idea in the next problem.
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5.3.3 Optimisation problem and simulated annealing

Let V be a general potential on a large finite set X. Our aim is to find, algorithmically, a way to minimise V.
If V is a convex function, there is a well-known method, called the gradient descent, which is described in
Section which defines a recursive sequence that converges to the unique minimiser. However if V has
several local minima which are not global minima, then this algorithm may converge to one of them and
completely miss the global minimum.

We shall circumvent this issue by means of the Gibbs measure 71 associated with V, which can be
approximated by the Metropolis—Hastings algorithm. The parameter T > 0 is interpreted as the temperature.
When T is high, then so are the random fluctuations: in the previous algorithm, the threshold exp(-2Z/T)
when Z > 0 is close to 1 so we accept most of the proposals. However when T is small, proposals which
increase the energy are more often rejected so the configurations with minimal energy are preferred (in the
Ising model, the spins tend to align more with each other). Formally, given any potential V on X, let

M(V)=argminV = {x e X: V(x) = mi}r(l V(y)}
ye

denote the set of minimisers of V.

Lemma 5.3.4. The Gibbs measure mr converges to the uniform distribution on M(V) as T — 0, namely for
every x € X, we have:

im 7

CardM(V))™?  ifx € M(V),
%—>0 (X) -

0 if x € M(V).

Proof. Let V* = min V denote the minimum value of V, then for every x € X, we have after multiplying
the numerator and denominator by exp(V*/T):

1 V(x)- V* )

) = e (-(V() - V) exp(-—7

Now on the right-hand side, the term in the exponential vanishes when x € M(V), whereas it tends to —co
as T — 0 when x € M(V). Thus indeed:

-1
1
lim ﬂT(X) = Lyem ( Lyen ) = Lienwv) a—ron
0 eMm) ye%:‘m yeM®) NV Card(M(V))
and the proof is complete. O

We can then use this property to solve our optimisation problem. The simulated annealing consists in
running the Metropolis-Hastings algorithm to approximate 7z but letting T = T, vary at each step. Notice
that the Markov chain is then inhomogeneous in time. The idea is to have T, relatively large at first, so 77,
fluctuates a lot and the Markov chain moves a lot and visits many states, and slowly let T, tend to 0 so the
Markov chain stabilises on the minimum. The speed of convergence of T, to 0 is then crucial. We will not
prove the following result.

Theorem 5.3.5. For any potential V on a finite set X and any proposal transition matrix Py, there exists
a constant C > 0 which depends on both V and P, such that the Metropolis—Hastings algorithm run with
T, = C(log n)™! satisfies

P(X, € M(V)) — L

In words the algorithm stabilises on a minimiser of V with arbitrarily high probability.

As a last example of application, let us consider the travelling salesman problem. Let N points zy, ..., zy
in R? which we think as locations that our salesman has to visit while minimising the total travel distance.
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A configuration is here an order on the z;’s, or equivalently a permutation o of {1,..., N}, and the potential
of a permutation ¢ = (¢(1), ..., 0(N)) is the total length:

N
V(O') = Z ||Za(i+1) - za(i)”’
i=1

where we put o(N + 1) = 0(1) so the salesman ends the journey by coming back to the starting point. Here
again the size N! of the set of configurations does not allow to compute V(o) for every permutation o, but
we can use the simulated annealing. Indeed, for a permutation ¢ and two indices i # j, let o) denote the
permutation obtained from ¢ by simply exchanging (i) and o(j). Then we can use as proposal transitions
the matrix: .
Vi#j, Py(o,o™)= NN-D and otherwise Py(o,0”) = 0.

In words, similarly to the Ising model, we pick two different locations uniformly at random and exchange
their order in the tour.
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Part III

Martingales
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Chapter 6

Conditional Expectation

This chapter introduces the notion of conditional expectation of a random variable given any other one,
which generalises the supposedly known case of conditioning with respect to a discrete random variable,
or when the pair has a joint density. This short and technical chapter is the foundation of the theory of
martingales (and Markov chains in continuous spaces) developed subsequently.

Contents
6.1  Orthogonal projectionin L. . . . . ... ... ..................... 101
[6.2  The conditional expectation| . . . ... .. .. ... ... . ... ... . ..., 104
[6.3 Two familiarcases| . . . . . . . . . . . . i e e e e 105
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We start by presenting in Section [6.1 with a probabilistic vocabulary an actually general notion of
orthogonal projection in a Hilbert space, which we first apply to the so-called linear regression, namely
solving the problem to find the affine combination of known random variables that best approximates in
the least mean square sense an unknown one. Then in Section[6.2] we construct the conditional expectation
by roughly speaking extending the orthogonal projection from L? to L!. In Section we relate this new
abstract notion to the two familiar cases of conditioning a real random variable with respect to another one
when either the latter is discrete, or when the pair has a joint density. In Section[6.4] we present all basic key
properties of the conditional expectation that are used all the time: first, properties that extend the usual
ones of the expectation, then some specific ones such as the tower property, and then the relation with
independence. Section [6.6]discusses the case of Gaussian vectors for which conditional expectation actually
coincides with the linear regression problem and can be easily calculated. Finally Section [6.7l mentions
some developments that the curious reader may have in mind about the notion of conditional probability

but which are beyond the scope of this course.

6.1 Orthogonal projection in L*

Recall from Section[z.2|for p = 1 the spaces L? of random variables X defined on a common probability space
(Q, F,P) with values in R and such that E[|X|?] < oo, in which two random variables that are equal almost
surely are seen as the same object. This space when p = 2 is equipped with a scalar product: X - Y = E[X Y],
whose associated norm | - |, is complete, hence it is a Hilbert space. Such spaces are very close to Euclidean
spaces. The next theorem considers the orthogonal projection on a complete subspace.
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Theorem 6.1.1 (Orthogonal projection). Let K be a complete vector subspace of L* and let X € L. Then
there exists X € H which satisfies the following two equivalent properties:

(i) |X - X|z = inf{|X - Z|»: Z € K}.

(ii) X -X12Zie E[(X —)?)Z] =0, forevery Z € X.

Moreover, lf)?/ € X is another random variable satisfying these properties, then ||)A( - 2’”2 =0s0X = X as.
Finally, the projection is linear in the sense that for X, Y € L?, lf)? and Y denote respectively their orthogonal
projection, then the orthogonal projection of X + Y equalsf +Y as.

Proof. Let A = inf{|X - Z|,: Z € X} and let (Z,),-1 be a sequence in K such that |X - Z,|, — A. Note
the parallelogram identity:

1X = Zul3 + |X = Znl3
(X = Zo)*]1 + E[(X - Zp)*]

[K(XZ";Z’")(Z"zzf”))z]m[((xZ";Z’">+(Z"fm>>z]
el (- 257 ) o] (%)

1
> 2A% + 3 |Zn = Zl3,

E
E
2

since (Z, + Z,)/2 € K. Hence

1Zn = Zal} = 2(1X = Zall3 + |X - Zul2 - 20%)  — 0,

n,m—oo

$0 (Zn)n=1 is a Cauchy sequence. Since ¥ is a complete then (Z,),.; converges in L? to some X € . Now
by the Minkowski inequality, we have

AsIX =Xz =X = Zule +1Z0 - Xl —> A,

thus|(i) holds.

For every Z € ¥ and t € R we have:
E[(X - X - tZ)*] = E[(X - X)*] + *E[Z?%] - 2tE[(X - X)Z].

Therefore, for every Z € X,

min E[(X - X - tZ)*] = E[(X - X)*] - E[()];[_Z)z(])z]z

Since every element of K can be written as X + tZ, then X satisfies m if and only if it satisfies

Next, if X’ € & satisfies then by expanding the expectations, we infer that E[XZ] = E[X’Z] for
any Z € K in particular, |X - X’|? = E[X?] + E[(X")?] - 2E[XX"] = 0.

Finally, for any Z € ¥ we have

E[(X + X - (X +X)Z] = E[(X - X)Z] + E[(X’ - X")Z] = 0
s0 X + X’ € K satisfies for X + X’ so it must be a.s. equal to its orthogonal projection. t

Let us apply Theorem to a particular space ¥. Let X, Yi,..., Y, be real random variables in L?.
The linear regression of X over Y = (Y1, ..., Y,) is the affine combination of the Y;’s that minimises the L
distance to X, that is, provided it exists, the vector (ay, ..., a,) € R"*! such that:

]E[(X -0y — g OlkYk)z] = (ﬂo,.lj{lﬁi:)lER"]E[(X - Bo - kz;ﬂkYk)z]. (6.1)
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We shall assume that no Yy is an affine combination of the other ones, which is equivalent to assuming that
their covariance matrix Cy = (Cov(Y, Yj))1<ij<n is invertible.
One can solve the case n = 0 and n = 1 by hand.

Exercise 6.1.2. Suppose that X € L?. Prove that E[X] is the best approximation of X by a constant in the
sense:

E[(X - E[X])? = minE[(X - ¢)*].

ceR

You may simply expend E[(X - c)?] to get a simple function of ¢ that you now very well.

Exercise 6.1.3. Suppose that X, Y € L? with Var(Y) > 0. Prove that the best approximation of X of the
form a + bY with a, b € R is given by:

E[XY] - E[X]E[Y] _Cov(X,Y)

a = E[X] - bE[Y], and then b= E[Y?] - E[Y]? - Var(Y)

Thus the minimiser a + bY is given by:

Cov(X,Y)

EX] arm)

(Y - E[Y]).

As previously you may simply expend E[(X - a - bY)?] to get a quadratic function of a and b.
The general problem can be solved using the orthogonal projection.

Corollary 6.1.4. When Cy = (Cov(Y}, Yj))1<ij<n is invertible there is a unique solution to (6.1), which is given
by ap = E[X] - Yi.; ax E[Yi] and & = (ay, ..., ay) is @ = Cy' Cov(X, Y). The best affine approximation of X
by the Yi’s is thus given by:

@ + Zn: o Ye = B[X] + (Cy' Cov(X, Y)) (Y - E[Y]).
k=1

Proof of Corollary[6.1.4, Let X denote the linear space spanned by 1, Y1, ..., Y, and let X denote the ortho-
gonal projection of X on X. Since X € K then there exists Ay, ..., A, such that:

X = 2o+ Y, A(Ye - E[Y,)),
k=1

and we know from Theorem that it solves (6.1). By orthogonality, we have E[(X - X)Z] = 0 for any
Z € X. In particular, for Z = 1, we infer that

Further, for any 1 < ¢ < n, we have E[(X - X)(Y[ - E[Y,])] = 0 which is equivalent to

n
Cov(X, Y;) = Cov(X, Yr) = Y. A Cov(Yy, Ye).
k=1

Conversely, if the A’s form such a solution, then the random variable X=X+ i1 A(Yx — E[Yg]) belongs
to X and one easily shows that E[(X - )?)Z] = 0 for any Z € X so it coincides with the orthogonal
projection which minimises the square distance. O
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6.2 The conditional expectation

The previous result provides the best approximation of a random variable X as an affine combination of
another one Y = (Y3, ..., Y,). However it may exist better approximations, that use non linear functions.
If E[X?] < oo, this relies on a more abstract orthogonal projection. It can actually be extended assuming
only E[|X]] and this is formalised in the notion of conditional expectation. Below we try to give both the
picture of orthogonal projection and that of prediction of X given the information provided by the random
variable Y.

Notation. Throughout this chapter, we denote by X a random variable with values either in [0, 0] or in R
with E[|X]|] < oo in the latter case, and we denote by Y a random variable with values in a general measured

space.

Theorem 6.2.1 (Conditional Expectation). Let X be a random variable with values in (R, B(R)) and let Y
be any random variable. Suppose that either X € [0, 0] a.s. or E[|X|] < oco. Then there exists a measurable

real-valued function ¥ satisfying the following properties:
(i) Y(Y) € [0,00] a.s. or E[|¥(Y)|] < oo respectively,

(ii) For any function h either nonnegative or bounded respectively, we have:

E[Xh(Y)] = E[¥(Y)h(Y)].

Moreover, if ® is another such function, then ¥(Y) = ®(Y) a.s.

We call ¥(Y) a version of the conditional expectation of X given Y and denote it by E[X | Y]. In everyday
use we do not distinguish several almost surely equal versions and speak of the conditional expectation.

Proof. EXISTENCE IN THE L? cASE. Let us suppose first that E[|X|?] < co. Let L?*(Y) denote the space of
random variables of the form g(Y) with E[|g(Y)|?] < co. This subspace of L? is complete so by Theorem
there exists an a.s. unique orthogonal projection of X onto L?(Y), which takes the form X = ¥Y(Y) with
E[|¥(Y)[?] < oo and satisfies the orthogonality property:

E[(X - ¥(Y))h(Y)] =0,  equivalently  E[XA(Y)] = E[¥(Y)h(Y)],

for every measurable function h such that E[|h(Y)[?] < co.

EXISTENCE IN THE NONNEGATIVE CASE. Suppose next that X > 0 a.s. Forany n = 1, let X;, = min{X, n} €
12 and let X,, = ¥,(Y) denote its orthogonal projection on L3(Y). Then Liw,(v)<0} € L*(Y) as well, so by the
above orthogonality property, we have:

0 < E[X, Lyy,(v)<0}] = E[¥n(Y) Liy,(v)<0}] = 0.

Thus the nonnegative random variable ¥,(Y) 1 {y,(v)<o} has expectation 0, so it equals 0 a.s. and so ¥,(Y) = 0
a.s. The same argument applied to X,,; — X, = 0 combined with linearity of the projection shows that
0 < ¥,(Y) < ¥,.1(Y) as. so we can define its a.s. limit ¥(Y) = Tlim, ¥,(Y) € [0, o]. Now fix any measurable
function h = 0 and let h, = min{h, n} so E[h,(Y)?] < co. Then we have by monotone convergence:

E[XA(Y)] =T lim E[X;hn(Y)] = T lim E[¥,(Y)hn(Y)] = E[¥(Y)A(Y)].

Note that by taking h = 1 we infer that E[¥(Y)] = E[X].

EXISTENCE IN THE INTEGRABLE CASE. Finally, if E[|X|] < co but X is not necessarily nonnegative, write
X = X* - X" with X* = max(X,0) = 0 and X~ = - min(X,0) = max(-X, 0) = 0, so that |X]| = |[X*| + |X|.
Construct ¥*(Y) and ¥~ (Y) as above, which have E[¥*(Y)] = E[X"] < o and E[?7(Y)] = E[X"] < oo.
Define then ¥ = ¥*(Y) - ¥7(Y), which has E[|¥(Y)|]] = E[¥*(Y)] + E[¥7(Y)] < oo. Let h be a bounded
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function and decompose similarly h(Y) = h(Y)* - h(Y)". By linearity, we infer from the case of nonnegative
random variables that

E[¥(Y)h(Y)] = E[¥"(Y)h(Y)"] - E[X (V)h(Y)'] - E[¥*(V)h(Y) ] + E[¥ (DA(Y) ]
E[X*h(Y)"] - E[X h(Y)*] - E[X"h(Y) ] + E[X h(Y)]

= E[Xh(Y)].

This completes the proof of existence of ¥(Y).
UNIQUENESS. Suppose ¥(Y) and ®(Y) both satisfy the theorem, then h(Y) = Ly(y)-a(y) is bounded so

E[(P(Y) - (Y)) Ly(vysar)] = E[¥(Y) Lyvysar)] = E[D(Y) Lyyyam)]
= E[X Lyy)sav)] = E[X Lyyysam]
=0.

Hence the nonnegative random variable (¥(Y)~®(Y)) Ly(y)-a(y) must be 0 a.s. which means that ¥(Y) < ®(Y)
a.s. By a symmetric argument we also have ¥(Y) = ®(Y) a.s. O

Remark 6.2.2. The restriction to h either nonnegative or bounded ensures that E[¥(Y)h(Y)] and E[Xh(Y)]
are well-defined but the identity E[¥(Y)h(Y)] = E[XAh(Y)] extends as soon as both sides make sense by
similar approximations as in the proof.

Example 6.2.3. Let us consider a few extreme examples. In both cases, one simply checks that the given
candidate satisfies the properties of the conditional expectation and conclude by uniqueness.

(i) If X = f(Y) is a measurable function of Y, then E[f(Y) | Y] = f(Y) a.s. In words, if we are given all
the possible information about Y, then X = f(Y) is determined so the best prediction is f(Y) itself;
put differently, we want to project a vector on a subspace where it already lives, so it doesn’t move
anywhere.

(if) If Y is constant a.s. then E[X | Y] = E[X] a.s. Here we are given no information at all, so our
prediction ¥(Y) is a constant, and the best constant is E[X].

(iii) More generally if X and Y are independent, then E[X | Y] = E[X] a.s. Again, here we are given
irrelevant information, so our prediction ¥(Y) is a constant.

To be explicit, since we shall frequently condition a random variable X with respect to several random
variables Y1, ..., Yy, this amounts to condition with respect to Y = (Y3,..., Y;), namely, when X is either
nonnegative or integrable, we have

E[X | Yi,..., Y] = ¥(Y1,..., Vy),
where ¥ is a measurable function characterised by Property [(ii)} namely:
E[Xh(Y1,..., Yn)] = E[¥(Y1,..., Yp)h(Y1, ..., Yy)]

for any measurable function h either nonnegative (when ¥ is) or bounded (when V¥ is integrable).

6.3 Two familiar cases

Let us compare this notion of conditional expectation with the familiar ones of conditioning X with respect
to Y when either Y is a discrete r.v. or when the pair (X, Y) has a density.
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6.3.1 Discrete case

Fix an event B € & with nonzero probability, then it is well-known that the formula

P(A n B)

P(A|B) = =

for all A € F defines a probability measure P(- | B). Then one can construct the expectation with respect to

this probability, which takes the form
E[X 1g]

P(B)

for any r.v. either nonnegative or integrable. Indeed by definition it holds true for any X of the form 1 4

E[X | B] =

with A € %, and then as usual, it extends to simple r.v.s by linearity, and further to nonnegative r.v.'s by
monotone convergence, and finally to integrable r.v’s by decomposing X = X* - X".

Let Y be a discrete random variable, taking its values in a countable set {y, : n = 1} and assume that
P(Y = y,) € (0,1) for all n = 1. Then we can partition Q into the disjoint subsets {Y = y,} for n = 1. For
each n = 1, one can define E[- | Y = y,] as above.

Lemma 6.3.1. For any X either nonnegative or integrable, we have a.s.
E[X | Y] =¥(Y) where for each n = 1, Y(yn) =E[X | Y = y,].

Proof. Define the function ¥ as the right-hand side, which is nonnegative if X is and notice that:

_ ]E[X ]lY=y,,]
]P(Y = Yn)

_ElX|1y,]

¥ (yn)| B =)

hence if X is integrable, then

E[¥(Y)]] = > ¥l P(Y = ya) = Y E[X|1y-y,] = E[1X]] < co.
n=1 nz1
Next take any measurable function h either nonnegative if X is or bounded if X is integrable, then similarly,

E[P(Y)h(Y)] = Y ¥(yn)h(yn) P(Y = yn)

n=1

= > E[X Ly-y,]h(ya)

n=1

~E| Y Xh(y) 1y,
nx=1
- E[XA(Y)].
The claim then follows by uniqueness in Theorem O

If Y only takes values in {y, : n = 1} a.s. then for definiteness we set ¥(y) = 0 or any other arbitrary
value forall y ¢ {y,: P(Y = y,) > 0}.

6.3.2 Density case

Suppose that X € R"” and Y € R™ are such that the pair (X, Y) has a density f(x y) with respect to the
Lebesgue measure in the sense that for any measurable and nonnegative function g : R™™ — R,

Elsx. 1] = |

R"xR

. g(x, Y)f(X,Y)(x’ y)dxdy.

Then in particular for g : R™ — R measurable and nonnegative, by Fubini’s Theorem,
Ble) = | s0fntxndrdy= [ g0 [ fountnrax) ay

106



S0 fy : ¥ > Jpu fx v)(x, ) dx is a density for Y. Note that if fy(y) = 0, then fix y(x, y) = 0 for almost all x,
thus, if h : R® — R is another measurable and nonnegative function, then

ERCOS(] = | hgMoxn(r, ) dxdy

) /Rm g(J’)(/Rn h(x)fix,v)(x, y) dx ﬂfﬂy)*o) dy

) /Rm sty )< /]R h(x)w dx L, (340 )fy(y) dy.

Let us therefore set Fen()
xNX Y
¥(y) = / h(x)———=1 dx,
P e Ry O
then we see that

B0V = [ sI¥0f(0) dy = ELFg0))

hence ¥(Y) is a version of the conditional expectation of h(X) given Y.
The function defined for any y € R™ fixed by

foxn(x,y)
fX\Y=y X fr(y) ]lfY(J/)#O

is called the conditional density of X given Y = y. The function ¥ is often denoted by
E[A(X) [ Y = y] = ¥(y).

This allows to write, analogously to the discrete case,
E[h(X) | Y] = ¥(Y) a.s. where for y € R™, ¥(y) = / h(x)fx|y-y dx.
]Rn

Beware this is just a notation since P(Y = y) = 0 for any given y!

6.4 Similarities with the usual expectation

Let us start with some easy (but used all the times) properties. Some of them have been partly proved

during the course of the proof of Theorem|[6.2.1]

Lemma 6.4.1. The conditional expectation E[- | Y] enjoys the following properties. Assume that either
X, X' ellorX,X' =0 as.

(i) E[E[X | Y]] = E[X]. (Very useful!)
(ii) Positivity: If X = 0 then E[X | Y] = 0 a.s. and moreover if E[X | Y] = 0 a.s. then X = 0 a.s.

(iii) Linearity: E[aX + bX’ | Y] = aE[X | Y] + bE[X’ | Y] a.s. foralla,b € R if X,X’ € L' and a,b = 0 if
X, X' =0.

(iv) Monotonicity: If X < X" a.s. thenE[X | Y] < E[X’ | Y] as.
) If X = f(Y), then E[X | Y] = X a.s. This holds in particular for constants.
(vi) |E[X | Y]| = E[|X]| | Y] a.s. Consequently E[|E[X | Y]|] = E[|X]] a.s.

Proof. It mostly is a matter of checking Property [(ii)]in Theorem 6.2.1and using uniqueness.
(i) Take h(Y) = 1 in[(ii) of Theorem|6.2.1]
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(if) We already proved that if X = 0 then E[X | Y] = 0 a.s. Suppose now that E[X | Y] = 0 a.s. Then by
the first point E[X] = E[E[X | Y]] =0s0o X =0 as.

(iii) It is clear that a E[X | Y] + bE[X’ | Y] is integrable, and by linearity of the usual (!) expectation, for
any measurable and bounded function h,

E[(aE[X | Y]+ bE[X | YDA(Y)] = aE[E[X | Y])A(Y)] + bE[E[X | Y])A(Y)]
= aE[Xh(Y)] + bE[X h(Y)]
= E[(aX + bX")h(Y)].
(iv) Monotonicity follows by linearity and positivity (write X’ = X + Z with Z > 0).
(v) X verifies the two properties in Theorem|6.2.1]
(vi) Let X = X* — X~ and |X| = X* + X", then by linearity, and since both E[X* | Y] = 0,
[E[X | Y] = [E[X" | Y]-E[X" | Y]| < E[X" | Y]+ E[X" | Y] = E[|X]| Y],

which proves the claim. =

Exercise 6.4.2. Suppose E[X?] < co and define the conditional variance by:
Var(X | Y) :=E[(X -E[X | Y])* | Y] = E[X? | Y]-E[X | Y]*.

Show the identity:
Var(X) = E[Var(X | Y)] + Var(E[X | Y]).

Finally the conditional expectation also satisfies the same convergence theorems (monotone, Fatou,
dominated) and inequalities (Jensen, Holder) as the usual expectation.

Lemma 6.4.3. The conditional expectation enjoys the following properties.

(i) If0 < X;, < Xps1 a.s. then E[Tlim, X, | Y] = Tlim, E[X, | Y] a.s.
(ii) If X;, = 0 a.s. for all n, then E[liminf, X}, | Y] < liminf, E[X, | Y] a.s.

(iii) If X, — X a.s. and there exists Z € L' such that |X,| < Z for all n, then X € L' and E[X, | Y] —
E[X | Y] as. and in L.

(iv) Let ¢ be a convex function from an open interval I to R and let X € L' be a random variable such that
X €Tlas ThenE[¢(X)| Y] = §E[X | Y]) as.

) [E[X | Y]], = |X], foranyp = 1.
i) Ifp, q > 1 satisfy 1/p + 1/q = 1, then E[|X; Xo| | Y] < E[|X;|P | Y]YPE[|X;|? | Y]V4.

Proof. (i) This was somehow proved in the proof of Theorem By monotonicity, the sequence
¥,(Y) = E[X, | Y] is a.s. nondecreasing so we can define a.s. 0 < ¥(Y) = Tlim, E[X, | Y]. Let h = 0,
then according to Theorem|[6.2.1)in the nonnegative case, we have:

E[¥(Y)h(Y)] = E[X:h(Y)]
for every n = 0. We then infer from the usual monotone convergence applied to both sides that
E[f lim ¥,(Y)h(Y)] =7 lim E[¥,(Y)A(Y)] =T lim E[X,A(Y)] = E[f lim X,h(Y)].

This characterises E[]lim, X,, | Y] as Tlim, E[X, | Y].
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(ii) Apply the previous point to the nondecreasing sequence (infy., Xi), to get
E(liminf X, | Y] = E[{ lim inf X} | Y] =1 lim E[inf X} | Y] a.s.
n—oo n—oo k=n n—oo k=n
Now for every n, we have by monotonicity, E[infy., Xy | Y] = infi., E[X} | Y] and the claim follows.
(iii) Apply the previous point to Z + X, = 0 to get

E[Z|Y]+E[X|Y]=E[Z+X|Y]
= E[liminf(Z + X},) | Y]

n—oo

< liminfE[Z + X, | Y]

n—oo

<E[Z ]| Y] +liminf E[X, | Y]
n—oo
a.s. and similarly, with Z - X, = 0 instead,

E[Z|Y]-E[X|Y]=E[Z-X|Y]
- E[liminf(Z - X,) | Y]

n—oo

< liminfE[Z - X, | Y]

n—oo

<E[Z | Y] -limsupE[X, | Y]

n—oo

a.s. Recall that Z € L' so E[Z | Y] € L! and thus is a.s. finite, then by subtracting this term, we infer

that
E[X | Y] = iminfE[X,, | Y] = limsupE[X, | Y] < E[X | Y],

n—oo

a.s. hence E[X,, | Y] — E[X | Y] as.

Moreover, [E[X, | Y]| < E[|X,| | Y] < E[|Z| | Y] € L' so by the usual dominated convergence theorem,
E[X, | Y] — E[X | Y]in L.

(iv) Let us recall that ¢ being convex, if we set Ay = {(a,b) € R*: ax + b < ¢(x) for all x € I}, then for
any x € R, we have

P(x) = sup{ax + b: (a,b) € Ay} = sup{ax+b: (a,b) € Ayn Q?}.
For any (a, b) € Ag n Q? we have a.s.
E[¢(X)| Y] =2E[aX +b| Y] =aE[X | Y]+b.

Since AgnQ? is countable, this property actually holds a.s. simultaneously for all pairs (a, b) € Agn Q?
so we can take the supremum and conclude that a.s.

E[$(X) | Y] = sup{aE[X | Y]+ b: (a,b) € Ayn Q?} = (E[X | Y]).

(v) By convexity of | - | we infer from the previous point that E[|X|? | Y] = [E[X | Y]|? a.s. By further
taking the expectation we find E[|X|P] = E[|E[X | Y][P].

(vi) Recall from the proof of Holder’s inequality (Theorem the a.s. inequality (Young): for any
integrable random variables U and V,

\upP v
—_—+

1
[UV| < » — S0 E[(JUV|| Y] < —E[|UP | Y]+ =E[|JV|?] Y].
q q

e
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For U = Xi/E[|X;|P | Y]? and V = X3/ E[|X;|? | Y]"4, we read

1
<—E
p

a.s. We then infer from Lemma[6.5.2] below that a.s.

E 1 X1 Xz ‘ Y]

[ X [P | X|? ‘ ]
E[|Xi|P | Y]VPE[|X,]4 | Y]V4

1
E[X [P | Y] ME qE[Enleq Y]

E[1X, X,/ | Y] 1
B[P | YIPE[XGI] YIT7 ~ p

+ 1,

1.
q

and the claim follows by rearranging the terms. O

6.5 Properties of the conditional expectation

Let us see in this section some specific properties of the conditional expectation which are very useful.

6.5.1 Two key tools

The first property says that projecting on a subspace and then on a subsubsapce in two steps amounts
to directly project on the smallest one. In terms of quantity of information, it also means that restricting
further the information amounts to directly take the least amount of information.

Lemma 6.5.1 (Tower property). For any nonnegative or integrable random variable X, it holds a.s.
E[E[X | V1] | Y1, V2] = E[X | Y1] =E[E[X | Y3, Y2] | ¥1].

Proof. The first equality follows from Lemma [6.4.1] since E[X | Y1] is a measurable function of Y; and thus
of the pair (Y1, Y3), a function which only depends on the first coordinate. For the second equality, similarly
E[X | Y, V2] takes the form ¥(Y;, Y3), and for h either nonnegative or bounded, we have that A(Y;) is a
function of (Y1, Y2) and thus, using Property [(if)] in Theorem twice,

E[E[E[X | Y1, Yo] | Yi]h(Y))] = E[E[X | Y1, Y2]h(V1)] = E[XA(Y))].
Therefore E[E[X | Y1, Y2] | Y1] is a version of E[X | Y1]. O
The second lemma extends the well-known property E[cX] = ¢ E[X] where ¢ is constant.

Lemma 6.5.2 (Taking out what is known). Let X and f(Y) be two random variables such that either both
are nonnegative or both X € L' and Xf(Y) € L'. Then a.s.

E[Xf(Y) | Y] = E[X | YIf(Y).

Proof. Suppose that both X, f(Y) = 0 a.s. so Xf(Y) = 0 and then E[X | Y]f(Y) = 0 a.s. Also E[X | Y]f(Y) is
a measurable function of Y so it remains to prove Property [(ii)|in Theorem|[6.2.1} Fix h > 0 measurable, then
f(Y)h(Y) = 0 is a measurable function of Y, so by this very property,

E[E[X | YIf(Y) x h(Y)] = E[E[X | Y] x f(Y)R(Y)] = E[X x f(Y)h(Y)] = E[Xf(Y) x h(Y)].

Therefore E[X | Y]f(Y) is a version of E[Xf(Y) | Y].
In the case X, Xf(Y) € L', we have E[X | Y]f(Y) € L! since, by Lemmal6.4.1}

E[[ELX [ YIF(Y)I] < E[E[IX] | Y]If(Y)]] = E[IX][f(Y)I] < co.

Let h be bounded, the preceding argument fails here because f(Y)h(Y) is not necessarily bounded so we
cannot apply Property [(ii)| as directly. However, decomposing X = X* - X", f(Y) = f(Y)* - f(Y)", and
h(Y) = h(Y)" - h(Y)", we can deduce the result from the preceding case. O
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6.5.2 Conditioning and Independence

We have seen that E[X | Y] = E[X] is a constant when X is independent from Y. The next result extends this
identity by showing that adding irrelevant information does not change the prediction. From a geometric
point of view, when projecting a vector on a subspace, one can forget any direction that is orthogonal to

the original vector.

Lemma 6.5.3. Let X be either nonnegative or integrable, let Y and Z be random variables and assume that
Z is independent of the pair (X, Y). Then a.s.

E[X |Y,Z]=E[X | Y]

Proof. Let us suppose that X = 0 and that E[X] < co. The random variable Y takes value in some space
(E1,61) and Z in (Ey, €,). Fix two events A € €; and B € ,, then by independence twice,

E[E[X | Y] Tyea 1zep] = E[E[X | Y] Tyea]l E[12ep] = E[X Lyeal E[1zep] = E[X Lyea 1 z¢s].
Define two measures on the product space (E; x E;, € ® 6;) by
p(C) =E[E[X | Y]L(yz)ec] and  v(C) = E[X L(y z)ec]

respectively. Then we have shown that they agree on the set 7 = {AnB: A € §;,B € §,}. Thisisa
m-system and the measures have the same finite total mass E[X] so they agree on () = €; ® 6; by

Theorem|1.1.13] This proves:
E[E[X | Y]A(Y, 2)] = E[XA(Y, Z)]

for any function h of the form A(Y,Z) = 1(y_zec with C € €, ® €;. We then extend the identity to
any measurable nonnegative or integrable functions by the usual approximation by simple functions and
linearity of expectation, see Section|r.4|for details. If X is integrable but can be negative, then apply the result
to X* and X~ and us linearity of the conditional expectation. If X = 0 but E[X] = oo, then apply this result
to min(X, n) and use the conditional monotone convergence. In any case, we see that E[X | Y] satisfies the
two properties that characterise E[X | Y, Z] in Theorem|[6.2.1and we conclude by uniqueness. O

Our last result is also very useful for calculations.

Theorem 6.5.4. Let X and Y be two independent random variable, not necessarily real-valued, and let g be
a real-valued measurable function, either nonnegative or integrable. Then a.s.

E[g(X,Y) [ Y] =Wg(Y)  where  ¥g(y) = E[g(X, )]

Proof. The random variable ¥¢(Y) is indeed o(Y)-measurable and either nonnegative or integrable. Further,
for any measurable function h, either nonnegative or bounded, we have by independence and then Fubini’s
theorem:

E[g(X, V)h(Y)] = / 8(x, y)h(y) Px(dx) Py(dy)

= /(/g(x, y)h(y)]PX(dx)> Py(dy)

= / Yo (»)h(y) Py(dy)
E[¥(Y)h(Y)],

s0 ¥g(Y) is a version of E[g(X,Y) | Y]. O
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6.6 Gaussian vectors and linear regression (*)

Recall the notion of Gaussian vectors from Section 2.7 We already saw that they naturally appear in the
CLT, and that they simplify the independence by making it equivalent to null covariance. They also simplify
the conditional expectation and allow to explicit compute it.

Indeed, recall the linear regression from Corollary [6.1.4] which is the best approximation of a random
variable X amongst all affine combinations of given random variables Y1, ..., Y;. It is in general less precise
(in the L? norm) than the conditional expectation. On the other hand it is much simpler to compute. In the
case of Gaussian vectors it turns out that the conditional expectation matches the linear regression, so we

have the best approximation which is fairly simple to compute!

Theorem 6.6.1. Let (X, Yy, ..., Y,) be a Gaussian vector in dimension n+1 with mean 0 (which we can always

assume by subtracting the mean). Then there exist real numbers a, ..., &, such that
n
E[X | Y., Yol = Y &Y  as.
k=1

Moreover, let

n
X = Z o Yy and o’ = E[(X —5(\)2],
k=1

then for any measurable function h either nonnegative or such that h(X) is integrable, it holds:

a.s.

_ )2

Proof. Note that all random variables belong to the space L2, then let X = Y'7_, & Y; denote the orthogonal
projection of X onto the vector space spanned by (1, Y1, ..., Y,). By orthogonality, we have:

Cov(X - X, Y)) = E[(X - X)Y]] = 0,

forevery 1 =< j < n. Note that the vector (X -X, Yy, ..., Y,) is a Gaussian vector since every linear combination
of its coordinates is a linear combination of (X, Y3, ..., Y;). Then by Propositionor rather its extension
in Remark , we infer that X - X is independent from (Y3, ..., Y,). Since X @ o(Yy,..., Y,) and all the
random variables are centred, then a.s.

E[X|Yi,..,Y,] =E[X - X | Y1,..., Yo ] +E[X | Y1,..., Ya],

-~

“E[X-X]=0 =X

which proves the first claim. For the second one, recall that X - Xis independent from (Y3, ..., Y¥,) and has
a Gaussian law with mean 0, and variance ¢2. Then by Theorem [6.5.4) we have:

E[h(X) | Yy,..., Y,] = ]E[h(X ~X+ é (xkyk) R Yn] - YV, V)

a.s. where ¥ is defined as follows:

2 1 z
Y(y1,..., Yn) = h(z+ a ) ex (——)dz.
(V1w Vn) /JR ; ) g P 5

The claim then follows by a change of variables. O
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6.7 Regular conditional probabilities (*)

Let us give here some pointers to a difficult question that we will not answer. Recall that given an event
B € F with nonzero probability, one can define the conditional probability given Bby IP(- | B) = P(-nB)/P(B).
This indeed defines a probability measure on %. In the context of conditioning with respect to a random
variable instead, we define conditional probabilities as follows.

Definition 6.7.1. For any event A € &, set
P(A|Y)=E[l4] Y]
Beware that it is a random variable, which takes the form ¥(Y) for some measurable function Y.

By linearity and conditional monotone convergence, given any sequence (A,),-; of disjoint events, we

lP(U A,

n=1

have a.s.

O=uaé¥mun=2mmu»

n=1

We are thus tempted to believe that P(- | Y) defines a.s. a random probability measure. However for this,
the above display should hold a.s. simultaneously for all sequences of events (A,)y-1 and in general there
are uncountably many of such sequences. Thus, we may speak in general about the conditional expectation
of an (integrable) random variable, but not about its conditional law. The notion we are looking for is the
following.

Definition 6.7.2. Let X be a random variable with values in a measurable space (E, ) and let Y be another
random variable. A function v: Q x € — [0, 1] is called a regular conditional law of X given Y when it
satisfies:

(i) v(w,-) defines a probability measure on (E, €) for P-a.e. w € Q,

(ii) v(-, B) is a version of P(X € B | Y) for every B € €.

In particular, when (E, €) = (Q, %) and X is the identity, then such a map v is called a regular conditional
probability given Y.

The usefulness of regular conditional laws is that they allow to extend the usual expectation in a very
straightforward way. Let us illustrate this.

Proposition 6.7.3. If v is a regular conditional law of X given Y, then for any measurable function f either
nonnegative or integrable, we have a.s.

B0 | Y1) = [ 0300, d)
Proof. If f is the indicator of a set A € %, then this reads a.s.
PX € A| Y)w) = v(w, A),

which is the definition of the regular conditional law. As usual, this extends to simple functions by linearity,
and further to nonnegative functions by monotone convergence, and finally to integrable functions by
decomposing f = f* - f~. This also shows that w +— [, f(x)v(w, dx) is measurable. O

Regular conditional laws is the notion that is needed to consider Markov chains on a general space.
They generalise in this context the transition matrices that we used in countable spaces. Such regular
conditional laws do not always exist, but quite often in practice, and rather explicitly. Indeed, recall the
conditional expectation with respect to a discrete random variable Y, then the map v in Definition is

given by:
P(X €B,Y = y)

V@ B) = ®(Y(@).B)  where  @(y.B)= 5o
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Similarly, when the pair (X, Y) has a density f(x y) with respect to the Lebesgue measure, then one can

define the conditional density fy|y-,(x) = ﬁxf;;)((y);,y) 1,(y)+0 and then, with the previous notation, we have:

v(w, B) = ®(Y(w), B) where d(y, B) = /foyzy(x) dx.
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Chapter 7

Some generalities on stochastic processes

Recall that the term stochastic process simply refers to a sequence of random variables X = (X),-o defined
on a common probability space (2, &, P) and with values in the same measurable space (E, €), but we shall
think of such a sequence as describing the evolution of a single random variable as time passes. In this very
short chapter, we introduce the notion of filtrations, which formalise the evolution of time, as well as that
of stopping times, which are random times which do not provide information about the future. We also
present a generalisation of the conditional expectation with respect not to a random variable, but rather a

o-algebra.

Contents
[7.1  Filtrations & Stopping times| . . . . ... ... ... .. ... ... . . . 115
[7.2  Stopped c-algebras and stopped processes| . . . . ... ... ... Lo oL, 117
[7.3 Conditioning with respecttoac-algebral . . . . .. ... ... ... ......... 119

In Section[7.1] we mainly introduce basic definitions about stochastic processes, especially the notion of
filtrations which formalise the accumulation of information as time goes by, and the notion of stopping
times which is the “correct” notion of random times, which cannot see the future. These generalise the
notions we used for discrete Markov chains and which will be used for martingales. In Section [7.2| we
discuss more precisely the notion of a stochastic process seen up to a stopping time. Finally in Section
we present the conditional expectation with respect to a g-algebra which will be used in the subsequent

chapters.

Notation. In this chapter, all the random variables are real-valued and defined on a probability space
(Q, F,P). From now on, for two real numbers s and t, we write:

s At = min(s, t) and sv t = max(s, t).

Also, in order to lighten the notation, we usually drop the “a.s” mention when considering relations between

random variables.

7.1 Filtrations & Stopping times
Recall that a o-algebra & on Q is a collection of subsets of Q that has the following three property:

QeF, AEF — A°€F, Ane%‘foralln21:>UA,,e°J.

n=1

From now on we will be working with several g-algebras on Q.

Definition 7.1.1. We say that € is a sub-o-algebra of &, which we simply write as 6 c %, if it is a o-algebra
on Q and if it is contained in % in that A € F for every set A € €.
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In words & describes all the possible events, and € is a sub-collection of events, which we can view as
a quantity of information in the sense that the knowledge of G allows us to say wether any event A € €
occurs or not. The formal description of the time evolution is then given by a filtration.

Definition 7.1.2. A filtration on Q is an nondecreasing sequence F; ¢ F; c --- ¢ F of sub-o-algebras. We
also define F, = (| J,, Fn) ¢ F. The quadruple (Q, F, (F,),, P) is called a filtered space. When needed, we
agree that F_; = {@, Q} is the trivial o-algebra, with no information.

In the analogy with geometry used in the previous chapter, one can imagine & as an infinite dimensional
space like the spaces ¢! or £? on real-valued sequences and each %, as R". From the point of view of
sub-o-algebras as partial information, the o-algebra F, represents all the information available at time n;
note that we accumulate more and more without forgetting past information.

Recall next that a random variable X with values in some space (E, €) is a measurable function that is,
a function X : Q — E which satisfies:

for any B€ €, {X € B} € 7,

where {X € B} stands for the set X '(B) = {w € Q : X(w) € B}. The question of measurability with respect
to a sub-c-algebra of F will play a crucial role.

Definition 7.1.3. We say that X is measurable with respect to € c &, or is simply “§-measurable’, when
for every B € € we have {X € B} € €.

In words X is ‘¢-measurable when the information contained in € characterises entirely X. From a
geometric point of view, one can figure a vector belonging to a subspace.

Notation. Personal notation, not standard outside this course: X (m) € to mean that X is G-measurable.

Given a random variable X, there usually exist many sub-c-algebras € c & such that X (m) 6. Taking
the intersection of them, we define o(X) the smallest sub-o-algebra that makes X measurable. More
generally, one define o(Xj, ..., X;) as the smallest sub-o-algebra that makes each Xj measurable for k < n.
This o-algebra is said to be “generated by Xj, ..., X;,”.

The filtrations we shall encounter in this course will be of this form: we have a certain stochastic
process X = (Xp,)n=0 and we consider the so-called natural filtration given by:

FX = 6(Xp, k < n), (7.1)
for every n = 0.

Definition 7.1.4. A stochastic process (Y;),s0 is said to be:

« adapted to the filtration (F,),-0 when Y, m) F, for every n = 0.
« predictable for the filtration (%,),-0 when Y, m) F,_1 for every n = 0.

In words, a predictable process is a process in which the value at any given time is completely determined
by the information at the previous step, we shall see it as a parameter that we can tune before the next step.
On the contrary, the issue of an adapted process is not entirely determined at the previous step, and still
remains random, and is only revealed at the next step.

Remark 7.1.5. If F, = FX = (X, k < n) is the natural filtration of another process (X;),, then (Y,) =0 is
adapted when it takes the form Y, = g(X, ..., X;;) for some measurable function g; it is predictable when
Yn = g(Xo, ,Xn—l)-

Recall that we extensively considered Markov chains up to a finite random time. The general definition
of a stopping time extends that used previously, which referred to the natural filtration of the process.
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Definition 7.1.6. A stopping time relative to a filtration (¥,), is a random variable T taking values in
Z. =1{0,1,2,...,00} such that:

{T =n} e%F, for any n, or equivalently, {T < n} €%, for any n.
In other words, T is a stopping time when (1 7-,),-0 is adapted, or equivalently when (17<,).s0 is adapted.

The equivalence is easily checked by writing {T =< n} = |J;.,{T = k} for one implication and
{T =n}={T = n}\{T = n- 1} for the other one. In words, a stopping time is a random time which is
determined by the past: the information of the present is sufficient to tell wether it has already occurred or
not yet. One can notice that constant random variables T = k for any given k € Z, are stopping times.

Example 7.1.7. Important stopping times are given by the first entry time of an adapted process: take
X = (Xn)n adapted to (F,), and fix any measurable set A, then

T =inf{n: X, € A}

is a stopping time. Indeed,

n
{T>n}={Xk€AY}eFn
k=0

Throughout this course we assume inf @ = co. It is thus important that T may take value oco.

Let us observe that the definition of a stopping time also applies to n = co. Indeed, recall that we set
Foo = 0(J, Fn), thus if T is a stopping time, then

(T = oo} = (U{Ts n})CGOJm.

n=0

It is important to be able to deal with multiple stopping times and we encourage the reader to prove the

following elementary results.

Exercise 7.1.8. Let (Ty)k-1 be stopping times, then ) Tk, infy T, sup; Tk, liminfy Ty, lim sup, Ty are all
stopping times. In general, the difference is not, even in the case T — 1 where T > 1 as.

7.2 Stopped o-algebras and stopped processes

Let T be a stopping time relative to a filtration (%;,),; the information available at this random time is
encoded into the following collection of subsets:

Fr={A€F: An{T =n} € F,forall n =0} (7.2)

The notation creates no conflict since if T is constant equal to some fixed k, then for n # k, we have
An{T=n}=@andforn=k wehave An{T =k} = A, soFr={A€F: A€ F}=F in this case.

Proposition 7.2.1. For any stopping time T, the collection of sets Fr is a sub-o-algebra of F. Moreover, it
can be equivalently defined by

Fr={A€F: An{T < n} €F, foralln = 0}.

Finally, for any real-valued random variable X, we have X (m) Fr if and only if X 171-, (m) F,, for everyn = 0.
In this case, we have X 1 1-co M) Foo.
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Proof. Clearly @ n {T = n} = @ € &F, forany n = 0 so @ € Fr. Also, if Ay € Fr for all k = 0, that is if
A n{T = n} € F, for any n, k = 0, then

(L%JAk) n{T = n} (LkJAkn (T = n}) € F,.

The (slightly) tricky part is to show that if A € Fr, then A° € Fr. For this, observe that

An{T=n}=(Au{T#n})°=(An{T =n})u{T #n})".

If A€ Fr,then (An{T = n}) € F,, also {T # n} € F,, hence (A° n {T = n}) € F, for every n. This
concludes the proof that Fr is a sub-c-algebra of F.
Next let us prove that Fr = €1, which we define as:

Gr={A€F: An{T <n}eF,forall n=0}.

If A € Fr, then for every n = k > 0, we have An {T = k} € F <« F, so

An{Tsn}=An(U{T=k}) - JAn(T=k}) e F,

k<n ksn

Thus A € €1 and we have shown that Fr c Gr. Conversely, let A € Gr, then
An{T=n}=An({T=n}n{T=sn-1})=An{T=<n})n{T=n-1} € F,.

Thus €7 ¢ Fr and the proof is complete.
Finally, let X be a random variable and suppose first that X (m) Fr. Let us prove that X 1., m) F,,
that is {X 17_, € B} € &, for any measurable set B. Indeed:

(XT1rp€BY=({X€BYn{T=n)u({0€B)n{T #n).

By definition, if X (m) Fr, then {X € B} € Fr and so {X € B} n {T = n} € F,. On the other hand we also
have {T # n} = {T = n}° € %, and {0 € B} has nothing to do with &,: it is either Q of @ according as
wether 0 € B or not. Therefore {X 17-, € B} € %, as we wanted and thus X 11-, ) F,.

Suppose conversely that X 1., Gn) F, for every n and let us prove that X (m) Fr, thatis {X € B} € Fr
for any measurable set B. The latter is equivalent to {X € B} n {T = n} € &, for any measurable set B and
any n and we write now:

{XeB}n{T=n}={X1r.,€B}n{T =n}eF,

since each term on the right belongs to %,.

To conclude, notice that for every n > 0, we have X L1, = Y1, X Lx-x M F, when X 1x_; ) F for
each k. Further, if X > 0, then X 17 = Tlim, X 17., which is then F.-measurable. In general, we may
write X = X* - X~ with X* = 0 and X~ = 0 to infer from the nonnegative case that X 17-., (") Fe. O

Recall from the above exercise that the minimum of two stopping times is again a stopping time. Let us
compare their associated sub-o-algebras. Recall the notation s A t = min(s, t).

Lemma 7.2.2. Let S and T be two stopping times, then so is S A T and we have
9"5 n %T = GJSAT.
The latter contains the events {S < T}, {S =T}, and {S = T}.

It follows that if we know that S < T, then %Fs ¢ Fr.
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Proof. Let us prove both inclusions. Suppose first that A € F satisfies for every nboth An {S < n} € %,
and An {T = n} € F,, then

An{SAT=sn}=An({S=sn}u{T=<n})=An{S<n})u(An{T =< n}) € F,.

By Proposition|[7.2.1] this shows that Fs n Fr c Fs,r.
Conversely, suppose that A € F satisfies An {SA T =< n} € &, for every n, then

An{S<sn}=An({S=n}u{T<n})n{S<n}eF,

$0 Fsar € Fs. The same argument applies to T and so Fs, 7 € Fs n Fr.

Finally, let us prove that {S < T} € Fs n Fr, the proof for {S = T} is similar, and the case of {S = T}
follows by taking their intersection. On the one hand, for every n = 0, we have {S< T} n{T =n} = {S =<
n} n{T = n} € F, since both {S < n} € F, and {T = n} € F,, hence {S = T} € Fr. On the other hand,
{S<T}n{S=n}={T=2n}n{S=n}eF,since {T=2n}={T<n-1}°€Fy; cF,and {S = n} € F,,
hance {S = T} € Fs as well. O

Recall that we motivated the notion of stopping time by the will to follow a process until such a time.

Definition 7.2.3. For a process (X;)n-0 and a random time T € Z,, we define the stopped process X' =
(XnT)nzO bY:
XnT = Xn/\T = Xn ]lnsT + XT ]1T<n-

In words, the process X! simply follows the trajectory of X, but if we reach T (on the event { T < oo},
otherwise we simply continue forever), then it after this time it remains constant. We are next concerned
with this terminal value.

Lemma 7.2.4. Let (X,), be an adapted process and let X, be some random variable with X, (M) Fo =
o(J, Fn)- Let T be a stopping time, then

Xr = an Trep + Xoo 17co

n=0
is a random variable and Xt (m) Fr. Also, the stopped process (XnT Yn=0 is adapted.

Proof. The first claim follows from Proposition since Xt 17, = X, 17-,, M) F,,. For the second claim,
simply observe that for any measurable set and any n = 0, we have since Xt (m) Fr:

{Xmr € B} =({Xn € Bjn{n< T} u({Xr € B} n{T < n}) € Fy
Eg;n €%n Ec}n

and the stopped process (X, )= is therefore adapted as we claimed. O]

We stress that the notation X7 does not make sense if T can be infinite and X, is not defined! Usually
when X, converges a.s. as n — oo, we let X, denote its limit, otherwise we may set X, = 0 so X7 =
Ym0 Xn L7-p is well-defined in any case.

7.3 Conditioning with respect to a o-algebra

Recall the conditional expectation of a real-valued random variable X given any random variable Y defined
in Theorem The good notion of conditional expectation is actually with respect to the o-algebra
generated by Y rather than the random variable itself, in the following sense.

Lemma 7.3.1. If Y and Y’ are two random variables such that o(Y) = o(Y’), then E[X | Y] = E[X | Y]
a.s. for any real-valued random variable X, either nonnegative or integrable.
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Proof. 1t suffices to prove that E[X | Y’] satisfies the two characteristic properties of E[X | Y] from
Theorem First, by this very theorem, we have E[X | Y'] = ¥(Y’) for some measurable function ¥,
either nonnegative or integrable. By Lemmawe infer that E[X | Y’] is o(Y’)-measurable, and since
a(Y) = o(Y’), then by this lemma again, there exists a measurable function ® such that E[X | Y'] = ®(Y),
which proves Property [(i) of the theorem. Similarly, for every h measurable, the random variable A(Y) also
takes the form h’(Y’) for some measurable function 4’ and Property [(ii)| follows. O

We can then extend the definition of conditional expectation with respect to any sub-c-algebra.

Definition 7.3.2. Let 6 ¢ F be a sub-c-algebra and let X be a real-valued random variable such that either
X € [0,00] a.s. or E[|X|] < co. Then there exists a real-valued random variable Z satisfying the following
properties:

(i) Z () € and either Z € [0, c0] a.s. or E[|Z]] < oo respectively,
(if) For any random variable W (m) € either nonnegative or bounded respectively, we have:

E[XW] = E[ZW].

Moreover, if Z’ is another such random variable, then Z = Z’ a.s.

The proof is exactly the same as for Theorem|[6.2.1 which, by the previous lemma, considered in fact

the special case € = o(Y). Actually, this particular case is not restrictive in the sense that if ¢ < F

is a
sub-c-algebra and if one considers the identity random variable Y(w) = w but seen as a measurable function
Y: (QF) — (Q,%6), then we have

E[X | €] = E[X | Y]

a.s. by Lemma[1.2.8]again. All the properties of the conditional expectation from the previous chapter then
extend readily to conditioning with respect to a sub-c-algebra.
Let us consider the particular case when € = %r is the stopped o-algebra.

Proposition 7.3.3. Let X be a random variable, either nonnegative or integrable and let T be a stopping time,
then
E[X | Fr] = ) E[X | Fn] L1=n + E[X | Foo] L 7—co.
n=0

Proof. Let Z denote the right-hand side in the claim. We simply check that it satisfies the two characteristic
properties of E[X | Fr]. Let us first consider the case when X = 0, so Z = 0. It follows from Lemma|7.2.4]
that Z m) Fr. Fix then W (m) Fr a nonnegative random variable. Then by Proposition we have
Tr-nW () F, for every n € {0,1,... } u {0}, hence

1= Y E[E[X | Fn] Lr-n W] + E[E[X | Foo] L7- W]

n=0

= Z]E[X I7-n W]+ E[X L1-0o W]

n=0

= E[XW].

This shows that indeed Z = E[X | 1] when X = 0. In the integrable case, let us write X = X* - X, where
both X* =0and X~ =0, so

E[X" | Fr] = Y EIX" | Fnl L1=p + E[X" | Foo] L 7co,
n=0
and the same holds with X~. Subtracting these two identities yields our claim. O

Recall the tower property from Lemma [6.5.1; combined with Lemma7.2.2] on stopped filtrations, we can
extend it as follows.
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Lemma 7.3.4. Let S and T be two stopping times and let X be a random variable, either nonnegative or
integrable. We have:
E[E[X | Fs] | Fr] = E[ELX | Fr]| Fs] = EIX | Fsar).

Proof. Let A € Fsor = Fs n Fr, then using successively that A € Fg and then A € Fr, we obtain using the
characteristic property of conditional expectation:

E[E[E[X | Fr] | Fs] 1a] = E[E[X | Fr] 14] = E[X 14].
Hence, the random variable Z = E [IE[X | Fr] | OJS] (m) Fs,7 satisfies
E[XW] = E[ZW]

for every random variable W = 1,4 with A € Fs,7. We extend then this identity to general random variables
W (m) Fsar by the usual approximation of measurable functions by simple functions and linearity of
expectation, see Section [.4]for details. O
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Chapter 8

Martingales & Stopping times

Martingales have been introduced as generalisations of sums of independent zero-mean random variables
by only assuming that the increments have a null conditional expectation (in the sense of Chapter [6) given
the past. They are often presented as modeling the evolution of the fortune of player who is betting on
a fair game, and we shall also stick to this picture. It turns out that martingales form a very rich class
of stochastic processes and their seemingly very simple definition will actually allow us to derive many
strong results which make them a very important tool in modern probability and statistics. We focus in this
first chapter on the stopping problem, that is evaluating a martingale at a random stopping time, which is
particularly useful to study random walks and more generally Markov chains. We shall also discuss the
optimal stopping problem as an application of this theory.

Contents
[8.1 Martingales & first properties] . . .. ... ... .. .. .. . o oL 122
[8.2 Thestoppingtheorem| . . . ... .. ... ... ... . .. . .. 124
[8.3 Some decompositions (*)] . . .. ... . L L 126
[8.4 Martingales and Markovchains ()] . . ... ... ... ... ... ... .. .. .. 129
[8.5 Optimal stopping problem with finite horizon| . .. .............. ... 131
[8.6 Optimal stopping problem with infinite horizon (*)[ . . ... ... ... ... ... 136

In Section [8.1] we first define (super- and sub-) martingales and study some natural transformations. A
first simple but important result proved in Section|[8.2]is that a (super- and sub-) martingale stopped at a
random stopping time remains a (super- and sub-) martingale. With some extra argument, this enables us
to compute the expectation of a martingale evaluated at a stopping time, which has important applications.
Section [8.3| presents some decompositions of martingales, the first one which will be used in the subsequent
chapter. Section [8.4] discusses the relation between martingales, Markov chains, and harmonic functions.
Finally Section [8.5| considers the optimal stopping problem that is: how can you try to maximise your
(mean) gain in a random game? The question a priori does not concern martingales, but its solution does
(and the stopping theorem).

8.1 Martingales & first properties

Let us fix an underlying filtered space (Q, &, (Fn)n=0, P) and an adapted real-valued stochastic process
(Mp)n=0 as in Deﬁnition We often consider the natural filtration &, = o(My, k < n), but sometimes
we may have more information encoded into &F,. The situation is the following: at any time n we have
the information of the past up to time n, encoded in %, and we try using this knowledge to predict M.
Informally, our best guest is given by the conditional expectation:

]E[MrHl | O]n],
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which exists as soon as E[|M,,1]] < co. If F,, = 97,11\4 = o(My, ..., M) is the natural filtration, then recall that:
E[Mpy.1 | My, ..., My] = ¥(My, ..., M)
for some measurable (deterministic) function .

Definition 8.1.1. A stochastic process (M,)n-0 is said to be integrable, or more generally in L? for some
p = 1 when for each given n, we have E[|M,|’] < co. We stress that no uniformity in n is required and we
may have E[|M,|P] — oo.

Here is the definition of a martingale.

Definition 8.1.2. An adapted and integrable stochastic process (M,), is called a (sub/super-)martingale
when it satisfies the characteristic property: For every n = 0,

E[Mp1 | F4] =2 M, (submartingale),
E[Mus1 | Fnl = M, (supermartingale),
E[Mp1 | Fu] = M, (martingale).

Notice that (M,), is a (sub/super-)martingale if and only if (M, - My),, is and M, € L'. We shall therefore
often forget about the initial value M, and simply take equal to 0. Also let us already note that (M,), is
submartingale if and only if (-M,), is supermartingale and that (M,), is martingale if and only if it is both
a supermartingale and a submartingale. Hence, properties for one model are easily transferred to another
model such as the next easy one.

Lemma 8.1.3. If (M,), is a submartingale, then for every n > m, it holds:
E[M; | Fn] = My,
The converse inequality holds for supermartingales and an equality for martingales.

Proof. Recall the tower property in Lemmal6.5.1
E[M, | Fn] = E[E[- E[M, | Fn1] - | Fme1l | Fml
The claim then easily follows by induction. O

By taking the expectation, we deduce that the sequence (E[M,]), is monotone, namely, for a submartin-
gale we have for every pair n > m,
E[My] = E[Mpn] = E[M,].

The converse inequalities hold for supermartingales and equalities for martingales.

Lemma 8.1.4. Let $: R — R be a convex function and let (M,), be an adapted process. Suppose that
(¢(My))y, is integrable.

(i) If (M), is a martingale, then ($(Mp)), is a submartingale.
(ii) If (Mp), is a submartingale and ¢ is nondecreasing, then (¢p(M,)), is a submartingale.
Proof. A direct application of the conditional Jensen inequality (recall Lemma [6.4.3) yields:
E[¢(Mn+1) | Fn] 2 QE[Mn.1 | Fnl).

If (M,), is a martingale, then the right-hand side is ¢(M,), whereas it is larger than or equal to ¢(M,) if
both (M,), is a submartingale and ¢ is nondecreasing. O
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Example 8.1.5. Here are some convex functions that often appear in martingale theory: |x|, x?, e* and
e with ¢ > 0, as well as max(x, ¢) and - min(x, ¢) with ¢ € R. Notice that for ¢ = 0, the last two amount
to x* and x respectively.

We often interpret martingales as the fortune of a gambler as time passes: the game is fair for martingales,
and (un)favourable for (super/sub)martingales. In the basic model the gambler bets 1 unit of money at
every step, and at the n’th game they win (or loose) M,, - M,,_;. Now suppose they can choose to bet H,
for the n’th game, then the algebraic gain becomes H,(M, — M,_1). Of course, the choice of H, should not
depend on the result of the n’th game: it has to be made before and therefore it can only depend on the
previous history. Formally (H,), must be predictable in the sense of Definition|[7.1.4]

One can now wonder: is there a possibility to turn a unfavourable game into a favourable game by
betting appropriately? The answer is of course no for otherwise casinos would not exist. The proof'is a
simple exercise but this result will shortly have a very important application.

Lemma 8.1.6 (You cannot trick the game). Let M = (My,),=0 be an adapted process and H = (Hy)y»1 be a
predictable process. Define a new process H « M by (H « M)y = 0 and forn = 1,

n
(H+ M), = Y He(Mi - My1)
k=1
and suppose that it is integrable.
(i) If M is a martingale, then so is H « M.
(ii) If M is a submartingale (resp. supermartingale), then so is H « M if in addition and H, = 0 for all n.

To ensure that H « M is integrable we typically assume either that H is bounded or that both M, H, € L?
for every n.

Proof. Note that H - M is adapted since for k < n, each Hy, My m) F,,. Then, for every n > 1, let us write:
E[(H « M)n | Fn-1] = (H « M)p-1 + E[Hp(My = Mp1) | Fn1].
Recall that M,,_1, H, (M) F,1, then by first taking out what is known (Lemma , we have:
E[Hy(My = My-1) | Fn-1] = Hy E[My = My-1 | Fno1] = Ho(E[My | Fno1] - My-1).

For a martingale, the term in parenthesis vanishes; for a submartingale, it is nonnegative, so assuming that
H, = 0, the right-hand side is nonnegative; it is similarly nonpositive in the case of a supermartingale. [

Remark 8.1.7. Next semester you will study processes (M;)[o.) that evolve in continuous time. The
analogue of the transformation (H « M), = Y. ;_; HAMj becomes (H + M), = /Ot H;dM;. This object, basically
constructed by a limit of Riemann sums, is called the stochastic integral and is a fundamental object in the
study of continuous-time stochastic processes.

8.2 The stopping theorem

Let us continue in the hope of winning at an unfavourable game. To complete our strategy, in addition to
be able to freely choose the amount of money we bet, we can also decide when to leave the game. As for
betting, the decision to leave at time n must only depend on the information up to time n, and thus must be
formally a stopping time in the sense of Definition[7.1.6] Recall also the stopped process from Definition|7.2.3}
By betting one unit until we decide to stop, we obtain the following result.

Lemma 8.2.1. Let (My,)ns0 be a (sub/super)martingale and let T be a stopping time. Then the stopped process
(MunT)ns0 is a (sub/super)martingale.
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Proof. For every n = 1, we have {T > n} = {T < n-1}° € F,_; so the process defined by H, = 1., is
predictable and obviously bounded and nonnegative. Notice that M, = My + (H + M),. The claim then
follows from Lemma/[8.1.6 O

Consequently, for any stopping time T and any n = 0, we have E[M,,,7] = E[M,] for a submartingale,
the converse inequality for a supermartingale, and an equality for a martingale. Suppose that T < co and
recall the random variable My from Lemma[7.2.4] Let us already note that in general these inequalities do
not extend to Mr. As a concrete example, the simple random walk on Z is a martingale and we saw in
Theoremthat it was recurrent, so T = inf{n: M, = -1} < oo a.s. and here Mt = -1 # M, = 0.

Now we would very much like to know wether E[Mr] = E[M,] for a submartingale. This is certainly the
case if T is bounded, i.e. there exists a deterministic integer N such that T < N a.s. since then M,,,; = My
for all n > N. In this setting of bounded stopping times, we can be more precise and extend the identity
E[M, | Fm] = My, valid for all deterministic n = m (recall Lemma8.1.3).

Theorem 8.2.2. Let (M,),-0 be a submartingale and let S and T be two bounded stopping times satisfying
S < T. Then Mg, Mt € L' and we have

]E[MT | 978] = MS and so E[MT] 2 ]E[Ms] = ]E[Mo]
The converse inequalities hold for supermartingales and equalities for martingales.

Proof. Suppose that S < T < N where N is deterministic. Then [Mr| = Y0, |My| 172, < sup,_y [M,| € L!
and similarly for Ms. Fix A € Fs and define H, = 14 1s.,.7 for every n = 1. By Proposition we have
An{S < n} € F,_; and since {T = n} € F,_; as well, then (H,), is predictable. It is obviously bounded,
and thus we infer from Lemma 8.1.6 that (H « M) is again a submartingale, started at 0. In particular,

N
0 =E[(H - M)o] < E[(H « M)N] = E[Z 14 Lsener(Mn = Mp-1)| = E[La(Mr - Ms)].
n=1

We conclude that E[E[Mr - Mg | Fs]14] = 0 for every A € Fs; taking A = {E[My - Ms | Fs] < 0},
we obtain a nonpositive random variable with a nonnegative expectation, so it vanishes a.s. namely
E[Mr - Ms | Fs] = 0. ]

Let us mention a converse statement that provides a useful characterisation of (sub/super-)martingales.

Corollary 8.2.3. Let (Mp)ns0 be an adapted and integrable process. Then it is a submartingale if and only if
for every bounded stopping times T = S we have Ms, Mt € L' and

E[Mr] = E[Ms].
The same holds for supermartingales with the converse inequality and for martingales with an equality.

Remark 8.2.4. In the case of martingales, since we have an equality, then an adapted and integrable process
(M), is a martingale if and only if for all bounded stopping times T, we have M € L! and E[Mr] = E[M,].
This is not true for submartingales (with =), for otherwise every nonnegative deterministic sequence would
be nondecreasing!

Proof. The direct implication follows from the previous theorem; let us henceforth suppose that for every
bounded stopping times S < T we have Ms, My € L' and E[Mr] = E[Ms]. Fix n = 0 and A € F, and define

T=(n+1)1a +nla.

Then T < n+ 1 is a stopping time since {T = n} = A€ F,and {T = n+1} = A° € F, ¢ F,41, and
{T = k} = @ € F otherwise. Note that M7 = My,1 Lac + My, 14 = My, + (Mpo1 — My,) 1 4c. Since n + 1 is also

a bounded stopping time, then by our assumption:

E[Mp.1] = E[M7] = E[M,] + E[(Mp+1 — Mp) Lac].
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We infer that
E[(Mns1 = Mp) 14] =0
for all A € &, which, as in the previous proof, implies E[M,.; - M, | F,] = 0. Since n is arbitrary, then

(M,),, is a submartingale. O

Now what can be said for unbounded stopping times? Here are two useful cases in practice. Notice that
the less restrictive assumptions we make on T, the more restrictive we make on M.

Proposition 8.2.5. Let (My)n=0 be a submartingale and let T be a stopping time. Suppose we are in one of
the following two cases:
(i) either E[T] < oo and (M,,7), has bounded increments, i.e. there exists a deterministic C < oo such that
|Mpar = Mn-1ya1| < C foralln a.s.
(ii) or T < oo a.s. and (My,T)y is bounded, i.e. there exists a deterministic C < oo such that |[Mp,7| = C for
all n a.s.
o]. If M is instead a supermartingale, then E[Mr] <
E[Mo].
Proof. By Lemma we know that E[M,.r] = E[M,] for all n = 0. Moreover, if T < oo a.s. then
M\t — Mr a.s. Then the second case follows from dominated convergence. As for the first claim, under

Then in both cases Mt € L' and we have E[M7] = E[M
E[My], and finally if M is a martingale, then E[Mr] =

the bounded increment assumption we have:

nnT nnT
[Manz| = [Mo + D (Mi = Myy)| < [Mo| + ) [My = Myq| < [Mo| + C(n A T) < [M| + CT.
k=1 k=1
If T is integrable, then we can again apply the dominated convergence theorem. O

Remark 8.2.6. « These cases are just a suggestion and in practice, one can safely apply Lemma [8.2.1]
and try to pass to limit depending on the situation. We used here the dominated convergence theorem,

but monotone convergence can be useful as well.

+ This proposition is sometimes stated with the more restricted assumption that M or its increments
are bounded, not the stopped process. In practice it is very often the case, especially in the second
one, that the whole process is unbounded, but the stopped process is.

8.3 Some decompositions (*)

Since gambling doesn’t work, let us give another, more mathematical, motivation to consider such objects.
The first result is sometimes called the Doob—Meyer decomposition. It shows that martingales and predict-
able processes naturally appear in random processes. It will play an important role in the next chapter. The
other results of this section will not be used in the sequel.

Lemma 8.3.1. Let (X,,), be an integrable process adapted to a filtration (F,),. Then:

(i) There exist a predictable process (A,), and a martingale (My,),, both for the filtration (¥,), and both
null at 0, such that for every n = 0,
Xn =Xy + M, + A,.

(ii) If (A%)n and (M)), is another such pair, then A}, = A, and M}, = M, for all n.

(iii) Finally (Xy)n is a submartingale, resp. supermartingale, resp. martingale, if and only if (A,), is non-
decreasing, resp. nonincreasing, resp. constant (null).
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Proof. Suppose first there exists such a decomposition. Since A is predictable and M a martingale, then we

must have for all n = 1:

n
E[Xn = Xp-1 | Fn-1] = An = An-y, hence Ap = Z E[Xk = Xk-1 | Fr-1]-
k=1

A posteriori, this process is indeed predictable and thus is the only possible one null at 0. Next let us set
M, = X,, - Xo - A,,, we obtain:

E[Mn - My, | 9:n—l] = ]E[Xn - Xno1 - E[Xn - Xu1 | g;n—l] | EJ;:n—l] =0,

so it is a martingale null at zero. The uniqueness of M follows then from that of A. The last part of the

statement is now clear. O]

Remark 8.3.2. Recall that if (M,), is a martingale then (M?), is a submartingale provided integrability. The
nondecreasing predictable process in the associated decomposition plays an important role, see Sectiony.6.2}

Next, we are used to decompose a random variable as X = X* - X~. Recall from Lemma [8.1.4] that
if (X,), is martingale, then (X)), and (X)), are submartingales. The next result, sometimes called the
Krickeberg decomposition, shows that we can decompose it as the difference of two martingales under an

optimal assumption.

Lemma 8.3.3. Let (X,,), be a martingale. It satisfies sup, E[|X,|] < oo if and only if there exist two nonneg-
ative martingales (My), and (N,), such that:

X, =M, - N,.
Moreover in this case, there exists a unique such decomposition which satisfies:

sup E[|X,[] = E[Mo] + E[No],
n=0
and (M), and (N,), are the smallest nonnegative martingales which bound (X)), and (-X,), above respect-

ively.

Proof. Note that if (M,), and (N,), are nonnegative martingales, then indeed their difference remains a

martingale, and moreover, for every n > 0, we have
E[|My = Nu|] < E[|[My]] + E[|Np|] = E[M,] + E[N,] = E[Mo] + E[No],

so the left-hand side is bounded uniformly in n.
Conversely, suppose that (X,), is a martingale with sup, E[|X,|] < o. Fix n > 0 and define two
sequences (M,(C"))k and (N,E"))k by M,(cn) =E[X,,, | #.] and N,ﬁn) = E[X,, | %] respectively, so by the tower

property,
Xo = E[Xpek | Fl = M - N,

for every k = 0. Let us focus on (M,(c"))k, as the other sequence satisfies similar properties. First, we claim
that it is nondecreasing. Indeed by the tower property and convexity, since (X,,x), is a martingale, then

M = BIX oy | Fol = E[EIX: oy | Fuek] | Ful = E[XSp | Tl = MU,

+1 7 n n

Thus (M,E"))k converges a.s. to a limit, say MP e [0, o0]. Tt actually is finite, and even integrable by Fatou’s
lemma:

E[MM] < lim inf E[M"] < sup E[M\"] = sup E[X}, ] = sup E[|X,[] < co.
o k=0 k=0 k=0
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We claim that letting n vary, the integrable process (Méf )) » is a martingale. Indeed, by the tower property
again, we have

EMM"™D | F,] = BIELX; 1. | Fot] | Ful = BIX1p | Ful = M.

Letting k — oo, we conclude by conditional monotone convergence (Lemma6.4.3) that

E(MU™ | F] = E[Nim M | %] = THm E[M" " | ] = Tlim M, = MO,
The exact same argument applies to N,E") = E[X ., | #,] and its nonnegative martingale limit N We can
thus let k — oo in our decomposition X, = M,(C") - N,in) to obtain:

Xp = M - NI
Finally, for k > 0, we have:
MY + N = E[X; | Fol + ELX; | Fol = E[1Xl | Fol.
Take the expectation of both sides and use monotone convergence to conclude that

E[MO] + E[NY] = sup E[|X,]].
n

Suppose now that there is another such decomposition X,, = M/, - N/ as differences of nonnegative
martingales. Notice that M/ > X' and N, > X, for every n, then by taking conditional expectations, we get
for every n = 0:

M, = EIM} | Fl = E[X i | Ful = M — MO,

k—o0

Hence M = M and similarly N > N for every n = 0. If this new decomposition also satisfies
sup, E[|X,|] = E[M{] + E[N{], then necessarily, E[M] = E[M]] = E[M{] = E[]M{"] and E[N] = E[N{] =
IE[NO(C? )] = ]E[No(o")] so combined with the previous bounds we get M, = M and N, = N, hence the
uniqueness of the decomposition.

Suppose (Y,), is a nonnegative martingale which satisfies Y,, = X,,. Then Y,, = X, and the previous
argument shows that Y, = Mgl ), Similarly, if instead Y, < -X,, then Y, = No(on), hence the minimality
property of M and N&. O

Here is a last result known as the Riesz decomposition. Recall that if (X,), is a submartingale then
(E[Xn])n is nondecreasing.

Lemma 8.3.4. Suppose (X,), is a submartingale with sup, E[X,] < co. Then there exists a unique decompos-
ition
X, =M,-Y,

where (M), is a martingale and (Y,) is a nonnegative supermartingale with E[Y,] — 0. The process (Mp)n
is the smallest supermartingale bounded below by (X,),.

Proof. We proceed with ideas similar to those of the previous proof. Fix n and let M,(C") = E[Xy+k | Fn], then
Xn < E[Xpsk | Fnl < B[E[Xniks1 | Fnok] | Fnl = E[Xnsks1 | Ful-

Thus the sequence (M,(C"))k is nondecreasing and lower bounded by X,;; we let MP € [X,, 0] denote its
limit as k — oo. By monotone convergence, applied to the nonnegative and nondecreasing sequence
(M,((n) - Xu)k), and since X, is integrable, we obtain:

E[MP] = E[X,] + EIMY - X,] = E[X,] + ] lim EM" - X,] =1 lim E[M™] =1 lim E[X;] < o
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Thus the sequence (Méf ))n is integrable. Next,

]E[M](;Hl) | E37:71] = E[E[Xn+1+k | E~J7:n+1] I 9771] = I['—T‘[er1+1+k | 9"n] = Ml(cz)l

We then let k — oo, using conditional monotone convergence on the left, to obtain that (Mg' ))n is a
martingale. Consequently, the difference Y, = M — X, defines a supermartingale; it is nonnegative by
construction and we have seen that E[Mgl)] = lim; E[X], so E[Y,] — 0 as n — oo. Now let (Z,), be a
supermartingale with Z, > X, for every n. Then

Zy 2 E[Zpik | Fnl 2 E[Xpik | Fn] = M](cn)-

Letting k — oo, we obtain that Z, > M which is therefore the smallest such supermartingale.

Suppose finally that there exists another such decomposition as X,, = M, + Y, = MP +Y,. Then
the process Z, = M - MY = Y/ - Y, is both a martingale as well as the difference of two nonnegative
supermartingales whose expectation tends to 0. Since it is a martingale, then by convexity,

E[|Zu]] = E[|Zp:l] = E[Ynei] + E[Yy.] —> 0

n k—o0

hence Z, = 0 for every n and the decomposition is indeed unique. O

8.4 Martingales and Markov chains (*)

There is a deep connection between martingales and Markov chains, in relation also with harmonic functions
discussed in Section Let (X,), denote a Markov chain with values in a countable set X, with transition
matrix P. Recall that for every function f : X — R for which the expectation is well-defined, we have for
every x € X

Pnf(x) = Z Pn(x’ y)f(y) = Z ]Px(Xn = Y)f(y) = Ex[f(Xn)]-

yeX yeX
We let I denote the identity matrix on X.

Theorem 8.4.1. Let (X,,), be a stochastic process with values in X and let P be a transition matrix. Then
(Xn)n is a P-Markov chain if and only if for every measurable and bounded function f : X — R, the process
given by:

n-1
M = £(X) - f(X0) = Y.(P - Df(Xi)
k=0
is a martingale null at 0.

Proof. Let F, = 0(Xy, ..., Xn). The process (M{ )n is adapted and integrable for any bounded function f since
then Pf and hence (P - I)f are also bounded. Moreover we have

My = ME = f(Xn1) = f(Xn) = (P = D) = f(Xni1) - PF(Xa),

hence
]E[Mf:+1 | Ful = M{f if and only if E[f(Xu+1) | Ful = Pf(Xp),

and the right-hand sides holds if and only if (X}), is a P-Markov chain.
Indeed (X},),, is a P-Markov chain when for every x, ..., x,,1 we have:

]P(XrHl = Xn+1 | Xo = %05, Xn = xn) = P(xna xn+1)-

If this holds, then for f bounded, we have:

E[f(XrHl) | Xo = x0,..., Xn = xn] Z f(xn+1)]P(Xn+1 = Xn+1 | Xo = %05, Xn = xn)

Xn+1€X

D fGne1)P(tn, Xni1)

Xn+1 EX

= Pf(xn)~
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Recall that ]E[f(X,Hl | Xos..0s Xn] = ¥(Xp, ..., Xpn) where ¥(xo, ..., %p) = E[f(Xus1) | Xo = X0, ..., X = %],
hence E[f(Xy+1) | X0, ..., Xn] = Pf(X,) for a P-Markov chain. Conversely, this identity applied to f(y) =
1,-y,., shows that:

- n
]P(XO = X0y eee s Xpt1 = xn+1) =E f(Xn+l) H ]]-Xk:xk]

-E ]E[f(X,,+1 | Xo, e Xin H .- xk]

=E Pf(Xn) H ]1Xk=xk]
) k=0
= Pf(xn) P(Xo = x0, ..., Xn = xp)
= P(xp, Xns1) P(Xo = X0, .00, Xi = X)),
which shows that (X)), is a P-Markov chain. ]

Remark 8.4.2. Recall that a function h is P-harmonic when Ph = h. Thus, if (X,), is a P-Markov
chain, then (h(X,)), is a martingale if and only if & is P-harmonic. More generally, it is a submartingale
(resp. supermartingale) if and only if A is subharmonic (resp. superharmonic).

Remark 8.4.3. If (X,,), is a Markov chain, then the martingale (M )n is that in the Doob—Meyer decom-
position of the process (f(X,)), provided by Lemma“ 8.3.11 The sum Y 725(P - I)f(X) indeed corresponds to
the predictable part.

We can also consider functions of both the position and the time.

Theorem 8.4.4. Let(X,), be a P-Markov chain andletf : Z,xX — R. Let M{ = f(n, X,) and assume that
E[|MY]] < o and that

Pf(n+1,x)= Y, P(x.y)f(n+1,y) = f(n.x).
yeX

Then (M{:)n is a martingale.

Proof. The process (M{ )n is adapted to F, = o(Xo, ..., X,,) and we assume that it is integrable. Next, by the
Markov property,

E[f(n+1,Xp1) | Xo = X05---» Xn = %p] = E[f(n + 1, Xp11) | Xy = x,] = Pf(n + 1, x),
which equals f(n, x,,) by our assumption. We conclude as in the previous proof. O

Example 8.4.5. Let (S,,), denote the simple random walk on Z, corresponding to P(i, i—1) = P(i, i+1) = 1/2.
The harmonic functions h = Ph are the solutions to:

h(j) = %(h(j +1)+ h(j-1)), equivalently h(j+ 1) - h(j) = h(j) - h( - 1).
The increments are constant, so the solutions are easily found to be
h(k) = k(h(1) - h(0)) + h(0).
Then Theorem [8.4.] shows that for any value a = h(0) and b = h(1), we have that
(b-a)S, +a isamartingale.

The functions f that satisfy the identity in Theorem are solution to:

f(n,i) = %(f(n+ Li-1)-f(n+1,i+1)).
This gets more complicated, but one easily checks that f(n, i) = i> — nis a solution, so

S —n isa martingale.
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These results allow to use martingale techniques to study Markov chains. As an example, one can
give an alternative treatment of the Dirichlet problem presented in Section 3.5|by relying on the stopping
theorem for the martingale (M}),. We shall solve in the exercises the ruin problem in this way. The
recurrence/transience of a Markov chain can also be studied by means of such martingales decomposition.

8.5 Optimal stopping problem with finite horizon

Consider the following game. You are given a fixed finite horizon N = 2, and for every n = 1,...,N, a
certain amount of money is proposed to you and you can decide:

« either to take it and stop without knowing the future proposals,

« or to refuse it and hear the next proposal.

At time n = N, if you have refused all the previous offers, then you get the last one. The question is then to
try to design a strategy to maximise the probability that the offer you accept is the overall best one. This
problem is also known under the name of the ‘secretary problem’ in which one can imagine auditioning
candidates one after the others for an open secretary position, and trying to hire the best person, or also
‘marriage problem’ in which you try to get the best partner... These problems are also very standard in
financial mathematics. Let us formalise mathematically the problem.

Definition 8.5.1 (Finite Horizon Optimal Stopping Problem). Fix an integer N, a finite filtration (%,)o<n<nN,
and an adapted and integrable process (X,,)o<n<n- Let T denote the set of all stopping times with values in
{0,...,N}. An optimal stopping time is a stopping time 7 € Ty that satisfies:

E[X;] = sup E[Xr],
TeTy

which may not exist nor be unique. The questions are: do they exist and can we find them explicitly?

We shall start the process (X,), rather at time n = 1, and take F, = {®, Q} the trivial o-algebra. Also,
for definiteness, let X, = Xy and &F,, = Fy for n > N.

Remark 8.5.2. Actually, in our motivation problem (see Subsection[8.5.2) and this is often the case, the
sequence (X,), is not adapted to (F,),, that is, the knowledge of F, does not entirely determine X, and
some randomness remains. In this case, define )?n = E[X, | #,], which is adapted, and observe that for any
stopping time 7 € Ty, we have since {7 = n} € F,,

N N
E[X] = ) E[Xy Lr=p] = ), B[X, L] = B[X;].
n=0 n=0

Therefore a stopping time is optimal for (X,), if and only if it is optimal for (X,),, and also the maximal
expected gain satisfies:
sup E[X;] = sup E[X.].

€T €Ty

We can thus always come back to the adapted case.

8.5.1 Solution via the Snell enveloppe

We are going to solve this problem using martingale theory via the notion of Snell enveloppe. To get the
intuition consider the case N = 2 in our problem: you are proposed an amount Xj, do you take it or refuse
it to get X;? The answer depends on what you expect X; to be, given the information %; (the amount Xj).
Precisely: compute the conditional expectation E[X; | %], then you accept X; if the latter is larger than
E[X; | #1] and refuse it otherwise. This motivates the following definition.
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Definition 8.5.3 (Snell enveloppe). Under the preceding notation, the sequence (S,)o<n<n defined by the
backward recursion:

SN = XN and Sy = max(X,, E[S;s1 | Fn]) forO<ns<N-1,
is called the Snell enveloppe of (X;,)o<n<N-

As before, we extend S, = Sy = Xy for n > N. Here is another way of understanding the Snell
enveloppe.

Lemma 8.5.4. The Snell enveloppe of (X)), is the smallest (F,),-supermartingale above (X)), in the sense
that S, = X, for every n.

Proof. Notice that since both X, and E[S,+1 | %] are F,-measurable and integrable, then so is S,,; moreover
Sy =2 E[Syi1 | Fu] for n < N; after N, both (S,,),-n and (F,),=n are constant so E[S,,1 | Fu] = E[Sx | Fn] =
Sn = Sp, hence it is a supermartingale. The bound S, = X, is also obvious from the construction. Let us
prove that it is the smallest such supermartingale. Let (Y,), be another one, then first Y, = X, = S,, for
n = N. We use then a backward induction: let us assume that for some 1 < n < N we have Y,, = S,,, and let
us prove that Y, = S,_;. Since (Y,), is a supermartingale, then

Y1 2 E[Yy | Fpoa] 2 E[Sn | Fpeil.
Since in addition Y,_; = X,-; by assumption, then actually:
Yp-1 =2 max(Xy,-1, E[Sy | Fn-1]) = Spa
We conclude by a backward induction. O
As a consequence, we can upper bound the maximal expected gain in the optimal stopping problem.

Corollary 8.5.5. If (Sp)o<n=n is the Snell enveloppe of (X,)o<n<N, then

sup E[X;] < E[So].

€TN

Proof. Fix a stopping time 7 € Ty. Since (S,), is a supermartingale, then so is (Sy.;), and since (Sp), is
above (X)), then
]E[Xn/\r | 9’0] = E[Sn/\‘r | 9;0] =S

for any n. Taking n = N, we obtain E[X; | %] = Sp and we conclude by taking the expectation on both
sides. O

Let us next consider two special stopping times given by:
. =inf{n=0: S, = X;} and " =inf{n=0: S, >E[Su1 | Ful}. (8.1)

Note that the backward recursion S, = max(X,, E[Sp+1 | F,]) for n < N - 1 shows both that 7, < N and
that it is equivalently given by 7. = inf{n = 0: S, = E[Sp.1 | F,]}. The strict inequality required in 7* may
not occur, so it can be infinite.

Lemma 8.5.6. Both stopped processes (Synr, )n and (Syar+)n are martingales.

Proof. The key is to note that first if 7 is a stopping time, then S; 1,., = };.,, Sk L=k M) F,, and second
that both stopping times 7, and t* have the property that if r = n + 1, then S, = E[S,+1 | %,]. Indeed, we
know that S, = max(X,, E[Sy+1 | Fn]) = X, so if n < 74, then S, > X, and thus S, = E[S,+1 | %,]. Similarly,
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if n < t*, then S, = E[S,+1 | F,] and thus an equality holds. If 7 is any stopping time with this property,

then we have:

IE[S(n+1)/\r | Fnl = E[Sn+1 Leoner | Ful + B[S: Locn | Ful
= E[Sm—l | Gjn] I[rzn+l + Sr ]l‘[sn
=5, ﬂrzrﬁl +5; ]]-‘rsn

= Sn/\r-
Thus in this case (Syrr)n is @ martingale. O

The next theorem shows that the upper bound from Corollary is achieved, it also characterises the
optimal stopping times using the Snell enveloppe and shows that the two previous ones are respectively

the smallest and largest ones.

Theorem 8.5.7. Let (Sp)o<n<n e the Snell enveloppe of (X,)o<n<n: The following holds.
(i) A stopping time t € Ty is optimal if and only if X; = S; and (Sya;)n is a martingale.

(ii) It holds E[So] = sup 1, E[X¢].

(iii) A stopping time 7 is optimal if and only if 7, < 7 < t* and X; = S;, where 7, and t* are defined in (8.1).
In particular t. is always optimal and t* is as soon as it is not infinite.

Proof. Let us start with the converse implication in (i). Fix 7 € Ty and suppose that X; = S; and (Sprz)n is @

martingale. Then by the stopping theorem, since 7 is bounded,
So = E[S: | Fo] = E[X: | Fo].
In particular, taking the expectation, we infer from the previous corollary that:

sup E[X,] = E[S] = E[X.].

T€TN

Hence 7 is optimal and moreover we have:

E[So] = sup E[X;].
T€TN
At this point, we have proved that if a stopping time 7 € Ty satisfies both X; = S; and (Sp.)n is a martingale,
then it is optimal and (ii) holds. Since 7, < n satisfies these two conditions by Lemma|8.5.6] then it is optimal
and (ii) always holds. Similarly 7* is optimal as soon as it is smaller than or equal to N.

Now let us prove the direct implication in (i), that is let 7 € Ty be optimal and let us prove that
necessarily X; = S; and (Sp\;)n is a martingale. Recall that (S,), is a supermartingale, so E[S;] = E[S,],
and that it satisfies S, = X, for every n and so S; = X;. In addition, since 7 is optimal and (ii) holds
as we just proved, then E[X;] = E[S]. Hence S; = X; and E[S;] < E[X;], which implies that S, = X;.
Similarly, we know that (S,.;)n is a supermartingale, so E[S(ps1)ar | Fn] < Spar and further the expectation

is nonincreasing so:
E[S;] = E[Snar] < E[Snrc] < E[Sonc] = E[So].

Since 7 is optimal, then E[S;] = E[Sy], so E[Sy,.] is constant; in particular E[S(;.1),r | Fn] < Spar have the
same expectations and thus are equal: the stopped process (Sy.;)n is a martingale.

It remains to prove (iii). First, if 7 is optimal, then it has X; = S; so 7 = 7,. In addition (Sp.;), is a
martingale so on the event n < r we have S, = E[S,.; | %,] and thus n < 7*. This shows that r < 7*.
Conversely, if 7 = 7% A N has X; = S, since (Sy\+)n is @ martingale by Lemma then the stopped
process Spyar = Spartar is @ martingale as well, so 7 is optimal by the first item. O
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8.5.2 An explicit calculation

Let us come back to our original game or ‘secretary problem’ and apply Theorem to design a strategy
that maximises the probability to get the overall best offer.

Modelisation. Let us formalise the problem: N > 2 values a; < -+ < ay are fixed in advanced, but
unknown to us, and are presented to us one at a time in a random order, given by a uniform random
permutation o of {1,..., N}. Let X;, = 1if as(,) = maxo<;<n @; and X, = 0 otherwise, that is X, = 1 when the
n’th offer is the overall best one. Let T denote the set of stopping times less than or equal to N. We aim at
finding 7 € Ty that solves:

E[X;] = sup E[X7] = sup P(as(;) = max a;).
TeTy €Ty

This situation is a typical example of what we explained in Remark at time n, the information that
we have is about the values of the first n numbers that appeared, that is %, is generated by a,(1), ..., as(n),
whereas X, uses the information of all the numbers ay, ..., an, given by Fy. Then as we explained, it is
equivalent to solve the problem with X, replaced by X, = E[X, | F,].

Let us first express this random variable )~(n. Let Ap = {a(n) > MaXkep-1 Gu(k) } be the event that the n’th
offer is better than all the previous ones, so A, € F,. By symmetry, the A,’s are independent and P(A,) = 1/n
respectively. Then X,, equals the conditional probability given Ag(1)s -+ » g(n) Of Ap 0 Aj, 1 0+ n AL, that is,

by independence:

Let us solve the optimal stopping problem for this sequence.

The Snell enveloppe. For 1 =< n < N - 1, define the rest of the harmonic sum:
N-1
1
n = kz_: E’
=n

define also ry = o and ry = 0. Note that (r,), decreases and has r; = 1 so there exists a unique index
n. € {1,..., N - 1} such that:

IN< = <Tp sl<r_<-<n

Recall that the Snell enveloppe is defined by the backward recursion:
Sy = Xn andforl=snsN-1, Sy = max(Xy, E[Sps1 | Fnl).

By a backward induction, we can show that:

n n ne — 1
Sn=ﬁllAn+ﬁrn]lAﬁ for n,<n<N and Sn:Tr""l for 1 <n< n.. (8.2)

Indeed, this holds true for n = N since ry = 0 and )?,, = % 14,. Then for n. < n < N, if this holds for n + 1,
then we get since the Aj’s are independent Bernoulli with parameter 1/k:

n+1 n+1
E[Sn+1 | Ojn] = ]E[ N ]1An+1 + T’"nu ﬂAfM | Q]n
n+1 1 n+1 n
n+1

+ r,
N n+1 N n+1

1 n( 1)
N N n

n
= —rn.
N
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Consequently, since X, = ﬁ 14, and r, < 1 for n = n,, then

— n n n
S, = max(X,, E[S,.1 | Fu]) = N max(la,,7,) = N 1a, + Nrn T 4c,
which concludes the induction in this case and this identity holds for all n = n,.
Next take n = n, - 1, then the first two equalities in the last display still hold true, the difference is that

now ry,—1 > 1 =14, , and so we have:
n, -1
N

which initialises the backward induction for the second part of (8.2). Next note that since r,, 1 > 1, then
for any n < n, - 1it holds:

Ne —

Sn.-1 = max(la, ,,"n,-1)= n.-1>

= n n, -1
Xn = ﬁ lA < Trn*_l.

Therefore if the right-hand side equals S,.1, then

— n, -1
S, = max(X,, E[S,.1 | Fn]) = Trn,,l

as well, concluding the induction.

The solution. Note that in addition to (8.2)), we just saw that S, > Xn for n < n,, whereas for n = n,, we
have S, = )?n + 5 7n Lac which equals jz,, if and only if A, holds true or n = N. We infer from Theoremw
that the smallest optimal stopping time 7, = inf{n > 1: S, = X, } is given by:

7. = inf{n = n, : A, holds true} A N.

The strategy thus consists in rejecting arbitrarily the first n, offers that are presented to you and then after
that, accepting the first offer that comes up and which is the best one so far, or taking the last one if the
best offer was before time n,. Theorem proves that the probability to end up with the overall best

offer with this strategy equals:
n, -1
Pmax = ]E[Sl] = Trn.fl-
Furthermore, if other strategies can lead to this same probability, this one is the quickest and no strategy

can do better.

Large N limit. Let us finally recall that n, was defined as the only index between 1 and N satisfying:

—=ry <1l<ry,1= —-.
k=n, k k=n,-1 k

Note that n. depends on N, and so does pmax. We aim at finding their limit behaviour as N — co. Basic
calculus shows that if n/N — a for some a € [0, 1], then, with the convention log(1/0) = oo,

1 N

n=— —_— —
N ¢{ k/IN N—o

=n

1
—dx = log(1/a).
/ax x = log(1/a)

Since the ratio n./N lies between 0 and 1, it admits subsequential limits as N — oo and the previous display
combined with the condition r,, < 1 < r,,_; imply that that e”! is the only possible subsequential limit. We
infer that:

Ny - . . . Ny — 1 -
—~ — ¢! whichimplies r,, — 1 sofinally ppay=———tn1 —> €.
N N N—oo N N—oo

Hence, when N is large, one should first reject the n, ~ e ' N ~ 0,37 x N first offers, then accept the first
one larger than all the previous ones, which provides a probability pyay ~ €71 = 37% to get the overall best.
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8.6 Optimal stopping problem with infinite horizon (*)

Let us generalise in this section the optimal stopping problem when the horizon N = oo.

Definition 8.6.1. Let (F,),50 be a filtration and fix an adapted stochastic process (X,,)ns0 satisfying the
integrability condition:
E[sup |xn|] < o0, (8:3)

n=0
Let T denote the set of all finite stopping times. An optimal stopping time is a stopping time 7 € T that
satisfies:

E[X;] = sup E[XT].
TeT

Note that the integrability condition ensures that E[Xr] is well-defined for all T € T.

The case of finite horizon N corresponds to taking X,, = Xy and &, = Fy for every n = N, in which
case an optimal stopping time, if any, can always be taken less than or equal to N. Moreover, in this case,
the integrability condition is equivalent to simply requiring E[|X,|] < oo for each n as we did. Finally,
Remark [8.5.2] applies as previously: we can always replace X, by E[X, | %,] so the assumption that (X;), is
adapted can be dropped.

Let us start with an example which can be solved by hand.

8.6.1 An explicit example

Suppose that you possess a car that you do not use and that you want to sell: you are getting random offers
for it and want the highest one. We neglect here that the value tends to diminish with time and suppose
that the offers are i.i.d. However every month you have to pay the insurance, possible the parking, etc. so
you also want to sell it as quick as possible. Let us formalise the problem mathematically.

Modelisation. Let (Ug)k.; be ii.d. random variables such that U; > 0 a.s. and E[U?] < co. They represent
the offers proposed to you, say once every week. Let ¢ > 0 be a real number which represents the fixed cost
per week of the car. Let V;, = sup,_, Uk; we are interested in maximising the quantity:

X, =V, -cn,

which represents your possible gain at time n if you are not forced to answer an offer right away, so they are
not limited in time and you can choose the highest one you have received so far. We let &, = o(Uy, k < n).

Optimal stopping time. Let M = sup{x = 0: P(U; = x) > 0} denote the supremum of the support of
the law of Uj, which is infinite if U; is unbounded. For x € R, let f(x) = E[max(0, U; - x)] = E[(U; — x)*],
which is a continuous and decreasing function on (-o0, M) which converges to 0 at M (and is constant equal
to 0 after M if the latter is finite). In particular for ¢ > 0, there is a unique solution y € (o0, M) of f(y) = c.
Define then the stopping time:

T, =inf{n=1: f(Vy)<sc}=inf{n=1: V, = y}.

It is an easy exercise to show that V,, increases and converges to M almost surely, so f(V,) decreases and
converges towards 0. In particular T, is finite almost surely and we have f(V,,) = ¢ for every n < T, and
f(Vy) = cfor every n = T,.
The function f and the stopping time T, appear as follows: since the Uy’s are i.i.d. then,
E[Xp+1 | Ful = E[max(Vy, Ups1) = (¢ + Dn | Fy]

=V, + E[max(0, Uy, — V) | Fu] - (c+ D)n

=Va+ f(Vp) = (c+ Dn

=X, + f(Vy) - c.
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Hence T, is the instant such that E[X,.; | F,] = X, for every n < T, and E[X,.1 | F,] = X, for every
n = T,, that is, at time T, the process (X,), transitions from a submartingale to a supermartingale. We
claim that this time is optimal, provided Xy, is integrable. Indeed, iterating these inequalities, we get
Xo Vper, = E[X7, Lper, | Fnl and E[X, Lpo1, | F1,] = X7, 14o1,. Let T be another stopping time, then,
provided X7 is integrable as well, we can extend these inequalities to n = T, namely:

Xrlrer, <E[Xy, Irer, |Fr]  and  E[Xplrr |Fr] s Xr lrer..
Taking the expectation and summing the two inequalities, we obtain:

E[Xr] < E[X7,].

Optimal gain. Let us next compute E[X7, ]. We have the equality of events: {V,, = ¢} n (e { Vi < ¢} =
{Un = ¢} n(Nk<n{Uk < ¢} from which follows:

T, =inf{n=1: U, = y}.

Hence T, has the geometric law with mean 1/ P(U, = y). Further, for every n = 1, it holds:

E[U1 Lvy2y] = ELUL - ¥) Luzy ]+ y P(UL 2 y) = f(Y) + Y P(Ui 2 ) = ¢ + Y P(Ur 2 ).
Using that the Uy’s are i.i.d. we infer that:

n-1

E[U, 11._,] = ]E[Un Loy [ ] nUN] = E[U; 1y, JP(Uy < p)" ' = (¢ + y P(U; = y)) P(U; < p)" .
k=1

Summing over all n > 1, we get:

E[Ur] = Y E[Up Ig] = (c + y P(Us 2 1) T R(U; <yt = SEV G2 D)

n=1 n=1 ]P(Ul 2 Y)
so finally, since Uy, = Vr,:
c+yP(U; 2 y) c
supE[XT] = E[X7,] = E[Ur,] - cE[T4] = - =y,
sup E[Xr] = E[Xr,] = E[Ur,] - ¢B[T.] = e Sl - ot ey

which we recall is the solution to E[(U; - y)*] = c.

8.6.2 Essential supremum

We cannot define the Snell enveloppe by the backward recursion in infinite horizon as we are not able to
initialise it; we shall provide another, more robust, definition. Let us go back to the case of finite horizon N
first. Recall that the Snell enveloppe (S,n)» is the smallest supermartingale above (X,,n),. Consequently,
if we let T,y denote the set of stopping times with values in {n,..., N}, then for any such T € T, y, we
have:

Sn 2 B[St | Fn] 2 E[XT | Fn].

Furthermore, for
Tup =inf{k € {n,...,N} : S = X} € T, n,

we have S, | = X;, ,, which implies as in the proof of Lemma that (Sk,r, )k is actually a martingale.
Hence, for this particular choice, we have:
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Combining the two displays, we obtain:
Sn = E[Xe,, | Ful =z E[X7 | F4l

for every stopping time T € T, . In a sense 7. , is thus the stopping time T € T,y that maximises
E[X7 | F,], and this maximal value is S,. This extends Theorem [8.5.7 which concerns the case n = 0.
However there is a measurability issue here: the set T, y is uncountable, and in general the supremum of
uncountably many measurable functions is not measurable, that is sup ¢y, E[X7 | F,] is not a well-defined

random variable a priori.

Example 8.6.2. Let (Q, %, P) be the interval [0, 1] equipped with the Borel o-algebra ([0, 1]) and the
Lebesgue measure. Let A c [0, 1] be your favorite non-Borel set and for every a € A and ¢ € [0, 1], let
Xa(t) = 14=q. Then X, is indeed measurable but sup ., X, = 14 is not.

The correct notion is that of essential supremum.

Lemma 8.6.3. Let I be any set and (X;, i € I) a collection of random variables defined on the same probability
space (Q, F,P) and with values in R u {—o0, co}. There exists a random variable X on this space that has:

(i) Foreveryi€ I, we have X = X; almost surely,
(ii) IfY also satisfies (i), then Y = X almost surely.
(iii) If Z satisfies (i) and (ii), then X = Z almost surely.

(iv) There exists a countable subset ] < I such that X = supj; X; almost surely.

This a.s. unique random variable X is denoted by
X = esssup Xj,
iel
and called the essential supremum of (X, i € I).

Continuing the previous example, one has X, = 0 almost surely for each a € A and therefore
esssup 4 Xq = 0 almost surely.

Proof. Note that uniqueness in (iii) is a direct consequence of (ii) since the symmetric argument shows that
X < Y as. Let us first construct X and prove the last claim. Recall that R u {-o0, 00} can be mapped on
[0, 1] by an increasing bijection (e.g. x +— 1/2 + arctan(x)/m extended to +o0); applying this bijection to our
random variables, we may, and shall, assume that they all take value in [0, 1]. For any countable subset
J <1, let us set X/ = Supje; Xj, which is a well defined random variable. Define then:

a = sup{E[X’]: J c I countable}.

As a supremum of real numbers, there exists a sequence of countable sets of indices (J,), such that
a = lim, E[X’»]. The set  J, J, is countable so we associated with it X = XUn/» = SUP;e ) 7, Xj-

Let us prove that X satisfies the first claim. By construction, we have both E[X] = E[X/"] for every n
and E[X] < a. Since E[X/"] — «, then we infer that E[X] = &. Now fix any i € I and consider the countable
set {i} uJ, J, and the associated random variable X{#Un/n = SUPje(ijulJ, g, X = max(X, X = X). Then
similarly, we have both E[X{#'Ui/n] < ¢ and E[X{#'Unlr] > E[X] = @, hence E[X{#WUil] = o = E[X].
Combining with the (a.s.) bound X{Unln > X we infer that X = X{3WnJr > X; a.s. wich proves the
first claim. Finally, if Y also satisfies this bound, then in particular with probability 1 we have Y > X;
simultaneously for every j € | J, Jn, and thus Y = sup;e ) g, Xj = X. O

Following the discussion before this lemma, the Snell enveloppe (S;)o<n<n Of (Xn)o<n<N is given by:

Sp = esssup E[ Xt | F,]. (8.4)
TETn,N

Note that this is an alternative way to define S,,.
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8.6.3 Optimal stopping with infinite horizon

We may now define the Snell enveloppe in general. The integrability condition allows to define
E[X7 | %] for any finite stopping time.

Definition 8.6.4. The Snell enveloppe (Sp)ns0 0f (Xy)ns0 is defined by:

Sp = esssup E[ X7 | F],
TeT,

where T, denotes the set of finite stoping times with valuesin {n,n+1,... }.

The next lemma links this definition with the backward recursion that we used in the finite horizon
case.

Lemma 8.6.5. Assume the integrability condition . The Snell enveloppe (Sy)n=0 of (Xn)nso solves the
backward recursion: for every n = 0,

Sp = max(Xy, E[Sp1 | Fnl)- (8.5)
Moreover, it is the smallest (F,),-supermartingale above (Xy,),, in the sense that S, = X,, for every n.

Proof. Let us prove successively that:

(i) Sp = max(X,, E[Sp+1 | Fn]), this immediately implies both the supermartingale property and the
bound S, = X, for every n.

(ii) S, = max(X,, E[Sps1 | Frl),

(iii) (Sp)n is the smallest supermartingale above (X),,.

STEP 1: PROOF OF S, = max(Xy, E[Sy+1 | Fy]). The integrability condition provides domination that
shows that (S,,), is integrable, so we can make sense of E[S,.1 | F,]. Since S, = E[X7 | F,] for any T € T,
then in particular for T = n we have S, > X,,. Let us next argue that S, > E[S,,; | F,]. By Lemma8.6.3]

for each n there is a countable subset {Hﬁl, N =1} c Tp,q such that S,.q = supy,, E[XeNl | Fni1]. Let us
N

transform the O, so the conditional expectation are nondecreasing: for each N = 1, let kLY,

k < N such that:

be any index
]E[Xer]lil | OJ"H—I] - IE?VX]E[X%H | OJ"H—I]
and set
n+1 n+1

TN, = gk SO nOw Sn+1 = Tl\;i_r)nm]E[XTi\i1 | Fritl.

Using (8.3) we may apply the dominated convergence theorem under the conditional expectation E[ - | F,]
(recall Lemma|6.4.3) and deduce from the tower property that:

B[Sy | Fol = lim B[EDXpy | Fonr] | Fo] = lim E[Xpy | Fl

Since TN, € T,.1, then each conditional expectation on the right is upper bounded by esssuprer,,, E[XT |
Fn]. Letting N — oo, we infer that E[Sy.1 | Fn] < esssuprer,, E[XT | F,]. On the other hand, for any
T € T,.1 we have S;,1 = E[X7T | Fpi1l, 50 E[Spe1 | Ful = E[X7 | F,] by the tower property again. By
Lemma [8.6.3] this implies:

E[Sp+1 | Fn] = esssup E[ Xt | F,] < esssup E[ X7 | F,] = Sy
T€Tpsy TeT,

We have thus proved that S, > max(X,, E[Sy+1 | Fu))-
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STEP 2: PROOF OF S, = max(X,, E[Sp:1 | F,]). Forany T € T,, we have T v (n + 1) € T,,; so by
Lemma(3.6.3}

E[Xr | Fn] = E[X, L7=p + X1y(ne1) Lrone1 | Fal
= Xn Lr=n + E[X1y(ns1) | Fn] LT2ne
< max (X, E[X1y(ns1) | Fnl)
< max(Xn,esssup E[X7 | ?}7,1])

T€Tp
< max(Xp, E[Su+1 | Ful)s

hence the last line is larger than or equal to esssuprcy, E[X7 | F4] = Sp. This shows that (S,), solves the
backward recursion relations.

STEP 3: MINIMALITY OF (S,),. Finally, if (Y,), is another supermartingale above (X,),, then for any
stopping time T € T, and any N = n we have

Yy = E[Y7uv | Fnl = E[X7aN | Fnl.

Letting N — oo and applying the dominated convergence theorem under the conditional expectation
E[ - | %], using again the assumption (8.3), we infer that Y, = E[X7 | %,]. As this holds for any T € T,, we
conclude that

Y, = esssup E[ Xt | F,] = S,
TeT,

and the proof is complete. O
Let (S,), denote the Snell enveloppe of (X;), and define:
Top=inf{m=n: S, = X} € T,
which is a stopping time for every n = 0. It generalises 7, = 7, o from (8.1).

Lemma 8.6.6. Assume the integrability condition (8.3). For every n = 0 fixed, the stopped process (Smaz, ,)m=n
is a martingale. Moreover, if 7. ,, is finite almost surely, then it realises the essential supremum:

Sn = E[Xe,, | Fnl = E[X7 | F4l
forevery T € T,

Proof. Let us decompose: for every m = n,

S(m+1)/\r,,,, = Sn,n ]lr,’nsm + Sme1 I[r*,,,zm+l~
Observe that S, , 1+, ,<m = Y kem Sk Le, =k @) Fy and since 1, - pme1 @) Fpp as well, then:

IE“[S(m+1)/\'r',,, | %m] =S, Lo <m+ IE"|:Sm+1 | OJm] I[n,nzm+1~

Tx,n Tw,n

On the other hand, if 7. , = m + 1, then X, # S, and since S, = max(Xp, E[Sm+1 | Fm]) = X, then this

means that S, > X;;, and so in fact S;,; = E[Sp,41 | Fm]. Consequently,

E[S(mﬂ)/\nﬂ | Fm] =S

Tan ]lr,,nsm +Sm ]lr,y,,zmﬂ = Sm/\r,,n-

Thus (Smar, ,)m=n is @ martingale. In particular S, = E[Sys, , | Fn] for every m = n. Suppose that 7, , < oo
almost surely, so we can make sense of X;, , = S;, | = lim, Sy, ,. Moreover we have |Si| < E[supy [Xi| | F,]
which has finite mean by the integrability condition (8.3). We may thus apply the dominated convergence
theorem under the conditional expectation E[ - | %,] (recall Lemma[6.4.3) and deduce that:

E[X

ton | Fnl = E[Se,, | Fn] = lim E[Spac, , | Ful = S

T,
o m—oo

The lower bound S, = E[Xt | #,] for every T € T, follows from the definition of S,,. ]
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We may now solve the optimal stopping problem. Let us actually generalise the original problem as
follows: fix n = 0 and search for 7 € T, the set of finite stopping times larger than or equal to n, that has:
E[X;] = sup E[XT]. (8.6)
TeT,
The original problem is for n = 0. Recall the stopping time 7. , = inf{m = n: S, = X;} € T, then a
consequence of Lemma|8.6.6]is that
sup E[X7] < E[X,, ,] = E[S,].
TeT,

The next theorem shows that this upper bound is achieved, so 7., is an optimal stopping time, and is
actually the smallest one.

Theorem 8.6.7 (General case). Assume the integrability condition (8.3). For every n = 0 fixed, the following
holds as soon as ., is finite almost surely:

(i) A stopping time T € T}, solves if and only if S; = X, and (Smar)msn is a martingale.
(ii) It holds E[S,] = suprer, E[X7].

(iii) The stopping time 7., solves and any other such solution r € T, has t = T, .
If 7., can be infinite with positive probability, then there is no solution to (8.6).

Proof. Fix n = 0 and suppose first that 7, , is finite almost surely. Let 7 € T, be such that both S; = X; and
(Smar)m=n is a martingale. In particular E[S,] = E[S;..] for every m = n and S;,n; — S; as m — . As in
the previous proof, the integrability condition allows us to apply the dominated convergence theorem
and get:

E[S,] = mliglooE[Smm] = E[Sn].

We observed already that E[S,] = suprer, E[X7] = E[S;] = E[S,] so these inequalities are equalities and 7
therefore solves (8.6). In addition, in this case (ii) holds as well.

Recall from Lemma that 7, , has that S, , = X;, , and (Smar, ,)m=n is @ martingale. Hence it
solves and (ii) always holds.

Suppose conversely that r € T, solves and let us prove that necessarily S; = X; and (Smar)msn
is a martingale. On the one hand the latter is a supermartingale by Lemma|8.6.5] so in particular E[S,] =
E[Snnz] = E[Smac] for any m = n; letting m — oo, by dominated convergence again, we obtain E[S,] =
E[S;] = E[X;]. On the other hand 7 solves and (ii) holds as we just proved so finally:

E[X;] = sup E[X7] = E[S,] = E[S;] = E[X;].
TeT,
Thus all these inequalities are equalities. Recall that S,, = X, for every m so S; = X; and since their
expectation are equal then actually S; = X;. Similarly, the stopped process (Smaz)m=n is @ supermartingale:
E[S(m+1)ar | Fm] = Smar for every m and we claim that their expectations are equal, so again the random
variables are equal. Indeed, the expectation of a supermartingale is nonincreasing so for every £ = m = n
we have by dominated convergence again:

E[Sn] = E[Sn/\r] = ]E[Sm/\r] = E[St’/\r] :) E[ST] = ]E[Sn],

(o8]

$0 E[Smaz] = E[Sy] for every m so (Spar)m=n is not only a supermartingale but a martingale. This proves (i).

Recall the consequence of Lemma that suprey, E[X7] < E[X;, ] = E[S,]. Since the extremities
are equal by (ii), then the inequality is an equality, that is: 7. , solves (8.6). On the other hand, any other
solution 7 € T, has S; = X; by (i), so necessarily 7 = 7, , by definition of the latter. This also proves
that if there is a solution 7 to , which is finite by definition of a solution, then 7, , < 7 < oo, so by
contraposition, if 7, , = co with positive probability, then there is no solution to (8.6). O
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Chapter 9

Convergence of martingales

This chapter is dedicated to the study of the asymptotic behaviour of martingales and their convergence in
different senses. The fundamental result is an almost sure convergence which, in addition to the Borel-
Cantelli lemma, is basically the only general tool to prove such a convergence in general, besides bare-hand
study of the model. We then discuss the convergence in L! and in LP. We finish with an extension of the
Central Limit Theorem which was one of the first concerns in this theory: how to generalise this result
without independence between the increments? This CLT will be applied to prove a CLT for Markov chains.
We shall also mention some applications to numerical simulations.
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0.1 Almostsureconvergence| . . ... ... ... ... ... ... . e 142
9.2 Closed martingales and L' convergence]. . . . ... .................. 145
(0.3 Uniformly integrable martingales (*)[ . . . . .. ... ..... ... ... .. ..., 147
0.4 LPconvergence| . . ... .. ... ..t e e 148
lo.5 The case of boundedincrements (*)| . . . . . . ... .. ... ... .. ..., 150
0.6 LawofLargeNumbers|. . . ... ... ... ... ... ... ... . . . .. 151
0.7 Central Limit Theorems|. . . . . . . . . . . ... ... ... . nnnenen.. 155
[0.8  Stochastic Gradient Descent & Robbins—Monro Algorithm| . . ... ... .. ... 160

In Section |9.1f we first discuss almost sure convergence of martingales. Let us stress already the
mild assumptions that are used, for example being nonnegative suffices! Section |9.2|further discusses
the convergence in L!, which actually holds if and only if the martingale takes the form of successive
conditioning of a fixed random variable. Section 9.3 presents some further developments with the notion of
uniform integrability. In Section [9.4| we prove very useful bounds on the maximum of a martingale and
derive L? convergence results with p > 1. Section |9.5{shows in particular that a martingale with bounded
increments either converges to a finite limit or it oscilles between +co and —co, but it cannot converge to
infinity! Sections|g.6|and [9.7/develop extensions of the LLN and CLT in the context of martingales in L?.
Finally Section[9.8| presents an application to the stochastic gradient descent that allows to numerically
approximate the minimiser of a function.

9.1 Almost sure convergence

Martingales are one of the few tools we have to prove almost sure convergence, besides the Borel-Cantelli
lemma. This is based on the following result.

Theorem 9.1.1. Let (M,), be a (sub/super-)martingale bounded in L', i.e. such that

sup E[[My[] < .

n=0
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Then M, converges a.s. to some My, which has E[|M|] < 0.

Let us stress right away that the convergence may not hold in L'! This will be our next topic. A classical
proof of Theorem|9.1.1)is based on the idea of counting ‘upcrossings’ of an interval. Fix a < b and a sequence
(xn)n on R and define two sequences 0 = fy < §; < f; < § < ... inductively by:

sk =inf{j = tr_; : x; < a} and tr = inf{j = s : x; = b}.

Then write U = sup{k = 0 : t; < n} for the number of upcrossings of [a, b] by x up to time n. We also
let U%Y = 11im, U*® denote the total upcrossing number.

Lemma 9.1.2. The sequence (x,), converges in [-co, o] ifand only if U%Y < oo for all rational numbers a < b.

Proof. Notice that U%? < o if and only if there exists k > 0 such that the corresponding upcrossing times
satisfy t; < oo = ty,q, namely x, > a for every n > f; or x, < b for every n > ;.. Recall that (x,), converges
in [-c0, 00] if and only if lim inf, x,, = lim sup,, x,.

If (x4)n does not converge, then liminf, x, < lim sup, x, and so there exist two rational numbers a < b
such that liminf, x, < a < b < lim sup,, x,, which implies U%® = oo for this pair. Suppose conversely that
there exist two rational numbers a < b such that U%? = o, so each s, # is finite and we have:

limninf Xp < limkinf X5, < a < b < limsup x;, < limsup x,,
k n

s0 (x), does not converge. O

The proof of Theorem then mostly relies on checking that the number of upcrossings of any
interval is almost surely finite. This is based on the following result.

Lemma 9.1.3. Let (M), be a supermartingale and let a < b. Then the mean upcrossing number satisfies:

E[(M, - )] _ |a] + E[M,])

E[U%"] < <
(U] b-a b-a

Once again, we can explain the proof in terms of a strategy, see Figure 9.1} Imagine (M,), representing
the price of an asset on the stock market. If, as the author of these lines, you know nothing about finance, a
naive way to try to make money is to wait until the price is low, here below a, then buy one unit at this
time, so now your fortune follows the same evolution as the price, then wait until the price gets above b to
sell and thus freeze your fortune until the price gets below a again, etc. Note that every time you sell, you
earned at least b — a, which corresponds to the denominator in the lemma. The numerator appears to take
into account that at time n, you may be engaged since the price went below a again, but not yet above b, so
you may be loosing some money. This explains why you should only use this strategy to prove theorems:
after going below a the price might not go up again!

Proof. Letus write 0 = Ty < S; = Ty = S; < ... for the random times defined as above for M. Since M is
adapted, then these are stopping times and so the process defined for n > 1 by:

H, = Z ILS;<<nsTk

k=1

is predictable. It is obviously nonnegative and it is bounded since at most one indicator can take value
1. The process (H « M) corresponds to our strategy presented above. Let us decompose the trajectory
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Figure 9.1: The proof of Lemmaexplained.

according to the upcrossings, and notice that the total increment along each one is M7, - Ms, = b - a, so:

N
(H ¢ M)N = Z Z :H-Sk<nsTk(Mn - Mn—l)

n=1 k=1

where the last term accounts for a possible final incomplete upcrossing, in which case we simply throw
away a temporary positive gain, but we cannot forget a temporary loss. According to Lemma [8.1.6 the
process H « M remains a supermartingale, and so E[(H « M)x] = 0, which implies the first inequality. The
second one follows since (x — a)” = |a| + |x]. O

Theorem now easily follows.

Proof of Theorem[9.1.] Combining Lemma[9.1.3and monotone convergence, we have

1
E[U%"] < —(|a| " supE[|Mn|]) < oo,
b-a n=1

Consequently, U%? < oo a.s. and this holds in fact a.s. simultaneously for all pairs of rational numbers a < b
since there are countably many of them. We infer from Lemma|9.1.2| that (M,), converges to some limit
My € [-00, 00]. Finally by Fatou’s lemma,

E[|Mw|] = liminf E[|M,|] = sup E[|M,|] < oo,

n=1

s0 M is integrable (and thus finite). O
We can derive a particularly useful, and extraordinary at first sight, result.

Corollary 9.1.4. Let ¢ = 0 and let (M), be a supermartingale that has inf, M,, > -c a.s. Then (M,),
converges a.s. to some My, which has E[|M|] < co and moreover M, = E[M, | F,] for all n.
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Proof. Let us set Y,, = My, + ¢ = 0. This remains a supermartingale, and it is bounded in L' since E[|Y,|] =
E[Y,] < E[Y,]. We can then apply Theorem and deduce the a.s. convergence to some Y., € L!. Moreover,

E[Yo | Fu] < lilznianE[Ymk | Fn] < Yy,
by the conditional Fatou lemma and Lemma[8.1.3 The claim follows by subtracting c. O

Note that a priori even for martingales, we only have the inequality M, = E[M. | F,] because of
the conditional Fatou lemma. The next subsection discusses when we have equality, and also when M,,
converges to M, in L.

9.2 Closed martingales and L' convergence

A particular case of martingales are those defined by taking successive conditional expectations of a fixed
random variable.

Definition 9.2.1. Let £ € L!, then a sequence defined by M, = E[¢ | F,] for every n = 0 is called a closed
martingale.

Integrability of this process follows from Lemma [6.4.1} the martingale property then comes from the
tower property:
E[E[¢ | Fna1] | Fn] = B[E | Fanl.

As shown in the next result, these martingales are the generic case of martingales that converge in L!.
Notice also the surprising fact that a martingale that converges in L! necessarily converges almost surely.
Recall that F., = o(|J, F») c F is the limit of the filtration.

Theorem 9.2.2. Let (M), be a martingale. The following assertions are equivalent:

(i) It is closed: there exists & € L' such that M, = E[£ | F,] for every n = 0.
(ii) It converges almost surely and in L' to some M.

(iii) It converges in L' to some M.
Moreover, when this holds we have My, = E[¢ | Fo] and My, = E[Mo | Fr].

By the very last assertion of this theorem, we do not need to specify ¢ when we speak of a closed
martingale since we may always take ¢ = M.

Proof. (i) = Suppose first that M, = E[¢ | F,] for every n = 0, with £ € L!. Then E[|M,|] < E[|¢|] < o
so (My), is bounded in L!. By Theoremit therefore converges a.s. to some M, € L!. Then for every
e, K > 0, we have:

IE"[M/In - Moou = IE:[|]\/In - Mwl H\M,,—Mw|se] + E[lMOO| H\Mn—Mw|>e] + E[an| H\M"—Mm|>e]
¢ + E[[ M| IL\M,,—1\4°<,|>s] + E[| My ﬂ\M,,\sK 11\1\4,1—1\/1:,<,|>e] + E[|M,] ]l|Mn|>K ]l|M,,—Mm\>£]
€ + E[|M| ]l‘Mn_Mng] + KP(|M,, - M| > €) + E[|M,,] ]lan|>K]'

IA

IA

The first expectation tends to 0 by dominated convergence, so does the probability, and for the last
expectation, note that since M, = E[¢ | F,] and since {|M,| > K} € F,, then

E[|My| Lja, -] = EBIE[|E] | Fnl Limy-x] = E[E] Ljag,5x]-

By dominated convergence, as n — oo, the right-hand side converges to E[|£| 1 sr,-x]. Thus for every
e, K > 0, we have:
lim sup E[|M,, - Mw|] < € + E[|€] 1jpr -k ]-

n—oo
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Letting further K — oo (by dominated convergence again) and ¢ — 0, we conclude that: indeed M,, — M
in L! and thus[(i)] =

Obviously = let us prove that = Suppose thus that M, converges to M, in L.
Since (M,), is a martingale, then for any n, k = 0,

E[|My - E[Me | Full] = E[[E[Mysk | Ful - E[Meo | Fon]|]
= E[E[[Myk ~ Meo| | Fi]]
= E[[Mp+k - Mw|] —> 0.

k— o0

Hence E[|M, - E[Ms | F,]|]] = 0 and so M, = E[M., | F,] a.s. This proves|(i)| and the last identity in the
claim.

It only remains to prove that if|(i)| holds, then M., = E[¢ | F]. First observe that each M,, is F;, ¢ Fe-
measurable, so their limit M., is F-measurable. Next, since M,, = E[M., | F,] for every n = 0, then for

every event A € F,, we have
E[¢£14] = E[M, 14] = E[Ms 1 4].

In other words, the two measures on (Q2, &) defined by p(A) = E[£ 14] and v(A) = E[M. 14] agree on
the 7-system |, 0(F, k < n) and they have the same finite total mass E[¢] = E[Mw] < oo, hence they
agree on o(|J, 0(Fk, k = n)) = Fe by Theorem [1.1.13] This means that for every event A € F., we have
E[¢ 14] = E[Mw 1 4] and thus My, = E[¢ | Feo]- O

This corollary can be used to give an extension of the celebrated Kolmogorov o-1law in Theorem [2.1.16]
Corollary 9.2.3 (Lévy’s o-1law). For any A € F«, we have
E[14 | Fn] — 14 as. andinL'.
Proof. The sequence defined by M,, = E[14 | &,] is a closed martingale, which therefore converges a.s. and
in L' to some M,, which satisfies M, = E[14 | Fo] = 14 since A € F,. O

Remark 9.2.4. This indeed extends Theorem Recall from Example that the grouping property
shows that if (M,),.; are independent random variables then the o-algebras &, = o(My, k < n) and
In = o(Mk, k = n + 1) are independent. Consequently each %, is independent of = (1, 7, and for
A €T cFe, wehave P(A) = E[14 | F,] — 14 a.s. One can be puzzled by the identity P(A) = 14 a.s. since
the right-hand side is random. However this implies that either P(A) = 0 or P(A) = 1, so 14 is actually
constant a.s. either to 0 or to 1 respectively.

Let us end by extending the stopping theorem from Section [8.2]in the case of closed martingales. Recall
that by Theorem such a martingale (M,), converges a.s. and in L! to some M, (1) F and furthermore
M, = E[M, | F,] for all n. For any stopping time T let us set

MT = Z Mn ]lT:n + Moo ILT:oo,

n=0

which is Fr-measurable according to Lemmal.2.4]

Theorem 9.2.5. Let (M,), be an adapted and integrable process. Then it is a closed martingale if and only if
for every stopping time T we have Mt € L' and

E[Mr] = E[M].
Moreover in this case, for any stopping times S < T we have:

Ms = E[Mr | Fs].
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Remark 9.2.6. Note that we can take T = oo in the last identity, so for any stopping time S, we have in the
case of a closed martingale Ms = E[M,, | Fs] and further E[M;] = E[Ms] = E[M].

Proof. Let us first prove the direct implication. Since M,, = E[M, | F,], then

E[Mr[] = D E[|Ma| L7=p] + E[|Meo| 1 7=c0]

n=0

= Z E[“E[Moo | G*};n]| ]lT:n] + E[|M°°| HT:OO]

n=0

> EE[|Meo| | Fnl L7-n] + E[[Meo] L 7-00]

n=0

- Z E[|Moo| L7=n] + E[[Meo| 1 7=co]

n=0

= B[|[Meo]] < co.

IA

So indeed My € L!. Let next A € Fr,i.e. A€ Fand An {T = n} € F, for all n. Then for every n = 0,
E[Mr 1 angr=n}] = E[Mn L an(1=n}] = E[Meo Tan{1=n}]-
By summing over n and using Fubini’s Theorem (recall Mr, M, € L') we obtain
E[Mr 14] =E[Ms 14] forall A€ Frandso Mr =E[Ms | Fr].
Now if S < T is another stopping time, then Fs c Fr (Lemmal;.2.2) so by the tower property (Lemmal6.5.1),
E[Mr | Fs] = E[E[Mw | Fr] | Fs] = E[Ms | Fs] = Ms.

Let us next prove the converse implication, so suppose that E[Mr] = E[M,] for all stopping times T. By
Remark[8.2.4| we know (using only bounded stoping times) that (M,),, is a martingale. Taking T = oo, we
know that M., is integrable and we can adapt the proof of Corollary [8.2.3|to show that M, = E[Mw | F,]
for all n. Indeed, fix n = 0 and A € %, and define the stopping time

T=n]lA+00]lAc.

Then
E[Mx] = E[Mo] = E[M7] = E[M, 14] + E[Mc L ac],

and thus E[My 14] = E[M,, 1 4]. Since this holds for all A € F,, then M,, = E[M | F,]. O

9.3 Uniformly integrable martingales (*)

We can push further the previous subsection with the notion of uniform integrability from Section|[2.3.2]
Recall from Theoremthat it is the optimal assumption to improve convergence in probability to L! or
L? convergence. Recall also that boundedness in L? with some p > 1 implies uniform integrability.

Lemma 9.3.1. Let M be an integrable random variable then the family {E[M | €];€ c F} of conditional
expectations with respect to each sub-c-algebra 6 of F is uniformly integrable.

Proof. Fix a sub-c-algebra € of ¥ and let Y = E[M | €] and Z = E[|M| | €]. Fix K > 0, recall that |Y| = Z
and that 1 7.x n) € so
E[|Y|1yj-x] = E[Z 1z-k] = E[|M| 1 z-k].

Further, we have

M| 1z-k = IM| Ly v 2ok + 1M1 Lgo yi 2ok = VK Lzok + M| Lo g
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Taking the expectation and using the Markov inequality, we infer that
1
<
VK
Recall that Z = E[|M| | €] so in particular E[Z] = E[|M]], so for any sub-c-algebra € of &, we have

E[|Y| Ljyj-x] < VKP(Z > K) + E[M| 1. ] E[Z] + E[|M] 1y, )

1
E[[E[M | G]| Ligmsg)-k] < \/7]5[|M|] + B[IM] 1. yx s
and the right-hand side tends to 0 as K — oo. Ul

Remark 9.3.2. Combined with Remark[g.2.6|we find that if (M), is a closed martingale, then the collection
{Mr, T stopping time} is uniformly integrable.

Let us next complete Theorem|g.2.2]

Theorem 9.3.3. Let (M), be a martingale. The following assertions are equivalent:

(i) It is uniformly integrable.
(ii) It is closed.
(iii) It converges almost surely and in L' to some M.

(iv) It converges in L' to some M.

Moreover, when this holds we have My, = E[¢ | Fo] and so My, = E[My | F,].

Proof. Lemmalg.3.1 shows that[(ii)] = [} Next, if (M,), is a uniformly integrable martingale, then it is

bounded in L! so it converges a.s. by Theorem and further in L' by Theorem so|(i)| = The
rest was proved in Theorem O

9.4 L? convergence

Fix p > 1 and suppose that each M,, € L?. We wonder wether we can extend the previous L' convergence to
an L? convergence. We shall rely on Doob’s inequalities, which are powerful tools that allow to control the
maximum of the whole trajectory of a process up to a given time n simply by looking at its value at time n
and that are of independent interest. As an introduction, recall the Markov inequality: for any nonnegative
real-valued random variable M and any constant ¢ > 0, we have:

cP(M = ¢) = E[c1pysc] < E[M 1] < E[M].

Below, we improve this bound for a submartingale by controlling the maximum up to time n in terms of
the value at time n.

Theorem 9.4.1 (Doob’s maximal inequalities). Let (M), be a nonnegative submartingale and for n = 0
define
M, = sup My.

ksn

Then the following assertions hold for every n = 0.

(i) For any c > 0 it holds:
cP(M, = c) < E[M, 137,.c] = E[My].

(ii) For any p > 1, it holds:

P

”Mn”p = 71 "Mn“p
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By Lemma this theorem applies to |M,| when (M,), is a martingale and to M} if (M,), is a
submartingale.

Proof. (i) The second inequality is immediate, let us prove the first one. Define the stopping time
T, = inf{n = 0: M, = c} and notice that {M, = ¢} = {T, < n} = | Ji_o{T. = k}. Since {T, = k} € F
and E[M,, | F¢] = My = c on this event, then by the characterisation of the conditional expectation
for the last equality, we have:

cP(T; = k) = E[c L1,-k] = E[Mg L1,—k] < E[E[M, | Fy] L1,=k] = E[M, L7,4]-
The claim follows by summing over k, recalling that {M, = ¢} = | Ji_,{T. = k}.

(ii) Fix p > 1 and n > 1 and assume E[M£] < oo as otherwise it is immediate. According to Lemma
the process (M%), is a submartingale, and in particular E[M,f ] = E[M}] for any k < n. Hence

E[(M,)*] = [supM‘D] < E[Z MP] > E[Mf] < nsupE[Mp] nE[MF] < oo
k=0 k<n

Next by Fubini’s theorem, the first part, and Fubini’s theorem again,
E[(M,)"] = E[ /0 Cpa Ly de

= /°° pxP ' P(M, = x)dx

/ pxP P E[M, 1y; ., ]dx

—]E[ / pxP? 1, 5 dx
M,(M

i}

p - 1
Let g = p/(p — 1) be such that 1/p + 1/q = 1, then by Holder’s inequality,

E[(M,)f] = qE[M,(M,)""'] = qE[ME]"P E[(M,)??"D]"7 = g E[MP]"P E[(M,)*]* 2.

Since E[(M,)?] < oo, then we may divide both sides by E[(M,)?]""V? > 0 to obtain the inequality

[Ma], < [Mall,

p-1

as wanted. O

Recall from Corollary|[2.3.15|and the remark below it that in general, boundedness in L? and convergence
in probability imply convergence in LY for g < p but not in LP. Here the martingale structure allows us to
get enough control in L? via Theorem

Theorem 9.4.2. Let p > 1 and let (M), be a martingale bounded in L in the sense that

sup E[|M, "] < oo

n=0

Then M is closed in that there exists an integrable random variable M., which satisfies
E[Mw | Fu] = M, forall n.
Moreover My, € LP and more precisely, letting Mo = sup,,_ |My|, we have

-1
pT Mool = Mo < sup |Malp and finally M, — Mw as and in L.
nz
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Proof. Since (M), is bounded in L?, then it is also bounded in L! so it converges a.s. by Theorem to
My € L' which satisfies M, = E[M., | %,] for all n. Let M,, = sup,_, | M|, then by Theoremapplied to
the nonnegative submartingale (|M,|),, we have:

E[M?] = (p’_’l)”EUMnm = ( p[f ) sup E[[M,"] < co

By monotone convergence, the left-hand side converges to E[M?Z,] which therefore has finite expectation.
The random variables [M,|P are thus dominated by the integrable random variable M%,, so by dominated

convergence E[|M,|’] — E[|M«|’] and we infer by letting n — oo in the previous display that
) —

(=) B2 = EOMP) < sup ELIM, ]
p nz=0

Dominated convergence applied to |M, - M|? also implies the L? convergence M, — M. t

9.5 The case of bounded increments (*)

A martingale with bounded increments has a simple destiny: it either converges to a finite limit or oscillates
between +oo; in particular it cannot tend to infinity!

Theorem 9.5.1 (Destiny of a martingale). Let (X,,)n-0 be a martingale with bounded increments, and let
Aconv = { Xy converges to a finite limit}

and
Apse = {X oscillates} = {liminf X, = —o0} n {lim sup X, = o}.

n—oo
Then
]P(Aconv U Aosc) =1L

Proof. A union bound shows that:

P(AS,_ A

conv 0SsC

) < P(AS ., n {liminf X}, > —oo}) + P(AS,,, n {limsup X;, < oo}).

conv conv

Let us prove that the first probability on the right vanishes. Then so does the second one by replacing X, by
-Xp. For K = 1, we let Tx = inf{n = 0: X, < -K} and observe that {liminf, X, > —co} = | Ji{Tx = oo}, so

P(AS,. n {liminf X, > ~co}) = P(U(Agonv n{ Ty = oo})) < 3 P(Alyny 0 { Tk = 00}).
K=1 K=1

It now suffices to prove that for any K fixed, each probability on the right vanishes.

The stopped process (Xp\7; )n is @ martingale and moreover, because the increments are bounded, say
|Xni1 — Xn| = M, then X,,,1, = -M - K for every n. We infer from Corollarythat it converges a.s. to a
finite (even integrable) limit. Since the martingale is unstopped when Tx = oo, then indeed:

P(Afony N { Tk = 00}) < P(Xpa1, does not converge to a finite limit) = 0,

conv

and the proof is complete. O
As a corollary, we can extend the Borel-Cantelli lemma from Lemma [2.1.15]

Corollary 9.5.2. Fix a sequence of events A, € F, for every n = 1 and define two nondecreasing processes
by:

n n
Yo=Y 1a  and  Zy=) E[la | Fel.
k=1 k=1

Then a.s. we have Zy, < 00 <= Y., < oo.
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Proof. Let Xy = 0 and X, = Y, - Z, for every n > 1. The sequence (X},), has bounded increments (by 1) and
X, is clearly F,-measurable; finally one easily gets E[X,.1 | F,] = X, so it is a martingale with bounded
increments. By the previous theorem, a.s. it either converges to a finite limit or oscillates between +co. If
Yo = o0 and Z, < o0 or Yo < o0 and Z,, = oo, then X,, — o0 and X,, — —oo respectively, so this occurs with
probability 0 and the claim follows. O

Note that Yo < oo iff Ay occurs for only finitely many indices k. On the one hand if )’ ; P(Ax) < oo, then
E[Ys] < 0050 Yo < o0 a.s. On the other hand, if the events are independent, then for &, = o(Ay, k < n)
we have that E[14, | F¢-1] = P(Ak). Therefore if )", P(Ai) = oo, then Y, a.s. We thus indeed recover the
Borel-Cantelli lemma.

9.6 Law of Large Numbers

Martingales were originally introduce to generalise cumulative sums of independent and centred sequences
and extend the of strong Law of Large Numbers & Central Limit Theorem. We focus here on the former and
differ the latter to the next section. For the rest of this section, we let (M,,), be a martingale. Henceforth we
shift the notation to see it as the sum of its increments and we shall write:

n
M, = in so  X,=M, - M, and X, = M,.
i=0

Then the process (M,), is a martingale if and only if for every n = 0, it holds:
E[Xp41 | Fn] = 0.

When working with non i.i.d. random variables, we need more than just integrable random variables. We
shall work with martingales in L?, i.e. such that E[X?] < oo for every n. In this case, the increments satisfy
an orthogonality property, namely for every n = 0 and k = 1 we have:

E[Xn+an] = E[E[Xn+an | G*}n+k—1:|] = E[E[Xn+k | %rﬁk—l]xn] =0. (9-1)

This property will be crucial in this section.

9.6.1 A first easy strong law
First, observe that boundedness in L? can be checked by considering a deterministic series.

Lemma 9.6.1. A martingale is bounded in L? in that sup, E[M?] < oo if and only if the series Y, E[X?]

converges. When this holds M, converges a.s. and in L? to some limit M., which satisfies E[Mw | F,] = M,
for all n.

Proof. The claim relies on the orthogonality of the increments (9.1). Indeed, this implies that all the crossed
products in the expansion of E[M?] = E[(}.%, X;)?] vanish and we obtain:

n 2 n
E[M?] = E[(Z Xi) ] = Y E[X7].
i=0 i=0
Thus the claimed equivalence. The rest follows from Theorem for p = 2. O

Let us derive an easy LLN for martingales in L?. We shall rely on Kronecker’s lemma which is very
useful when it comes to proving a LLN.

Lemma 9.6.2 (Kronecker). Let (x,), be real numbers and let (a,), be positive numbers with a, | .

x 1 ¢
If the series Z “% converges, then — Z xx — 0.
a an 17— n—oo

n “n n k=0
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Proof. Let us write yx = ¥.X | xi/a;, then

n n

n n
D%k =Y vk -y = Z ar Yk = Z W1 Ye1 = Y (A = @-1)Vk1 = @nYn — Y (@K = A1) Vk-1.
k=1 k=1 k=1

k=1 k=1
Under our assumption the sequence (y,), has a finite limit, say y. Consequently, for any ¢ > 0, there exists

ko such that |yx-1 — Y| < € for every k > ky. Since a, — oo, then we infer that:

— ky-1

limsup — Z(ak - 1) Yk-1 = limsup — Z(ak - Af-1)Vk-1 < hmsup (Yoo + €) = Yoo + &.

n—eo  ln i3 n—eo An n

Similarly the liminf is lower bounded by y., — ¢. Since ¢ is arbitrary, then

*Zak—ak DYk =2 Yeos
n =1

and the claim follows. O

Here is a first LNN for martingales. Note that if the increments are i.i.d. then the assumption is clearly
satisfied.

Proposition 9.6.3. Let (M), be an L*-martingale.

E[X? M
If Z ElX:] <o, then — — 0 as. andinL®
=1 nZ n n—oo

Proof. First note that the L? convergence follows from Lemma and Kronecker’s lemma applied to
xx = E[X}?] and a, = n®. Indeed, we have

E[(n"'M,)?] — Z]E X?] — 0  since ZE[X’%]

n—oo

Let us prove the almost sure convergence by applying Kronecker’s lemmalg.6.2|to x = X and a, = n.
Indeed, define X; = k™' X; and then M, = Y%, Xi. Then E[X,.1 | F] = (n + 1) " E[Xpe1 | Fi] = 0 50 (My),
inherits the martingale property from (M,),. Further, our assumption reads ¥, E[X2] < oo, s0 Lemma
implies that M, converges a.s. (and in L?) to a finite limit M. This means formally that the event

Xi(w)
k

A ={weQ: the series Z
k

converges}

has probability 1. As alluded, we then apply Kronecker’s lemmaly.6.2|to xx = Xi(w) and aj = k to infer that
for every w € A, it holds n”'M, = n"! Y}_; Xx(w) — 0. Since P(A) = 1, this means that n"! M, — 0 almost
surely as wanted. O

Remark 9.6.4. Proposition can be used to prove the strong LLN for i.i.d. integrable random variables.
Indeed one of the key points in the proof of Theorem was to show with the notation there that
n 'Y ., Yr — 0 and one can check that this sum defines an L?> martingale which satisfies the assumptions

of Proposition|y.6.3]

9.6.2 The bracket process & further strong laws

In the LLN and CLT for martingales, the normalising factor is not always of order n and /n respectively. It
involves more generally the so-called bracket process.
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Definition 9.6.5. Let M,, = );_, Xk be an L*-martingale. We define a nondecreasing process ({(M ), )n=0 by
{M)y=0andforn =1,
n

n
(Myy = D BIXP | Fral = ) BIM; - ME, | F ],
k=1 k=1

Let also (M) = Tlim, (M), € [0, co].

Remark 9.6.6. The analogous bracket process, also called quadratic variation plays an important role in

the study of continuous-time processes.

The next lemma characterises the bracket process. It is actually a particular case of Lemma [8.3.1] applied
to the submartingale (M?) and we refer the interested reader to this more general result.

Lemma 9.6.7. The process ({M)n)nso is the almost surely unique predictable process such that the difference
M? — M2 - {M), defines a martingale null at 0.

Proof. First it is clear from the definition that (M), m) F,-1. In addition, by construction, for every n = 0,
we get by expanding M2, = M2 + X2, | + 2M, Xp.1:
E[M?

n+1

= M§ = {Myper | Fnl = ME + B[X2,1 | Fnl - M§ - (Mt
= M? - Mg - (M),

hence the martingale property. Suppose next that (A,) .o is a predictable process such that M, = M?-MZ-A,
defines a martingale null at 0, then:

Aps1 — Ap = (Mz

n+1

- Mrzz) - (Mml - Mn)
Since Apsq — A, @ Fy and (M), is martingale, then we infer that

An+1 - An = IE:[An+1 - An | EJT"n] = E[Mz

n+1

= My | Fal =AM ps1 = (M.
Since Ay = 0 = (M), then we infer that the two sequences (A,), and ({M),), coincide. ]

Let T be a stopping time and recall from Lemmathat the stopped process defined by M = Myt
for every n = 0 remains a martingale in L?. We can therefore define its bracket process (M ),),-0. The
next lemma shows that the stopped bracket process is the bracket process of the stopped process.

Lemma 9.6.8. For any stopping time T, we have ({M)paT)n = MTY ).

Proof. According to Lemmal.6.7, the process ((M7),), is the unique predictable process (A,), such that
(MﬁAT - A;)y is a martingale started at Mg. Let us prove that (M ),.1), also satisfies these two properties.

First, by decomposing according to the value of T, we have

n-1

(MYpar = 3" L=j (MY + Lan g (M,
j=0

and each random variable on the right is %,_;-measurable, hence (M ),.1), is indeed predictable. Next
simply observe that since (M2 - (M),), is a martingale, then so is the stopped process (M? = {M))\1 =
MﬁAT — {M»pr1. The claim follows then by uniqueness of KMy O

Let us observe that E[M2] = E[{M),] so by monotone convergence (M,), is bounded in L? if and only
if E[{M)e] < co. In this case, Theorem applies and the martingale converges almost surely an in L2.
In the next result, we remove the assumption E[{M )] < o and prove almost sure convergences; note

however that we may not have convergence in L%
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Theorem 9.6.9. Let (M,), be an L*-martingale.

(i) On the event that {M)e, < o we have M,, — My a.s where E[MZ2] < oo. Conversely, if (M), has
bounded increments, then on the event that it converges a.s. we have { M), < o a.s.

(ii) On the event that {M ), = co we have M,/<{M), — 0 a.s.

Proof. Fix k = 0 and let Ty = inf{n = 0: (M), > k}, which is a stopping time since ({M).1), is adapted.
Then by Lemma the bracket of the stopped process (Mua1,)n is ((M)ua1,)n. The latter is bounded by k,
50 (Mpun1,)n is bounded in L? by the previous remark and Lemma shows that it converges a.s. The limit
is square-integrable by Fatou’s lemma. On the event {{M)s, < 0o} = | J.{ Ty = oo}, this implies that (M,),
converges a.s.

Conversely, assume that My = 0, or otherwise subtract it, and suppose that there exists K > 0 such
that [AM,| < K for all n a.s. Then by Lemmal9.6.8] for any n, k > 0 by the martingale property we have
E[M? ; — {M)p.7] = 0 for any stopping time T. Fix k > 0 and let TX = inf{n = 0: |M,| > k}, then
M, 1« < k + K and so E[{M),, ] < (k + K)? for all n, hence {lim, (M), 1+ < % a.s. On the event that M
converges we have {sup, |[M,| < co} = | J,{T¥ = oo} and s0 (Mo, < 0 a.s.

Let us prove the last claim. The process H = 1/(1 + {M)) is bounded by 1 and predictable so H « M is a
martingale in L?. Moreover,

Xk

(H« M)y = (H « M)g-1 = He(Mg = My—1) = T+,

and since the denominator is %;_;-measurable, then

(H My, = Y E[(H « M)~ (H  M)g1)? | Fi1]
k=1

o EIXE | Fpe]
) ; (1+ (M)

S (M =M )iq
k 1 (1 + <M>k)2

S

IA

(tron— - 1am)
1+{ M1 1+<M)g
1
i any

>~

=1

where the inequality follows from the fact that (M) is nondecreasing. In particular, we see that (H + M), < 1
so by the first part the series H «+ M = 3 Xi/(1 + (M)) converges a.s. Kronecker’s lemma9.6.2 applied to
ay = 1+<{M), and x, = X, finally shows that

Mn a.s.
" 500
1+ (M), n—o
on the event (M), T {M)e = oo. dJ

This theorem applied to sums of independent random variables reads as follows.

Corollary 9.6.10. Let (Xi)=1 be independent random variables with E[X;] = 0 and Var(Xy) = o7 < oo. Let
Sp=Xy++X,and Vy, = 62 + -+ 02 1 Vo € [0,00].

(i) If Vo < o0, then S, converges a.s. to a finite limit. The converse holds if in addition sup, | X| < K a.s. for
some constant K < oo.

(ii) If Voo = oo, then S,/V, — 0 a.s.
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As another corollary, we can extend the Borel-Cantelli lemma further than Corollary

Theorem 9.6.11. Fix a sequence of events A, € F, for every n = 1 and define two nondecreasing processes
by:
n n
Yo=Y 1a  and  Zy=) E[la | Frl.
k=1 k=1

Then a.s. we have:
(Zow<00 = Yyo<o) and (Zw=o00 = Y,/Z, > 1).

Proof. By construction, Z is predictable and nondecreasing and M = Y - Z is a martingale with bounded
increments, so in L%, hence Y = M + Z is the decomposition of a submartingale. Note that

(Mynp = Y E[(My - My)* | Fp1]
k=1

= Y E[(14, - E[14, | Fa1))® | Fni]
k=1

n

= Y Ella, | Fna] -E[l4, | Fnal?
k=1

S

= E[ILA” | S‘;:n—l] = Zp.
k=1

Consider now the three cases (we drop the “a.s” everywhere):
o If Zy < o0, then {M)e, < 00, 50 M converges by Theorem|g.6.9|and so Yo < sup, |[M,| + Z < co.

o If Z = o0 and (M )o, < oo, then M converges again and so Y,/Z, = 1+ M,/Z, — 1.

o If Z,, = 00 and (M) = oo, then |M,|/Z, < |My|/{M), — 0 and again Y,/Z, = 1+ M,/Z, — 1. =

Note that when Z, = oo, we have Y, = oo. Therefore we arrive at the dichotomy: a.s. we have,

« either Z,, < co and then Y, < oo, that is A occurs for only finitely many indices k,

+ Or Z,, = o and then Y, = oo, that is A occurs for infinitely many indices k.

On the one hand E[E[1,4, | F-1]] = P(Ak), so if ), P(Ax) < oo, then E[Zs] < 00 50 Yo < o0 a.s. On the
other hand, if the events are independent, then for %, = (A, k < n) we have that E[1 4, | F¢_1] = P(Ag).
Therefore if )’ P(Ax) = oo, then Y, a.s. We thus indeed recover the Borel-Cantelli lemma.

9.7 Central Limit Theorems

Let us continue with a Central Limit Theorem for L? martingales, which generalises the case where the
increments are independent in Theorem We then apply this result to prove the CLT for finite-state
Markov chains stated in Theorem

9.7.1 Martingale Central Limit Theorem

As for the case of independent increments, rather than a fixed martingale (M,,),»0, one can consider but a
triangular array (M, x)n=k=0 Of martingales, that is for every n = 0, the path (M, )k-o is a martingale. We
shall not emphasise this in order to keep light notation, but the reader may keep it in mind.
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Theorem 9.7.1 (Martingale Lindeberg’s CLT). Suppose that there exist a positive sequence a, — oo and a
constant o > 0 such that

{(M>, P 9
—> O .
an n—oo

Second, assume the Lindeberg condition: for any e > 0, one has

1 & P
— Y E[X Laxijee gar | Fiea] —> 0. (9:2)
n k=1
Th
- M, @ 2 M, @
N(0, 0%) and —>  N(0,1).

N KMy,

If instead o? = 0, then a,"/>M,, — 0 in probability.

As for independent random variables a stronger condition but often simpler to verify is the so-called
Lyapunov condition (9.3), which is often checked with 2 + § = 3 or 4 in practice (provided such a moment
exists). This recovers similarly Theorem [2.7.3]in the case of independent increments.

Proposition 9.7.2 (Lyapunov’s CLT). Suppose that there exists § > 0 such that

1 z 5
a}l+5/2 kZlE“Xk|2+ | OJk—l] oo 0. (93)
=1

Then holds.

Proof. We use the conditional Hélder inequality and then the conditional Markov inequality. Indeed, with
p=(2+96)/2and q=(2+35)/dsol/p+1/q =1, wehave for every ¢ > 0:
_ . 1
ay E[IX0 | Fiea] T POX > e an | Fer) '
- + 1% -2+ +
a B[ | Fo] " (e an) C VIS | Fr])

e 0aIODE[X 20 | Fyoy],

@, BIXel® Lixpoe yay | Fr1]

IA

1/q

IA

and the claim follows. O

The philosophy of the proof of Theorem|y.7.1)is to follow as closely as possible that of Theorem [2.7.2]
and we invite the reader to have a look at the latter first. The lack of independence causes several issues
but we can deal with them with some tricks.

Proof of Theorem[9.7.1 Recall that a random variable Z with the Gaussian law N (0, o) is characterised by
its characteristic function E[exp(itZ)] = exp(~t?c?/2) for all t € R. Moreover the pointwise convergence of
characteristic functions is equivalent to the convergence in distribution so our claim follows if we prove
that for each t € R fixed, we have:

.M, 2o
]E[exp(lt )] — exp(— )
Jan n—oo 2

STEP 1: Reduction to an additional assumption. Fix a constant C > o?. Since {M)Y,/a, — ©

2 in
probability then in particular with a probability tending to 1 we have (M); =< --- = (M), = Cay. This bound
will help us at several occasions so we shall replace M, = ¥ ;_; X by

n
M, = ZXk Limy<ca, = Mant,» where T, =inf{k =20: {(M)r,; > Cay,},
k=1
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is a stopping time. Then (M,t,)nsks0 is an array of martingales, and since |Xi 1(ary.<cq,| = |Xi| then it also
satisfies the Lindeberg condition (9.2). In addition, on the event {{M), = Ca,} each indicator equals 1 so
we have M,, = M,, and <M}, = {M),. Hence for any ¢ > 0, it holds:
]P(|<M>n/an - 02| > ¢) < P([{M)n/ay - 02| > &)+ P(M)play > C) —> 0.
n—oo

The stopped martingales thus satisfy the assumptions of the theorem, but also the extra condition (M), <
Cay, for all n = 1 by construction. Finally, since M,, and M, can only differ when (M), > Ca,, then we

conclude that
‘]E[exp(it M )] —]E[exp(it M, )] < ]EHexp(it M )] —]E[exp(it M >| Liary,>ca ]
< 2P(M), > Cay),

which converges to 0. Therefore it is sufficient to prove the theorem for M,, or equivalently, we may assume

that almost surely, we have
M),
M) <C foralln = 1, (9.4)

an

which we do for the rest of the proof.
STEP 2: Proof under the additional assumption. We aim at showing that

1252
]E[exp(it i )] — 1
\/CT,, 2 n—oo
under the extra assumption (9.4). Since {(M),/a, — o in probability, then it is tempting to replace the

latter by the former in the previous expectation and indeed:

M, t'o? M, M t?o? (M

’]E[exp(it n Lo )] —]E[exp(it i < >">”s]EHexp(—0)—exp< ¢ >")H.
Jan 2 Jan 2ay 2 2ap

The term inside the expectation on the right tends to 0 in probability, and the extra assumption provides

enough domination to conclude that the expectation tends to 0. It thus remains to prove that

M, t*{M
]E[exp(it L. < >") — 1,
Jan 2ay n—oco

which we shall do using again. Indeed, notice that we have a telescopic sum:
My P Mgy ))
t +

(twm F<ADH) ) 55( (fﬂh_+ﬂ<ﬂbk> (
exp| i + -1= expl i —exp| i
P Jan 2a, st P Jan 2a, P Jan 2ay

2 ]E[Xzf | Fr-1] ))

i (_Mq ﬂM»x (.&) (
= exp\ it + exp| it —exp|\ -
P Jan 2ay, Jan 2a,

Notice that in the last sum, each random variable is %,_;-measurable, except Xi. Then by conditioning

with respect to Fy_1, we have:
Moy (Mg . Xk P E[X? | Fr-1]
‘E[exp(lt + ><6Xp<lt ) - exp(——))”
Jan 2ay Jan 2an
My, t2A{M X PE[X? | Fr
- e fesp(ir 2 + 006 (Efexp i3 ) | ] - exp (-2 )|
\/‘Tn 2an \@ 2ay

T el () [ 7] e (L)

= ep( 7y N
Using the triangle inequality, let us further upper bound the term in last expectation by

X * E[X? | F- *E[X? | F- P E[X? | Fi-
Bfoa(1) 0] - (- Iy (£ ), FE el

Jan 2ay, 2ay 2ay
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Applying Lemma [2.7.4 with n = 2 (removing the useless factor 1/6) and taking the conditional expectation,
we infer that for every ¢ > 0 and every u € R (which plays the role of t/./a, to lighten the notation), we
have since E[ X} | F¢_1] = 0:

| 2E[X? | % » X
Ele% | 5] - (1- TP Ty e (14, -2 %) [

< E[min(u’ X}, [u* |Xe) | F-1]
uZE[XE D¢ yan | cjk—l] + |u|3 ]E[|Xk|3 Lixj<e yay | GJ:k—1]
U E[XF Lixioe yar | Faor] + €v/an [uf ELXF | Fa .

IA

IA

On the other hand, it is straightforward to show that for x = 0Oitholds 1 -x<e™ <1 -x+ x?%/2, and thus,

for every u € R, we have:

ex (_MZEIXI?ISM) ~(1- qu[Xﬁl%—ﬂ)‘ 1(u2EP<:f|9k—d)Z
P 2 2 2 2
u4 2 9
gE[Xk | Fr-1] sup E[Xy | Fg-1]-

k<n

IA

Let us note that:

SupELX} | T = SUpE[XE Uy | Fca] * S0pE[XE L | ]
=n <n

k<n

n
< Ezan + ZE[X,? ]llxk|>€\/17n | Cj‘k_l].
k=1

Let L(n, ¢) = Y7 E[X} Lix,~¢ ya; | Fk-1], then combining all the previous bounds, with u = t/./a,, we

obtain:
M, M
‘]E[exp(it L < >")—1”
Jan 2a,
_etee Y g[Ppixe F T B2 | 7 R | 7 20, + L
=e Z P [ k |Xk|>£\@| k—l] +57 (X | k—1]+8a2 (X | k—l](f an + (Tl,f))
k=1~ On n n

(6% + a;'L(n, ¢))|.

2 My, t*(M
< etZC/ZlE[—L(n,g)+g|t|3< I + £ Mo
a, an 8

n

Now recall that a,! (M), — o? in probability and a,'L(n, ¢) — 0 in probability by the Lindeberg con-
dition (9.2). Using the extra assumption (9.4) that L(n, ¢) < (M), < Ca, almost surely we can apply the
dominated convergence theorem once again to infer that the expectation above tends to ¢ |t[>c? + £2t*5?/8.

By letting further ¢ — 0, we may now conclude. U

9.7.2 Markov chain Central Limit Theorem

Let us prove Theorem[5.1.4] by an application of Theorem|9.7.1] Recall the former result: let (X,)s0 be an
irreducible Markov chain on a finite set X with stationary probability zz. For any function f : X — R, we

have the convergence in distribution:

= 200 =) 5 X007
k=0

n—oo

where o2 is a constant that we discussed after the statement and that we shall see appearing in the proof.
Replacing f by f — n(f) if necessary, it is sufficient to consider f such that z(f) = 0.
The proof uses the solution of the so-called Poisson equation that we put in a separate lemma.
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Lemma 9.7.3. Let P be an irreducible transition matrix on a finite state space X, with stationary probability
m. Let f : X — R be such that n(f) = 0. Then the equation

u-Pu=f (9:5)
has a solution, given explicitly by u(x) = Y., P¥f(x) for every x € X.

Proof. Let us first prove that u is well-defined. Indeed, recall that in a finite state-space, the Déblin condition
is always satisfied, so by Theorem|s.2.13|there exist k = 1 and § > 0 such that for any n > 1 and any initial

position x, we have:

D IP(x,y) - 2(y)] = 2(1 - §)H,

yeX
Consequently,
]Z P'(x,y)f(y) = . 2 ()| < (maxf) Y [P"(x, y) - 7(y)| < 2(max f)(1 - 5",
yeX yeX yex

Recall that we assume that ZyEX z(y)f(y) = n(f) = 0, hence Y., [P"f(x)| < oo and u(x) is well-defined as an
absolutely convergent series. The Poisson equation then follows easily from the explicit expression:

Pu:PZPkf=ZPk+1f=Zpkf=zpkf+f=u—f,

k=0 k=0 k=1 k=0

which is equivalent to (9.5). ]

We shall prove Theorem [5.1.4|by constructing a martingale using the Poisson equation and applying
Theorem to the latter.

Proof of Theorem/[s5.1.4, Recall that we assume 7(f) = 0, otherwise simply replace f by f - 7(f). Let u be the
solution to the Poisson equation and define for all n, k > 1:

Yi = u(Xi) - Pu(Xp)  andthen M, =) Y

Then observe that:

D) = Y (u(Xi) - Pu(Xi))
k=0

n

k=0
= 3 (w(Xi) = Pu(Xi1)) = D (Pu(Xi) = Pu(Xi1))
k k=1

—_

= M, - (Pu(Xy) - u(Xp)).

Since X is a finite state, then Pu(X,) - u(Xp) is uniformly bounded in n, so it vanishes once divided by /n
and our claim is thus equivalent to

M,
- % (0, 6%). (9.6)

We claim that (M,), is a martingale for the filtration &, = o(Xk, k < n). Indeed:

E[Yy [ Fi-1] = E[u(Xk) | Fr-1] - Pu(Xg-1)

= E[u(Xy) | Xk-1] - Pu(Xy_1) (Markov property)
= Pu(X-1) - Pu(X-1)
=0.

See the proof of Theorem for more details on the Markov property in this context. According to
Theorem the convergence then holds as soon as n”' (M), — o¢? in probability and that the
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Lindeberg condition is satisfied with a, = n. This last condition is trivial here since the increments
Y} are uniformly bounded (because X is finite), so each conditional expectation in vanishes when n
is large enough. Let us focus on the bracket process (M), = Y.i_; E[Y} | F_;]. We have by the Markov
property at the third line:

E[Y} | F-1] = B[(w(Xk) - Pu(Xp-1)) | Fr-i]
= E[u(Xe)® | Fr-1] + (Pu(X1))® - 2Pu(Xp-1) E[u(X) | Froi]
= E[u(Xi)? | X-1] + (Pu(Xe1))® - 2Pu(Xie—) B[u(Xk) | X ]
= P”(kal)2 - (Pu(Xk—l))z
= ¥(Xk-1),

where ¥ = Pu? - (Pu)®. Applying Corollary to this function ¥, we obtain:

M 1 ¢ .
Mn 1S w(x ) 25 (@) = o,
n n & n—oco
Theorem|9.7.1then shows that the convergence holds and this completes the proof. O

The reader can see that the proof is rather robust and indeed CLT’s hold also in infinite state spaces X
but one has to be more careful. For example, the solution to the Poisson equation u — Pu = f may not exist
in general. Thus different versions of CLT exist under good conditions.

9.8 Stochastic Gradient Descent & Robbins—Monro Algorithm

In many applications, one aims at minimising or maximising a real-valued function which depends on many
parameters, and often in a not so explicit way. Such a function could for example quantify some cost in
economy, the energy efficiency in some chemical reaction, optimise a transport system, compute a maximum
likelihood estimator, etc. Let us see an application of martingales theory to an algorithm solving numerically
this deterministic problem. In particular, Corollary [9.1.4] will ensure that our algorithm converges. Let us
start with the deterministic setting first. We shall not try to provide the minimal assumption here and
satisfy ourselves with easy proofs in simple cases.

9.8.1 The Gradient Descent algorithm

The context is the following. Suppose that a parameter 6 € R? produces an effect that we quantify by
£(0) € R and suppose that f has a unique minimiser, i.e. a solution 6 € R? of:

£(6) = min £(6).

feR4

The question is: If f is not explicit, how can we find 0" in practice? Not that we do not care about the
minimum value f(6"), we only want to be able to choose the optimal parameter 6". A well-used numerical
scheme is called the gradient descent. Recall that the gradient (if it exists) is the vector of partial derivatives:
VF(0) = (91f(0), ..., d4f(0)). We shall suppose that Vf satisfies the so-called separating condition:

(O-0,Vf(0)>0  forevery 6 eR\ {6}, (9.7)

where -, - is the inner product in R¢. In dimension d = 1, this simply means that f’ is strictly negative
before 6" and is strictly positive after §*. This condition ensures that f has a unique local minimum, at ¢,
which is the global minimum. Recall in Section an idea to deal with functions that admit several local
minima.
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The gradient descent is designed as follows: Fix a sequence (y,)n-1 of real numbers such that:
Vvn=1:y, >0, Z)’n=°°> ZY3<°°’
n n

and fix an arbitrary initial value 6, € R¢. Then recursively define:
On = On-1 = YuVf(6n-1), nzl. (9.8)

In this scheme we correct step by step the parameter 6, by following the slope given by the gradient.
Indeed, consider the dimension d = 1 for simplicity. Since y, > 0 then either f/(6,-1) > 0 and then 0, < 6,4,
or f'(6,-1) < 0 and then 6, > 6,_,. By , in both cases we have f(6,) < f(6,-1). Roughly speaking, we
want y, — 0 to ensure that the sequence converges, but ), y, = oo to avoid it to converge too fast, before

reaching 6"

Proposition 9.8.1. Let f: R? — R be continuously differentiable and suppose that Vf is bounded and
satisfies (9.7). For every 6, € RY, the sequence (6y,), defined by converges to ".

Proof. Let us write for every k = 1:

|0 = 0% = |61 — O + |6k — Opr[* + 261 — 07, O — O
= |01 - 9*|2 + )’I§|Vf(9k—1)|2 =211 Okq — 9*,Vf(9k_1)>,

Consequently,

n n
23 Vil Oker = O VF(Ocr)> = |60 - O = 10 - O + > yEIVF(Or)-
k=1 k=1

Under each term on the left is positive; on the right, the sum is convergent under our assumptions
that ), y2 < oo and that Vf is bounded. Therefore the series on the left is convergent and then since both
sums converge, the sequence |0, - 6"|* has a finite limit. Further, by and since Vf is continuous, then
for every ¢ > 0, the quantity:

o: iy (0 OO

is a positive number, say 5 > 0. If the limit of |6, - 6"|* is nonzero, then by choosing ¢ small enough, we
have |6;_; — "] > ¢ for every k large enough, say k > k., which leads to:

00> N Yk (Ok1 = 0, Vf (1) 2 £ ) yi = 00

k=1 k=k,

by our assumption. We conclude that |6, - 6*|* converges to 0. t

9.8.2 Stochastic Gradient Descent

Often in practice, the effect of the parameter 6 is random, say F(X, 0) for some function F and some random
variable X, and we aim at minimising f(0) = E[F(X, 0)] as before, but we can only observe F(X, 0). Let
us assume that Vf(0) = E[VF(X, 0)]. One typical application the reader may have in mind is the response
F(X, 0) of a patient to a dose of medicine 6 (with possibly several components): we aim at finding the dose
that provides the best average response over patients but we can only observe the effect on each patient.

A naive idea to find 0" here is to use the same numerical scheme as in (9.8), but at every step, approximate
Vf(0,-1) using the observable VF(X, 6,,_1). Formally, let (X, ;)5 ;=0 be i.i.d. random variables with the same
law as X and let

—_

k
Vf nl %ZVF(thGnl
i=1
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which converges a.s. to Vf(6,-;) by the Law of Large Numbers. Then we may use the scheme with
Vf(6p-1) being replaced by @‘(Qn,l)k for some large k. This may however not be convenient in practice for
it requires a large number n x k of random variables of the form X, ;. If we think again of the medicine
tested on patients, this requires a lot of trials! Also even for computer simulations, especially when the
dimension d of 0 is large, this may take too long computation time. This is typically the case in neural
networks.

Instead, the Robbins—Monro algorithm constructs a random sequence (0,), which in some sense allows
to take k = 1 above. Precisely let (X,),-1 be i.i.d. copies of X, let F,, = o(Xk, k = n) and construct recursively
starting from ©, € R? an adapted process by:

On = Op-1 — YuVF(X;, ©po1), where vnz=1:y,>0, Z Yn = o0, Z y,% < oo, (9.9)
n n

Theorem 9.8.2. Let f : R — R be continuously differentiable; suppose that Vf(0) = E[VF(X, 6)] where VF
is bounded and suppose that holds. For every ©, € R%, the sequence (©,), defined by converges
almost surely to 6".

The proof is quite close to that of Proposition The almost sure convergence is provided by a
supermartingale uniformly bounded below as in Corollary

Proof. Let us write for every k = 1:

Ok — 02 = 041 — O + O -~ O 1 +2(O_y - 07,0k - O_1)
= @1 - O + YEIVF(Xk, O _1)|* - 214 {Op_1 - 0", VF(Xy, Op_1)).

Consequently, the sequence

n
My =10, = 0 = > P E[IVF(Xe, Ok1) | Froil,
k=1

satisfies:

E[M, - Myy | Fn1] = E[|0n = 0 = |©@ny = O = yiIVF(Xn, O 1)]* | Fni]
= _2}’11 (O, - 0", E[VF(Xn, ®n—1) | GJ'yn—l]>
= =2 (Op_q - o, vf(®n—1)>,

where the last equality follows from Theorem [6.5.4} The assumption therefore implies that (M,), is a
supermartingale. Since we assume that ), y2 < co and that VF is bounded, then this supermartingale is
bounded below by a constant and thus it converges almost surely by Corollary to a finite limit. The
sum in the definition of M, also has a finite limit, again because Y, y? < o and VF is bounded. Hence
|©, — 6| converges almost surely to a finite limit. It remains to prove that this limit is 0.

By similar arguments, we have:

n

2B[Y) 1<Oit - 0, 9f(O1-1))| = E[€0 - 0 - 0, - 011+ Y, yE[[VF(Xe, Oc-0)f.
k=1 k=1

and the last sum converges. Consequently Y yx (©Ok_1 — 0", Vf(Ok_1)) < co almost surely. Now recall that
Yk Yk = o0, so we must have {O_; — 6", Vf(©,_1)» — 0 almost surely. On the other hand, by and since
Vf is continuous, then for every ¢ > 0 we have:

inf{(6-0,Vf(0): 0eR%,|0-6]=¢}>0.

So the fact that <®y_; - 0", Vf(Ok_1)) — 0 implies that lim sup, |©y_; - "| < ¢ for every k large enough.
Taking the intersection over ¢ € Q, we conclude that almost surely, we have lim sup; [@;_; - "] =0. [
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